• 回答数

    6

  • 浏览数

    128

飞天之梦想
首页 > 职称论文 > 数学小论文八年级下册

6个回答 默认排序
  • 默认排序
  • 按时间排序

vivianygefes

已采纳

初二数学小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 数学小论文 今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!! 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

163 评论

飘泊四方的狼

2的学生数学论文:《勾股定理的证明方法探究》勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明!勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是a^2+b^2=c^2。这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。2.希腊方法:直接在直角三角形三边上画正方形,如图。容易看出,△ABA’ ≌△AA'C 。过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,即 a2+b2=c2。至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴ 全等形的面积相等;⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。如图,S梯形ABCD= (a+b)2= (a2+2ab+b2), ①又S梯形ABCD=S△AED+S△EBC+S△CED= ab+ ba+ c2= (2ab+c2)。 ②比较以上二式,便得a2+b2=c2。这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则△BCD∽△BAC,△CAD∽△BAC。由△BCD∽△BAC可得BC2=BD ? BA, ①由△CAD∽△BAC可得AC2=AD ? AB。 ②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有 BC2+AC2=AB2,这就是a2+b2=c2。这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,因为∠C=90°,所以cosC=0。所以a2+b2=c2。这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。人们对勾股定理感兴趣的原因还在于它可以作推广。欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。总之,在勾股定理探索的道路上,我们走向了数学殿堂56

337 评论

木头人的老婆

晕,我们老师也让写,我写完了但怎么看都像作文!

93 评论

命丧与她丶

本学期,我们学习了许许多多的数学知识.从“几何”到“代数”再到“数形结合”.太多太多了.8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”.一开始接触“函数”这个概念时还是非常陌生的.因为转眼望去,前面的单元基本是“小学”和“初一”接触过得.而对于“函数”来说确是几乎“一无所知”.只知道初一老师说过“可能性”和“函数”有着密切的关系.翻开这个单元时,真的有点“丈二和尚摸不着头脑”.上面说了种种对“函数”概念的无知.所以自然在一开始学习的过程中会遇到“困难”.这单元的第一章从生活实际出发讲了“函数”的定义等等.这是一个比较“浮浅”的类容(从我现在的角度来说).从这里我真正接触到了“函数”,但也许是学习没有完全进入.当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他.”第二章类容可以说就是对第一章的一个“浓缩”.好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去.学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多.真正的困难出现在第三章,谈到了“一次函数的图象”.可以老实说这章听得差不多是我本学期听的最累的一节课.老师发下来讲义,我那节课觉得您讲的奇快.我还没反应过来你就讲完了.我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的.于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变.觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了.以上就是我学习“一次函数”的经历.下面我们在来分析一下“一次函数”.从类别上讲,“一次函数”是一个“数形结合”的“典范”.它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”.使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了.其次“一次函数”我认为是一个有趣,神奇的类容.它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律.不能不觉得“一次函数”充满了“魔力”.此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”.我想2章的联合编排更是教会我们“复习整理”的学习方法.所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”.“一次函数”也使我对这本教材有了全新的认识和看法.“一次函数”不仅有趣而且更是“历届”中考的“重中之重”.所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容.参考资料:

359 评论

不想在你身后

同学们,你们想不想很快地判断出一个数能否被4、7、9、11、13等数整除?在学习了被2、3、5整除的数的特征后,我和同学们在课余时间摸索出了能被其他一些数整除的数的特征,总结如下,希望对同学们的学习有所帮助。 1、能被9整除的数的特征。一个数各个数位上的数字之和能被9整除,这个数就能被9整除。如29736,因为2+9+7+3+6=27,27能被9整除,所以29736也能被9整除,即: 29736÷9=3304。 2、能被4、25整除的数的特征。一个数的末两位的数能被4或25整除,这个数就能被4或25整除。例如:13120,末两位的数是20,20能被4整除,13120也能被4整除,即 13120÷4=3280。又如,4775,末两位的数是75,75能被25整除,4775也能被25整除,即 4775÷25=191。 3、能被8、125整除的数的特征。一个数的末三位的数能被8或125整除,这个数就能被8或125整除。如26720,末三位的数是720,720能被8整除,26720也能被8整除,即 26720÷8=3340。请你用这种方法判断一下58375能否被125整除。 4、 被7、11、13整除的数的特征。一个数的末三位数与末三位以前的数字所表示的数的差(大数减小数)能被7、11或13整除,这个数就能被7、11或13整除。如;57001,末三位数字表示的数是1,末三位以前的数是57,57—1=56,56能被7整除,所以57001也能被7整除,56不能被11、13整除,所以57001不能被11或13整除。又如:77168,因为168—77=91,91能同时被7和13整除,所以77168也能同时被7和13整除,即77168÷7=11024,77168÷13=5936。 另外,能被11整除的数还具有这样的特征:奇数位(指个位、百位、万位……)上的数字之和与偶数位(指十位、千位、十万位……)上的数字之和的差能被11整除,这个数就能被11整除。例如58234,奇数位上的数字之和是4+2+5=11,偶数位上的数字之和是3+8=11,11—11=0,0能被11整除,58234也能被11整除,58234÷11=5294。

148 评论

小小爱人小姐

1.题名规范题名应简明、具体、确切,能概括论文的特定内容,有助于选定关键词,符合编制题录、索引和检索的有关原则。2.命题方式简明扼要,提纲挈领。3.英文题名方法①英文题名以短语为主要形式,尤以名词短语最常见,即题名基本上由一个或几个名词加上其前置和(或)后置定语构成;短语型题名要确定好中心词,再进行前后修饰。各个词的顺序很重要,词序不当,会导致表达不准。②一般不要用陈述句,因为题名主要起标示作用,而陈述句容易使题名具有判断式的语义,且不够精炼和醒目。少数情况(评述性、综述性和驳斥性)下可以用疑问句做题名,因为疑问句有探讨性语气,易引起读者兴趣。③同一篇论文的英文题名与中文题名内容上应一致,但不等于说词语要一一对应。在许多情况下,个别非实质性的词可以省略或变动。④国外科技期刊一般对题名字数有所限制,有的规定题名不超过2行,每行不超过42个印刷符号和空格;有的要求题名不超过14个词。这些规定可供我们参考。⑤在论文的英文题名中。凡可用可不用的冠词均不用。

146 评论

相关问答

  • 数学小论文八年级下册

    初二数学小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆

    飞天之梦想 6人参与回答 2023-12-07
  • 小学数学五年级下册论文

    认识了小学五年级勾股定理知识和勾股定理知识的常见运用,想必很多同学会去深入学习。本站用户整理了五年级数学小论文:勾股定理,欢迎阅读。五年级数学小论文:勾股定理1

    后颈伤痕 5人参与回答 2023-12-07
  • 四年级下册的数学小论文

    这么些、::你们。你是否会有所?你要去找 gfufyìyytx四个地方需要懂gdajòdfkryeymsj人不够敢说出的话就不知道仍然坚持✊!你的手机没有信

    聪明糊涂心yy 7人参与回答 2023-12-12
  • 八年级下册物理小论文

    给你几个例子,你再写个开头结尾,组织下语言就可以了例如,在物态变化一章的教学中的汽化一节,讲清物理规律,即:蒸发和沸腾是汽化的两种方式。前者只能在液体表面上缓慢

    嘟嘟喵呜 7人参与回答 2023-12-10
  • 八年级下册物理论文

    我们的生活离不开阳光,通常我们认为阳光是一种单色光(单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长

    kiki朱朱小猴子 5人参与回答 2023-12-11