哈啰辉辉
很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。一点区分对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实,人脸检测解决的问题是确定一张图上有木有人脸,而人脸识别解决的问题是这个脸是谁的。可以说人脸检测是是人识别的前期工作。今天我们要做的是人脸识别。所用工具Anaconda 2——Python 2Dlibscikit-imageDlib对于今天要用到的主要工具,还是有必要多说几句的。Dlib是基于现代C++的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。Dlib内容涵盖机器学习、图像处理、数值算法、数据压缩等等,涉猎甚广。更重要的是,Dlib的文档非常完善,例子非常丰富。就像很多库一样,Dlib也提供了Python的接口,安装非常简单,用pip只需要一句即可:pip install dlib上面需要用到的scikit-image同样只是需要这么一句:pip install scikit-image注:如果用pip install dlib安装失败的话,那安装起来就比较麻烦了。错误提示很详细,按照错误提示一步步走就行了。人脸识别之所以用Dlib来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。今天我们主要目的是实现,而不是深究原理。感兴趣的同学可以到官网查看源码以及实现的参考文献。今天的例子既然代码不超过40行,其实是没啥难度的。有难度的东西都在源码和论文里。首先先通过文件树看一下今天需要用到的东西:准备了六个候选人的图片放在candidate-faces文件夹中,然后需要识别的人脸图片。我们的工作就是要检测到中的人脸,然后判断她到底是候选人中的谁。另外的是我们的python脚本。shape_predi
蓝梦与信
姓名:张钰 学号:21011210154 学院:通信工程学院 【嵌牛导读】Frequency-aware Discriminative Feature Learning Supervised by Single-Center Loss for Face Forgery Detection论文阅读笔记 【嵌牛鼻子】Deepfake人脸检测方法,基于单中心损失监督的频率感知鉴别特征学习框架FDFL,将度量学习和自适应频率特征学习应用于人脸伪造检测,实现SOTA性能 【嵌牛提问】本文对于伪造人脸检测的优势在哪里体现 【嵌牛正文】 转自:
肉祖宗想切肉
现在的人脸识别技术已经得到了非常广泛的应用,支付领域、身份验证、美颜相机里都有它的应用。用iPhone的同学们应该对下面的功能比较熟悉iPhone的照片中有一个“人物”的功能,能够将照片里的人脸识别出来并分类,背后的原理也是人脸识别技术。这篇文章主要介绍怎样用Python实现人脸检测。人脸检测是人脸识别的基础。人脸检测的目的是识别出照片里的人脸并定位面部特征点,人脸识别是在人脸检测的基础上进一步告诉你这个人是谁。好了,介绍就到这里。接下来,开始准备我们的环境。准备工作本文的人脸检测基于dlib,dlib依赖Boost和cmake,所以首先需要安装这些包,以Ubuntu为例:$ sudo apt-get install build-essential cmake$ sudo apt-get install libgtk-3-dev$ sudo apt-get install libboost-all-dev我们的程序中还用到numpy,opencv,所以也需要安装这些库:$ pip install numpy$ pip install scipy$ pip install opencv-python$ pip install dlib人脸检测基于事先训练好的模型数据,从这里可以下到模型数据下载到本地路径后解压,记下解压后的文件路径,程序中会用到。dlib的人脸特征点上面下载的模型数据是用来估计人脸上68个特征点(x, y)的坐标位置,这68个坐标点的位置如下图所示:我们的程序将包含两个步骤:第一步,在照片中检测人脸的区域第二部,在检测到的人脸区域中,进一步检测器官(眼睛、鼻子、嘴巴、下巴、眉毛)人脸检测代码我们先来定义几个工具函数:def rect_to_bb(rect): x = () y = () w = () - x h = () - y return (x, y, w, h)这个函数里的rect是dlib脸部区域检测的输出。这里将rect转换成一个序列,序列的内容是矩形区域的边界信息。def shape_to_np(shape, dtype="int"): coords = ((68, 2), dtype=dtype) for i in range(0, 68): coords[i] = ((i).x, (i).y) return coords这个函数里的shape是dlib脸部特征检测的输出,一个shape里包含了前面说到的脸部特征的68个点。这个函数将shape转换成Numpy array,为方便后续处理。def resize(image, width=1200): r = width * / [1] dim = (width, int([0] * r)) resized = (image, dim, interpolation=) return resized这个函数里的image就是我们要检测的图片。在人脸检测程序的最后,我们会显示检测的结果图片来验证,这里做resize是为了避免图片过大,超出屏幕范围。接下来,开始我们的主程序部分import sysimport numpy as npimport dlibimport cv2if len() < 2: print "Usage: %s
520美食吃货
一般来说,人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。人脸识别算法分类基于人脸特征点的识别算法(Feature-based recognition algorithms)。基于整幅人脸图像的识别算法(Appearance-based recognition algorithms)。基于模板的识别算法(Template-based recognition algorithms)。利用神经网络进行识别的算法(Recognition algorithms using neural network)。基于光照估计模型理论提出了基于Gamma灰度矫正的光照预处理方法,并且在光照估计模型的基础上,进行相应的光照补偿和光照平衡策略。优化的形变统计校正理论基于统计形变的校正理论,优化人脸姿态;强化迭代理论强化迭代理论是对DLFA人脸检测算法的有效扩展;独创的实时特征识别理论该理论侧重于人脸实时数据的中间值处理,从而可以在识别速率和识别效能之间,达到最佳的匹配效果
dlib的安装很头疼我自己折腾了好几星期才成功 要讲的话很多所以写在了word里 链接:
直接要源文件啊。。。这个复杂2DPCA为2维PCA,Mpca不晓得是什么,Kpca为核PCA,你懂了PCA,那其他三种很好写,你找论文,很好搜的。PCA很简单的
知网学术不端检测系统中国知网是国家知识基础设施(National Knowledge Infrastructure,NKI)的概念,由世界银行于1998年提出。
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读! 图像识别技术研究综述 摘要:随着图像处理技术的迅速发展,图像
之前也是为论文苦恼了半天,网上的范文和能搜到的资料,大都不全面,一般能有个正文就不错了,而且抄袭的东西肯定不行的,关键是没有数据和分析部分,我好不容易搞出来一篇