东北小茬子521
稍加修改就OK了我是红细胞,呈双面凹的圆饼状。边缘较厚,而中间较薄,就好像是一个甜甜圈一样,只是当中没有一个洞而已。这种形状可以最大限度的从周围摄取氧气。同时它还具有柔韧性,这使得它可以通过毛细血管,并释放氧分子,直径通常是6μm~8μm。 由于这种特别的形状而且体积比较小,所以表面积对体积的比值较大,使氧气以及二氧化碳能够快速地渗透细胞内外。我的细胞膜含有特别的多醣类以及蛋白质,但是这种结构因人而异,这些结构是构成血型的基本要素。 我含的血红蛋白占血球总量的30%以上,是血液中最通常的一种血细胞,在干重9%时,占94%,随着氧分压的变化与氧结合或游离,但它的解离曲线和纯血红素的溶液不同,在氧分压低的组织,我具有放出多量氧的能力。另外,存在有碳酸脱氢酶,在将二氧化碳转化为碳酸氢离子的可逆反应中起触媒作用。因此红细胞运送血液二氧化碳的能力很强。 在人及其他哺乳动物中,成熟的我是无核的。这意味着它们失去了DNA。红细胞也没有线粒体,它们通过葡萄糖合成能量。成熟的哺乳类红细胞是双凹盘状,如此可增加其表面积,使物质更容易通过其细胞膜。 我含有血红素,其具有缓冲的作用。血红素的十分活跃,它既能和氧结合在一起,也能和二氧化碳结合。因此,其主要工作为运输氧和二氧化碳。我的功能是运输氧,二氧化碳,电解质,葡萄糖以及氨基酸这些人体新陈代谢所必须的物质。此外还在酸碱平衡中起一定的缓冲作用。这两项功能都是通过我的血红蛋白来实现的。如果红细胞破裂,血红蛋白释放出来,溶解于血浆中,即丧失上述功能。 我通过血红蛋白运送氧气,我的90%由血红蛋白组成。血红蛋白是一种红细胞相关的化合物肌红蛋白,在肌肉细胞中存储氧气。血红蛋白(Hb)由珠蛋白和亚铁血红素结合而成。血液呈现红色就是因为其中含有亚铁血红素的缘故。它可以在肺部或腮部临时与氧气分子结合,该分子中的Fe2+在氧分压高时,与氧结合形成氧合血红蛋白(HbO2);在氧分压低时,又与氧解离,身体的组织中释放出氧气,成为还原血红蛋白,由此实现运输氧的功能。血红蛋白也可以运送由机体产生的二氧化碳(不到氧气总量的2%,更多的二氧化碳由血浆解决)。血红蛋白中Fe2+如氧化成Fe3+,称高铁血红蛋白,则丧失携带氧气的能力。血红蛋白与一氧化碳的亲和力比氧的大210倍,在空气中一氧化碳浓度增高时,血红蛋白与一氧化碳结合,因而丧失运输氧的能力,可危及生命,称为一氧化碳中毒(即煤气中毒)。 我含有两亿到二十亿个血红素分子,占了红细胞重量的三分之一。每个血红素分子由四个次体构成,每个次体包含一个血基质(heme)以及一个和血基质连接的多肽。血红素内的多肽称为球蛋白(globin),而每个血基质当中有一个铁原子,此处可以和一个氧分子结合。因此,一个血红素可以和四个氧分子结合。女性血红素的平均浓度为14g/L,男性的血红素平均浓度为16g/L。在体内,不是只有血红素含有铁原子,像细胞色素是另外一种含铁原子的分子。 肺中的氧气张力高,血红素在微血管中与氧结合,形成充氧血红素,充氧血红素在氧气张力较低的组织微血管中释出氧气。而二氧化碳是以碳酸、重碳酸离子以及钾和钠的重碳酸盐的形式进行运输。血红素和氧结合时,血液就变得鲜红,变成动脉血,和二氧化碳结合时,血液就变得暗红,变成静脉血。 血红素既能和它们很快地结合,而且还能够和它们分开。当红细胞流经肺里的时候,它就跟氧结合在一起并把氧运送到人体全身的各个角落里,让肌肉、骨骼、神经等细胞得到氧气,能够正常地工作。红细胞把氧气送出后就很快地和氧气分离,立刻带走了这些细胞排出的二氧化碳,运回肺部呼出体外。 另外,并非所有的血红素的构造都相同,例如胎儿的血红素比成年人的血红素有着更强的氧亲和力,在任何氧分压下,都有着比母亲血红素为高的百分比,因而能从母亲的血液中获取氧,胎儿出生后二十个星期,血红素就变为成年人的形式了。 我就是这样忠诚地把氧气运输给人身体组织的各部位,再从各部位运送出代谢产物二氧化碳,所以红细胞是我们人体内不可缺少的“运输队”。 这是我帮你看了好多找的、、、、、、、、主要是介绍的
catmouse1972
论细胞生物学的发展 悠悠300余年,关于细胞的研究硕果累累;近50年来更进入了分子水平,老树又绽新花。许多研究成果已经或将要走进我们的生活:植物细胞在培养瓶中悄然长成幼苗;动物体细胞核移植诞生了克隆动物;不同生物细胞间DNA的转移创造出新的生物类型及其产品;病危的生命期盼着干细胞移植的救助…… 现在,生物学在人类的生产生活中的使用愈加广泛。美国细胞生物学家威尔逊曾经说过:“每一个生物科学问题的答案都必须在细胞中。”这句话明显说明了细胞生物学对整个生物科学的研究有着怎样的重要性。细胞生物学的发展,越来越受到人们的重视。 谈起细胞生物学,不得不提的是建立于19世纪的《细胞学说》。《细胞学说》的建立可谓是自然科学史上的一座丰碑。《细胞学说》的两位建立者——德国科学家施莱登和施旺。经过长时间不断的探索和研究,分别从结构、功能和分裂三个方面对细胞进行了探究,并从中提炼出了三个要点,构成了《细胞学说》的主体。《细胞学说》的建立,不仅为达尔文的《进化论》奠定了基础,更为后人对细胞生物学的研究,做出了巨大贡献。 在细胞学说创立的100年间,人们对细胞的研究基本停留在简单观察和形态描述的水平,细胞在生物学家的眼中多多少少还像一团胶状物,里面杂乱地散布着一些含混不清的东西。此时出现了一名科学家——美国的细胞生物学科学家克劳德,他决心把细胞内部的组分分离开,探索细胞内组分的结构和功能。当时分离细胞器所遇到的困难是今天的人们难以想象的。许多人对他冷嘲热讽,认为把好好的细胞弄碎是毫无意义的。但是克劳德坚信,要深入了解细胞的秘密,就必须将细胞内的组分分离出来。经过艰苦的努力,他终于摸索出采用不同的转速对破碎的细胞进行离心的方法,将细胞内的不同组分分开。这就是一直沿用至今的“转速离心法”。 如果说《细胞学说》是通往细胞生物学的一扇门,那么我认为克劳德的“转速离心法”便是这扇门的钥匙。这种方法的发现,使人类对细胞内部的进一步探究,有着非常重要的意义。 随着对细胞内更深入的探究,人类发现了细胞中一个新的世界。细胞中每个组分如此精巧,一个个小小的细胞器,在细胞中都起到了非常关键的作用。霍中和院士在《细胞生物学》中写到:“我确信哪怕最简单的一个细胞,也比迄今为止设计出的任何只能电脑更精巧。”人类也曾经试图组装出一个细胞。1990年,科学家发现人体生殖道支原体可能是最小、最简单的细胞。1995年,美国科学见文特尔领导的研究小组,对这种支原体的基因组进行了测序,发现它仅有480个基因。如果在480个基因中辨认出对细胞生活必不可少的“基本基因”,那么就有希望人工合成这些基因——一段不很长的DNA分子。 文特尔的方法是破坏一个又一个的基因,看那些基因是绝对不可或缺的,终于筛选出了300个对生命活动必不可少的基因,但其中100个基因的重要性尚不清楚。 文特尔以及其他一些科学家认为,如果能人工合成这300个基因的DNA分子,再用一个细胞膜把它和环境分隔开,在培养基中培养,让他能够生存、生长和繁殖,组装细胞就成功了。科学家现在已经能够合成长度为5000个碱基因对的DNA片段,文特尔估计生殖道支原体的DNA的碱基对比这要多100倍,因此,DNA的人工合成还需要方法上的创新。怎样给DNA分子包上细胞膜也是一个难题。他们的设想是,把生殖道支原体细胞的DNA破坏掉,再把人工合成的基因组“注入”支原体细胞。 有关实验还在进行中,不过可以确信的是,人类对细胞生物学的研究愈加深入,对人类今后的发展就愈加有利。通过不断的科学探究和深入研究,我相信在不久的将来,细胞生物学将成为一个重要的科学领域,会吸引更多的人去探索、研究。它也会绽放出他耀眼的光辉,来迎接着这崭新的时代!
喬巴喬巴
细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!
细胞因子的生物学活性
关键字: 细胞因子
细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。
一、免疫细胞的调节剂
免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)
二、免疫效应分子
在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。
三、造血细胞刺激剂
从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。
四、炎症反应的促进剂
炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。
五、其它
许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。
细胞衰老的分子生物学机制
摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。
关键词:细胞衰老;分子生物学;机制研究
细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。
细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。
衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。
1 细胞衰老的特征
科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。
衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。
2 分子水平的变化
①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。
3 细胞衰老原因
迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。
差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。
自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。
英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。
生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。
端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。
遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。
参考文献:
[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.
[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.
[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.
一.树干为什么是圆的?在观察大自然的过程中我偶然发现,树干的形态都近似圆的——空圆锥状。树干为什么是圆锥状的?圆锥状树干有哪些好处?为了探索这些问题,我进行了更
科学,分科而学的意思,后指将各种 知识通过 细化 分类(如数学、物理、 化学等)研究,形成逐渐完整的知识体系。下面是我为你带来的六年级科学小论文作文 ,欢迎阅读
在学习、工作生活中,大家都不可避免地要接触到论文吧,借助论文可以达到探讨问题进行学术研究的目的。你所见过的论文是什么样的呢?以下是我帮大家整理的科学小论文作文,
一、什么是科学小论文 科学小论文实际上是同学们在课内外学科学活动中进行科学观察、实验或考察后一种成果的书面总结。它的表现形式是多种多样的:可以是对某一事物进行细
科学,分科而学的意思,后指将各种 知识通过 细化 分类(如数学、物理、 化学等)研究,形成逐渐完整的知识体系。下面是我为你带来的六年级科学小论文作文 ,欢迎阅读