基斯颠奴86
数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!
数学史的教育功能
摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。
关键词数学史教育功能创新思维功能体现
1 数学史的教育功能之一 ——提高学生们学习数学的兴趣
兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。
例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。
2 数学史的教育功能之二——培养学生们的数学应用意识
数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。
例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;
又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。
再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。
从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。
3 数学史的教育功能之三——提高学生们的数学素养
对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。
4 数学史的教育功能之四——培养学生们对世界观的正确认知
从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。
总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。
参考文献
[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.
[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.
[3]李正银.数学史与数学教育[J].海南师范学院学报,(3):98-10.
[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).
[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).
[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).
数学史在大学数学教学中的意义与价值
摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。
关键词: 数学史 高等数学 教学改革
1.数学史
数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。
2.数学史在大学数学教学中的意义与价值
我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。
数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。
(1)数学史是数学文化的最佳载体
传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。
(2)数学史是激发兴趣的有效途径
几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。
纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。
数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。
(3)数学史是理解数学的必由之路
数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。
从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。
(4)数学史是思想教育的良好素材
数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。
欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。
3.结语
数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”
参考文献
[1]靳玉乐.现代教育学[M].四川教育出版社,2006.
[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.
[3]杨泰良.以史为鉴 注重反思[J].数学通报..
[4].数学家谈数学本质[M].北京大学出版社,1989.
[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.
识饮识吃识享受
什么是数学美呢?它的本质是什么呢?从国内的研究来看,有这样一些描述:“数学美是一种人的本质力量通过宜人的数学思维结构的呈现”,“数学美是数学创造的自由形式”,“数学美是真与善的统一”,“数学美的本质在于序”……等等。 数学美的客观性:即指客观存在于数学领域中的审美对象是不以审美主体是否承认、是否意识到为转移的,尽管因审美主体的主观条件的不同,并不是所有的或特定的数学美都能为审美主体所感知,但这并不能改变这数学美的存在。 数学美的社会性:数学美是一种社会现象,因为数学美是对人而言的。数学家通过数学实践活动(特别是数学理论创造的实践活动),使自己的本质力量“对象化”了,或者说“自然人化”了。所谓的“人化”就是人格化,即自然物具有人的本质的印记,实质上就是社会化。这种社会化的内容正是数学美的内容,它是数学美产生的本原。 数学美的物质性:数学美的内容――人的本质力量必须通过某种形式呈现出来,必需要有附体,数学美的这种形式或附体,即数学美的物质属性。 数学美的宜人性:即数学美形式应该使审美主体感到愉悦。审美主体的愉悦性,一方面自然是由审美主体的心理和生理的原因造成的,另一方面,也是最根本的,还在于对象本身是具有足以引起主体愉悦的属性和条件。简言之,数学美的形式必须与人的认识、人类心灵深处的渴望的本质上相吻合。 首先要提到的当推古希腊时期的毕达哥拉斯,毕达哥拉斯学派第一次提出了“美是和谐与比例”的观点,认为宇宙的和谐是由数决定的,他运用这一美学思想形成了点子数(即形数)理论;并以所谓亲和数与完全数来反映体现宇宙和谐的“亲和”与“完全”。 作为古希腊唯心主义哲学的主要代表人物,柏拉图认为数学的美是一种纯抽象的美,尽管柏拉图的理念世界是抽象的世界,但他却第一次提出了理念世界是“真善美的统一”的见解。 17世纪,笛卡儿所创立的解析几何是数学史上极其杰出的成果,它使几何与代数得到完美的统一,充分揭示了数学的协调美和统一美。 18世纪,该世纪著名数学家欧拉的数学美思想在其《无穷小分析引论》中得到生动的体现,这是一部极其优美的数学专著。 19世纪,有人称19世纪的数学是“革命的数学”,数学美学思想在这一时期也极为活跃,拉普拉斯、高斯、哈密尔顿、黎曼等人在这方面都作出了贡献。 20世纪,数学家们开始自觉地运用数学美学方法,总结数学审美标准,探讨数学发明中的审定心理,其突出代表人物是19世纪末及20世纪初的庞加莱及被誉为“超人的天才”的冯·诺伊曼,还有研究数学领域中的发明心理学的法国著名数学家雅克·阿达玛。 数学美的表现形式 简单性 是数学美的基本表现形式之一。作为反映现实世界量及其关系规律的数学来说,那种最简洁的数学理论最能给人以美的享受。 简单性又是数学发现与创造中的美学因素之一。最简单的例子便是代数运算中之乘法与幂的运算的引进是源于避免重复的加法运算和重复的乘法运算: 统一性 是指部分与部分,部分与整体之间的内在联系或共同规律所呈现出来的和谐、协调、一致。 数学美中的统一性在数学中有很多体现。数学推理的严谨性和矛盾性体现了和谐;表现在一定意义上的不变性,反映了不同对象的协调一致。例如,数的概念的一次次扩张和数系的统一,运算法则的不变性;几何中的圆幂定理是相交弦定理、切、割线定理的统一形式。 对称性 是指组成某一事物或对象的两个部分的对等性。数学形式和结构的对称性、数学命题关系中的对偶性、数学方法中的对偶原理方法都是对称美的自然表现。毕达哥拉斯说:“一切立体图形中,最美的是球形,一切平面图形中最美的是圆形。”因为这两种形体在各个方向上都是对称的。此外,象正多边形、正多面体、旋转体和圆锥曲线等都给人以完善、对称的美感。在代数中轮换对称式表明了代数式中字母可以互换的对称关系。在数学解题方面,对称方法和反射方法往往使问题解决的过程简捷明快。 秩序性,就其愿意而言,秩序是事物在空间或时间上排列的先后、也可作为层次等等的理解。数学中的“秩序”具有极其重要的、决定性的意义,意大利数学家G·卡雷里认为,“数学是而且将总是一门被看作关系系统的序的科学。当涉及形式时,它从不会与它们的实质有关,而仅仅与这些形式之间可陈述的联系有关。单一元素只能在使之有序化的系统联系之中才得到决定并因而获得意义。” 奇异性,奇异性是指数学中原有的习惯法则和统一格局被新的事物(思想、方法、理论)所突破,或出乎意料、超乎想象的结果所带来的新颖和奇特。 数学美学方法的特点 1、直觉性,审美直觉是数学直觉中的一种重要类型,数学美学方法主要还是一种受审美直觉所驱动,而作出美学考虑的方法。正因为如此,数学美学方法的成功运用与主体的直觉能力就有很大关系。这一特点也说明,运用它所得到的结论,最终还要通过逻辑方法的检验才能成立。 2、情感性 数学美学方法的运用是建立在审美主体的数学美感之上的,和任何美感一样,人们对于数学的美感也具有强烈的感情色彩。愉悦、平和、明快、困惑、兴趣盎然、心满意足乃至于激动与惊异……数学美学方法总是是伴随着这种种感情体验,这与逻辑方法所具有纯粹理性形成了鲜明的对比。 3、选择性 数学美学方法是自觉地依据美学的考虑来作出选择的方法,它是“非常自足的、美学的、不受(近乎不受)经验的影响。”这种选择性使美学方法并不成为解决数学问题或获得数学发现的具体方法,而是一种确定方向、原则的策略方法。这种选择性是导致数学发现发明的指路灯,因此,它又使数学美学方法具有创造性。 4、评价性 数学美学方法常常表现为对已获数学成果的一种鉴赏与评价,一般来讲,逻辑方法的运用以问题的解决为方法的终结,而美学方法不仅关注问题是否解决,更主要是考虑问题的解决优美?前者着意于数学问题的“真”,后者着意于“真、善、美的统一”。庞加莱指出:“这并非华而不实的作风”,数学发展的历史已表明,美学方法的评价性对于“数学理论的富有成果性”来讲是不可或缺的。 数学美学方法运用的基本途径 1、增强审美自我意识,善于发现数学美因 在数学活动中,活动者的审美意识是客观存在的审美对象在活动者头脑中的能动反映,一般意义上也称为美感。它包括审美兴趣、审美倾向、审美能力、审美理想、审美感受等等。美感尽管表现为主观的,但它最终是来源于数学活动实践,数学中丰富的美的形式和美的因素(简称为美因)是美感产生的客观基础。只有在美因促使主体美感产生的条件下,主体才能作出美学的考虑。因此,善于发现数学美因,“识得庐山真面目”,是运用数学美学方法的前提。 2、在数学审美活动中,注意逻辑方法与直觉方法的结合。 美感的产生一般而言是直觉的,但这并不意味理性思维与审美无关,美学研究表明,理性思维在审美中是有重大作用的(数学审美更是如此)。在数学活动中,发获得真正的审美要,必须把逻辑思维方法与直觉方法结合起来。逻辑思维在数学审美中可以起到规范知觉、想象的趋向作用,前者渗透溶化于后者之中,才使审美感受不是一种初级的感性知觉,或一堆空幻的主观想象,而是对数学对象本质的某种能动的反映。 3、在数学认识、评价及创造过程中,自觉地以数学审美标准作指导。 审美教育的特征 1、和谐性:“和谐”是美学的一条重要的原理。中学数学教学中有许多内容是和谐性教育的好题材,和谐性也有助于开拓解题思路,培养学生解题的能力。 2、形象性:美育是一种形象性的教育,它总是通过审美对象的鲜明形象来诱发和感染教育者的。数学中直观教具、精美图形以及数形转化的方法都能产生审美教育中的形象性。 3、情感性:美育通过审美对象来激发人的审美情感,受教育者将有一定情绪体验,得到一定的情绪陶冶和心理满足,若能通过富有艺术性的教学活动激发起学生情感的涟漪,那无异于为学习添加了催化剂。 4、自由性:美育给人以自由感,人对客观事物的感受只有进入自由境界才能产生美感,因此,在审美教育中,要注意学生心理和生理的发展规律,善于引导和启发。 5、鲜明性:审美教育伴随着情感的激动,使受教育者不知不觉地在心灵中留下鲜明的印象,有时,即使知识被遗忘,而那触动情感的形象,却终生难忘。
V大米爸爸V
附件10:论文(设计)管理表一 昌吉学院本科毕业论文(设计)开题报告论文(设计)题目 圆锥曲线切线的几个性质及其应用探究系(院) 数学与应用数学 专业班级 09级数本(2)班 学科 理科学生 姓名 成骏 指导教师 姓名 徐权年学号 0925809070 职称 教授一、 选题的根据(1、内容包括:选题的来源及意义,国内外研究状况,本选题的研究目标、内容创新点及主要参考文献等。2、撰写要求:宋体、小四号。)1.选题的来源及意义圆锥曲线是平面解析几何的核心内容,又是高中数学的重点和难点,因而成为高考中必不可少的考查内容。圆锥曲线的主要内容之一是圆锥曲线切线的相关问题,课本中虽然没有对该类问题进行深入探究。但在考试中却常常出现与圆锥曲线切线相关的题目。而国内外的参考文献中涉及到这方面的研究大都只给出抽象的性质和证明,很少给出性质的相关应用,实际处理具体问题时学生难于灵活运用这些性质,因此,本选题具有十分重要的实际价值和意义2.国内外研究状况从目前参考道德文献资料中所了解的信息看,对圆锥曲线切线的性质,近几年研究者们从各自的角度出发,进行了一定的探讨,得到一系列结果。比如:在《圆锥曲线的一个性质的证明与推广》一文中张留杰得出了准线上任意一点与焦点弦的两端点,焦点弦所在直线的斜率之间的关系的性质:在《圆锥曲线切点弦的一个性质》一文中周伟林得出了圆锥曲线切点弦的共通性质:在《圆锥曲线的一个几何特征》一文中黄堰创得出了圆锥曲线的切线,对称轴以及顶点在圆锥曲线上的三角形的内在性质:在《圆的重要性质在圆锥曲线上的推广》一文中吴翔雁得出了切线长的性质:在《圆锥曲线的一个性质》一文中张家瑞得出了切线,割线间的关系的性质:在《圆锥曲线的一个性质及应用》一文中潘德党得出了圆锥曲线的焦点,准线与切线三者间的位置关系的性质及应用:在《高中几何学习指导》一文中李铭祺得出了切线长相等的性质等等。3.研究目标通过探讨从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线的相关性质及应用,揭示圆锥曲线隐藏的统一特性。4.本文创新点在现有的参考文献的基础上,通过从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线,对圆锥曲线切线进行研究,得到了圆锥曲线切线的5个性质并加以应用,以揭示圆锥曲线切线隐藏的统一性质。5.主要参考文献[1]郑观宝.圆锥曲线的一个公共性
脚印论文网是国内首家专业论文C2C平台,主要业务包含:毕业论文、论文检索、论文下载、论文写作指导、论文翻译、论文推荐发表等。在论文检索、下载方面,脚印论文网依托
数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考! 数学史的教育功能 摘要
递推公式斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...如果设F(n)为该数列的第n项(n∈N*
1、高等代数与解析几何课程整合的思考2、线性代数教材内容与体系结构改革的思考与实践3、关于空间解析几何中“矢量积”教学的探讨4、解析几何最值问题探究5、解析几何
平面二次曲线里面有很多不错的结论,可以去研究研究,