• 回答数

    4

  • 浏览数

    127

EatDrinkWorld
首页 > 职称论文 > 概率论论文参考文献

4个回答 默认排序
  • 默认排序
  • 按时间排序

yanran8385

已采纳

概率论在生活中所涉及的领域相当广泛,本文通过对生活中几个概率问题:事件概率与试验的先后次序的关系、疾病诊断中概率,赌博中的概率的分析,合理解释了其中的原因,也为我们日常生活提供启示.作者: 王洪春 作者单位: 重庆师范大学数学与计算机科学学院,重庆,400047 刊名: 世界华商经济年鉴·高校教育研究 英文刊名: WORLD CHINESE ENTREPRENEUR ECONOMIC YEARBOOK·GAOXIAO JIAOYU YANJIU 年,卷(期): 2009 ""(6) 分类号: TL364+.5 关键词: 概率 赌博 公平度 机标分类号: O21 F23 机标关键词: 日常生活事件概率疾病诊断合理解释概率问题概率论试验启示关系分析赌博次序 基金项目: 重庆市教委科学技术研究项目 DOI: 参考文献(8条) 生活中的概率 祝国强.杭国明.腾海英 数理诊断中的Bayes条件概率模型 [期刊论文] -数理医药学杂志2005(03) 郭静.徐勇勇.何大卫 临床实验中的条件概率期中分析方法 [期刊论文] -中国卫生统计2001(05) 复旦大学 概率论 1986 张琦 赌本大小与输赢的关系 2000(03) 温忠麟 博彩的公平度 1999(03) 王妍 概率统计在实际问题中的应用举例 [期刊论文] -中国传媒大学学报(自然科学版)2007(01) 孙景艳 多元统计在水资源利用方面的应用 [期刊论文] -重庆师范大学学报(自然科学版)2007(02)

271 评论

qianxiao1985

表示一个事件发生的可能性大小的数,叫做该事件的概率。它是随机事件出现的可能性的量度,同时也是概率论最基本的概念之一。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。但如果一件事情发生的概率是1/n,不是指n次事件里必有一次发生该事件,而是指此事件发生的频率接近于1/n这个数值。 概率的频率定义 随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。.柯尔莫哥洛夫于1933年给出了概率的公理化定义。 百万分之一概率黑白配双胞胎概率的严格定义 设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件: (1)非负性:对于每一个事件A,有P(A)≥0; (2)规范性:对于必然事件S,有P(S)=1; (3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+…… 概率的古典定义 如果一个试验满足两条: (1)试验只有有限个基本结果; (2)试验的每个基本结果出现的可能性是一样的。 这样的试验,成为古典试验。 对于古典试验中的事件A,它的概率定义为: P(A)=m/n,n表示该试验中所有可能出现的基本结果的总 概率数目。m表示事件A包含的试验基本结果数。这种定义概率的方法称为概率的古典定义。 概率的统计定义 在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义成为概率的统计定义。 在历史上,第一个对“当试验次数n逐渐增大,频率nA稳定在其概率p上”这一论断给以严格的意义和数学证明的是早期概率论史上最重要的学者雅各布·伯努利(Jacob Bernoulli,公元1654年~1705年)。 从概率的统计定义可以看到,数值p就是在该条件下刻画事件A发生可能性大小的一个数量指标。 由于频率nA/n总是介于0和1之间,从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。 Ω、Φ分别表示必然事件(在一定条件下必然发生的事件)和不可能事件(在一定条件下必然不发生的事件)。编辑本段生活中的实例普遍认为,人们对将要发生的机率总有一种不好的感觉,或者说不安全感,俗称「点背」,下面列出的几个例子可以形象描述人们有时对机率存在的错误的认识: 1. 六合彩:在六合彩(49选6)中,一共有13983816种可能性(参阅组合数学),普遍认为,如果每周都买一个不相同的号,最晚可以在13983816/52(周)=268919年后获得头等奖。事实上这种理解是错误的,因为每次中奖的机率是相等的,中奖的可能性并不会因为时间的推移而变大。 2. 生日悖论:在一个足球场上有23个人(2×11个运动员和1个裁判员),不可思议的是,在这23人当中至少有两个人的生日是在同一天的机率要大于50%。 3. 轮盘游戏:在游戏中玩家普遍认为,在连续出现多次红色后,出现黑色的机率会越来越大。这种判断也是错误的,即出现黑色的机率每次是相等的,因为球本身并没有“记忆”,它不会意识到以前都发生了什么,其机率始终是 18/37。 4. 三门问题:在电视台举办的猜隐藏在门后面的汽车的游戏节目中,在参赛者的对面有三扇关闭的门,其中只有一扇门的后面有一辆汽车,其它两扇门后是山羊。游戏规则是,参赛者先选择一扇他认为其后面有汽车的门,但是这扇门仍保持关闭状态,紧接著主持人打开没有被参赛者选择的另外两扇门中后面有山羊的一扇门,这时主持人问参赛者,要不要改变主意,选择另一扇门,以使得赢得汽车的机率更大一些?正确结果是,如果此时参赛者改变主意而选择另一扇关闭著的门,他赢得汽车的机率会增加一倍。 ----------------------------------- 用条件概率和全概率公式吧 考虑选择更换的情况 设A1表示第一次抽到羊的概率 A2 车 B1 最终 羊 B2 车 P(A1)=2/3 P(A2)=1/3 P(B2|A1)=1 P(B2|A2)=0 所以 P(B2)=P(A1)P(B2|A1)+P(A2)P(B2|A2)=2/3 P(B1)=1/3 ------------------------------- 修正:这里的几率是指什么几率? 我认为,这个问题使得很多人迷糊了,其实这里存在2个几率: 1.整个开门事件来说,包括从一开始来说,参赛者的几率由1/3提高到了2/3,因为有3张门,分别是参赛者选中的(有1/3) 另外2张(各1/3),后来主持人确定一个门没有车,这样使得剩下的2张门有车的总几率提升到了100%,而原来这2张门的总几率是66%,多出的33%分到了谁头上? 2.就参赛者从剩下的2张门里面选一个的时候,他得到车子的几率是50%。 几率的对象必须分清楚!是2张门选1张时候的几率还是从头至尾的几率,的确会迷糊人。 意犹未尽: "如果此时参赛者改变主意而选择另一扇关闭著的门,他赢得汽车的机率会增加一倍。" 这种说法。几率永远都是50%。 后验概率会使得下一次反面的几率大的多。 哈尔威:正如《决胜21点》的男主角所说的“我一定换,因为那是主持人送给我的概率” 事实原因就在这里选手选择是随机的(33%的机会为车,66%的机会为羊),但是主持人确要在他选到羊的时候(66%)一定要选择剩余的那只羊!当然这种情况下换的结果只能是“车”。那么玩家有在始终选择换的情况下他只在自己选中车的时候(33%)才会选到羊。此时你在游戏获得车的机会提高了一倍(33%到66%)所以聪明的你如果去参加这个游戏你会选择换还是不换呢?我想现在你心里已经有答案了。 后退思维者,关于三门问题:这是个有前提条件的问题,大家被严重的思维混淆了 1、结果:换门,赢取汽车的概率为2/3,不换门,赢取汽车的概率为1/3 (成立) 前提:同一个人玩同一个游戏3次以上,那么每次选择换门的话,赢取汽车的概率为2/3 2、结果:换门与不换门赢取汽车的概率均为1/2 (成立) 前提:同一个人只有一次机会玩同一个游戏,那么在主持人确定一扇门后,他换与不换的概率就是1/2. 2/3和1/2的结果问题就是根本不是同一类别,是概率两大类别,所谓的2/3概率是相对一个空间,在100次的机会中,你将会有2/3的机会赢取。1/2概率是在限定的情况下,发生的概率,所以是不同的。编辑本段概率的两大类别古典概率相关 古典概率讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每个基本事件发生的可能性是相同的。若事件A包含m个基本事件,则定义事件A发生的概率为p(A)=m/n,也就是事件A发生的概率等于事件A所包含的基本事件个数除以基本空间的基本事件的总个数,这是.拉普拉斯的古典概率定义,或称之为 概率与统计概率的古典定义。历史上古典概率是由研究诸如掷骰子一类赌博游戏中的问题引起的。计算古典概率,可以用穷举法列出所有基本事件,再数清一个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程。 几何概率相关 集合概率若随机试验中的基本事件有无穷多个,且每个基本事件发生是等可能的,这时就不能使用古典概率,于是产生了几何概率。几何概率的基本思想是把事件与几何区域对应,利用几何区域的度量来计算事件发生的概率,布丰投针问题是应用几何概率的一个典型例子。 在概率论发展的早期,人们就注意到古典概率仅考虑试验结果只有有限个的情况是不够的,还必须考虑试验结果是无限个的情况。为此可把无限个试验结果用欧式空间的某一区域S表示,其试验结果具有所谓“均匀分布”的性质,关于“均匀分布”的精确定义类似于古典概率中“等可能”只一概念。假设区域S以及其中任何可能出现的小区域A都是可以度量的,其度量的大小分别用μ(S)和μ(A)表示。如一维空间的长度,二维空间的面积,三维空间的体积等。并且假定这种度量具有如长度一样的各种性质,如度量的非负性、可加性等。 ◆几何概率的严格定义 设某一事件A(也是S中的某一区域),S包含A,它的量度大小为μ(A),若以P(A)表示事件A发生的概率,考虑到“均匀分布”性,事件A发生的概率取为:P(A)=μ(A)/μ(S),这样计算的概率称为几何概率。 ◆若Φ是不可能事件,即Φ为Ω中的空的区域,其量度大小为0,故其概率P(Φ)=0。编辑本段独立试验序列假如一串试验具备下列三条: (1)每一次试验只有两个结果,一个记为“成功”,一个记为“失败”,P{成功}=p,P{失败}=1-p=q; (2)成功的概率p在每次试验中保持不变; (3)试验与试验之间是相互独立的。 则这一串试验称为独立试验序列,也称为bernoulli概型。编辑本段必然事件与不可能事件在一个特定的随机试验中,称每一可能出现的结果为一个基本事件,全体基本事件的集合称为基本空间。随机事件(简称事件)是由某些基本事件组成的,例如,在连续掷两次骰子的随机试验中,用Z,Y分别表示第一次和第二次出现的点数,Z和Y可以取值1、2、3、4、5、6,每一点(Z,Y)表示一个基本事件,因而基本空间包含36个元素。“点数之和为2”是一事件,它是由一个基本事件(1,1)组成,可用集合{(1,1)}表示“点数之和为4”也是一事件,它由(1,3),(2,2),(3,1)3个基本事件组成,可用集合{(1,3),(3,1),(2,2)}表示。如果把“点数之和为1”也看成事件,则它是一个不包含任何基本事件的事件,称为不可能事件。在试验中此事件不可能发生。如果把“点数之和小于40”看成一事件,它包含所有基本事件 ,在试验中此事件一定发生,所以称为必然事件。若A是一事件,则“事件A不发生”也是一个事件,称为事件A的对立事件。实际生活中需要对各种各样的事件及其相互关系、基本空间中元素所组成的各种子集及其相互关系等进行研究。 【随机事件,基本事件,等可能事件,互斥事件,对立事件】 在一定的条件下可能发生也可能不发生的事件,叫做随机事件。 一次实验连同其中可能出现的每一个结果称为一个基本事件。 通常一次实验中的某一事件由基本事件组成。如果一次实验中可能出现的结果有n个,即此实验由n个基本事件组成,而且所有结果出现的可能性都相等,那么这种事件就叫做等可能事件。 不可能同时发生的两个事件叫做互斥事件。 必有一个发生的互斥事件叫做对立事件。 即P(必然事件)=1 P(不可能事件)=0编辑本段概率的性质性质1.P(Φ)=0. 性质2(有限可加性).当n个事件A1,…,An两两互不相容时:P(A1∪...∪An)=P(A1)+...+P(An). 性质3.对于任意一个事件A:P(A)=1-P(非A). 性质4.当事件A,B满足A包含于B时:P(B-A)=P(B)-P(A),P(A)≤P(B). 性质5.对于任意一个事件A,P(A)≤1. 性质6.对任意两个事件A和B,P(B-A)=P(B)-P(AB). 性质7(加法公式).对任意两个事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B). (注:A后的数字1,2,...,n都表示下标.)编辑本段频率与概率对事件发生可能性大小的量化引入“概率”. “统计规律性” 独立重复试验总次数n,事件A发生的频数μ, 事件A发生的频率Fn(A)=μ/n,A的频率Fn(A)有没有稳定值? 如前人做过的掷硬币的试验(下面表); 如果有就称频率μn的稳定值p为事件A发生的概率记作P(A)=p[概率的统计定义] P(A)是客观的,而Fn(A)是依赖经验的。 统计中有时也用n很大的时候的Fn(A)值当概率的近似值。编辑本段概率的三个基本属性1、[非负性]:任何事件A,P(A)≥0 2、[完备性]:P(Ω)=1 3、[加法法则]如事件A与B不相容,即如果AB=φ,则 P(A+B)=P(A)+P(B)编辑本段概率的加法法则如事件A与B不相容,A+B发生的时候,A与B两者之中必定而且只能发生其中之一。独立重复地做n次实验,如记事件A发生的频数为μA、频率为Fn(A) ,记事件B发生的频数为μB 、频率为Fn(B) ,事件A+B发生的频数为 μA+B 、频率为 Fn(A+B) ,易知:μA+B =μA +μB,∴ Fn(A+B) = Fn(A) + Fn(B) ,它们的稳定值也应有: P(A+B)=P(A)+P(B)[加法法则]如事件A与B不相容,即如果AB=φ,则 P(A+B)=P(A)+P(B)即:两个互斥事件的和的概率等于它们的概率之和。 请想一下:如A与B不是不相容,即相容的时候呢?进一步的研究得: P(A+B)=P(A)+P(B)-P(AB)这被人称为:“多退少补”!编辑本段模糊和概率1.是否不确定性就是随机性?似然比、概率是否代表了所有的不确定性? Bayesian camp:概率是一种主观的先验知识,不是一种频率和客观测量值 Lindley:概率是对不确定性唯一有效并充分的描述,所有其他方法都是不充分的 相似:通过单位间隔[0,1]间的数来表述不确定性,都兼有集合、相关、联系、分布方面的命题 区别:对待。经典集合论, 代表概率上不可能的事件。而模糊建立在 (1)是否总是成立的? 考虑能否逻辑上或部分地违背“无矛盾定理”(Aristotle的三个‘思考定理’之一,同时排中定理同一 性定理这些都是非黑即白的经典定理。)模糊(矛盾)的产生,就是西方逻辑的结束 (2)是否可以推导条件概率算子? 经典集合论中: 模糊理论:考虑超集是其子集的子集性程 度,这是模糊集合的特有问题。 2。模糊和概率:是否与多少 模糊是事件发生的程度。随机是事件是否发生的不确定性。 例子:明天有20%的几率下小雨(包含复合的不确定性) 停车位问题 一个苹果在冰箱里的概率和半个苹果在冰箱里 事件倒转,地球演变恢复原点 模糊是一种确定的不定性(deterministic uncertainty),是物理现象的特性。用模糊代表不确定性的 结果将是震撼的,人们需要重新审视现实模型。编辑本段相关信息概率论与数理统计,概率论,概率分布,概率与统计等。编辑本段概率的应用在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性的现象,指在一定条件下,必定会导致某种确定的结果。如,在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性的现象。这类现象在一定条件下的结果是不确定的。例如,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。又如,在同样条件下,进行小麦品种的人工催芽试验,各颗种子的发芽情况也不尽相同有强弱和早晚之别等。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。这类现象,我们无法用必然性的因果关系,对现象的结果事先做出确定的答案。事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。 概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。 走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率如下: 由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。 体育比赛中,一局定胜负,虽然比赛双方获胜的机会均为二分之一,但是由于比赛次数太少,商业价值不大,因此比赛组织者普遍采用“三局两胜”或“五局三胜”制决定胜负的方法,既令参赛选手满意,又被观众接受,组织者又有利可图。那么它对于双方选手来说真的公平吗?以下我们用概率的观点和知识加以阐述:日常生活中我们总希望自己的运气能好一些,碰运气的也大有人在,就像考生面临考试一样,这其中固然有真才实学者,但也不乏抱着侥幸心理的滥竽充数者。那么,对于一场正规的考试仅凭运气能通过吗?我们以大学英语四级考试为例来说明这个问题。 大学英语四级考试是全面检验大学生英语水平的一种考试,具有一定难度,包括听力、语法结构、阅读理解、填空、写作等。除写作15分外,其余85道题是单项选择题,每道题有A、B、C、D四个选项,这种情况使个别学生产生碰运气和侥幸心理,那么靠运气能通过四级英语考试吗?答案是否定的。假设不考虑写作15分,及格按60分算,则85道题必须答对51题以上,可以看成85重贝努利试验。 概率非常小,相当于1000亿个靠运气的考生中仅有人能通过。所以靠运气通过考试是不可能的。 因此,我们在生活和工作中,无论做什么事都要脚踏实地,对生活中的某些偶然事件要理性的分析、对待。一位哲学家曾经说过:“概率是人生的真正指南”。随着生产的发展和科学技术水平的提高,概率已渗透到我们生活的各个领域。众所周知的保险、邮电系统发行有奖明信片的利润计算、招工考试录取分数线的预测甚至利用脚印长度估计犯人身高等无不充分利用概率知识。 如今“降水概率”已经赫然于电视和报端。有人设想,不久的将来,新闻报道中每一条消息旁都会注明“真实概率”,电视节目的预告中,每个节目旁都会写上“可视度概率”。另外,还有西瓜成熟概率、火车正点概率、药方疗效概率、广告可靠概率等等。又由于概率是等可能性的表现,从某种意义上说是民主与平等的体现,因此,社会生活中的很多竞争机制都能用概率来解释其公平合理性。 总之,由于随机现象在现实世界中大量存在,概率必将越来越显示出它巨大的威力。 参考文献: [1]刘书田.概率统计学习辅导[M].北京:北京大学出版社,. [2]龙永红.概率论与数理统计中的典型例题分析与习题[M].北京:高等教育出版社,. [3]尹庸斌.概率趣谈[M].成都:四川科学技术出版社,. [4]吴传志.应用概率统计[M].重庆:重庆大学出版社,.编辑本段中学概率及应用1. 解概率应用题要学会“说”:首先是记事件,其次是对事件做必要的分析,指出事件的概率类型,包括“等可能性事件”、“互斥事件”、“相互独立事件”、“独立重复试验”、“对立事件”等;然后是列式子、计算,最后别忘了作“答”。 2.“等可能性事件”的概率为“目标事件的方法数”与“基本事件的方法数”的商,注意区分“有放回”和“不放回”;“互斥事件”的概率为各事件概率的和;“相互独立事件”的概率为各事件概率的积;若事件 在一次试验中发生的概率是 ,则它在 次“独立重复试验”中恰好发生 次的概率为 ;若事件 发生的概率是 ,则 的“对立事件” 发生的概率是1- 等。有的同学只会列式子,不会“说”事件,那就根据你列的式子“说”:用排列(组合)数相除的是“等可能性事件”,用概率相加的是“互斥事件”,用概率相乘的是“相互独立事件”,用 的是“独立重复试验”,用“1减”的是“对立事件”。

360 评论

碧落的海

随机过程问题,假设一条线路上占线的到来是泊松过程,那么任意时刻每条线路通畅概率为2/3,那么至少要设置[Log()/Log(2/3)]+1=8条线路。

270 评论

小胖子老头

概率论与数理统计课程的改革与实践论文

摘要: 讨论了概率论与数理统计课程教学改革的必要性与重要性,提出了课程改革的思路与原则,并总结了该课程改革与实践取得的效果。

Abstract: The necessity and importance of teaching reform of the course of probability and mathematical statistics were discussed, ideas and principles of curriculum reform were put forward, and the achieved effect of this curriculum’s reform and practice was summarized.

关键词: 概率论与数理统计;改革;实践

Key words: probability and mathematical statistics; reform; practice

概率论与数理统计是工程、人文、经济、社会等领域研究和处理随机现象的一门重要的随机数学,是目前数学专业大学本科阶段乃至其它理工类专业的唯一一门随机数学的必修课。自上个世纪六十年代引入大学课堂以来,它对于传承人类科学文明、培养人才的综合素质能力、解决实际问题的实践动手能力等起到了非常重要的作用。在信息社会高度发达的今天,随机数学的基本理论与方法作为信息采集、加工、利用的重要的理论基础和方法论基础,已经成为现代专业人才重要的必不可少的知识构成。文献[1-3]对该课程的改革与实践进行了探讨。本文就该课程的特点,结合我院(系)学生的特点就该课程改革与实践的必要性,具体思路与原则,以及改革实践的效果做一探讨。

1 概率论与数理统计课程教学改革的必要性与重要性

教学内容、手段、方法的陈旧反映出教育思想的落后,转变教育思想和更新教育观念是进行一切改革的先导。传统的数学教育理念重视教学过程的理论性,严谨性,逻辑性。但对于学生应用数学的理论和方法解决实际问题能力的培养从教和学两个侧面有所忽视。

现在,有一种流行的教育教学方法称为“案例教学”。“案例教学”就是通过实际问题的描述、假设、建模与求解,演示理论与方法的应用过程。数学上,这样的教学方式就是所谓的‘问题解决’的数学建模的思想。这种方法不拘泥于对理论和方法的阐述,更注重对理论与方法的实际应用过程的展示:包括问题的描述、所涉及的变量及其相互关系、问题的假设与简化、问题的数学模型的建立与求解。

信息社会的加速来临,在实际生活和科技工作中,海量、庞杂的数据不断产生,但是有用的信息并不会自动生成,它需要数学工作者利用数据采集、整理、分析与处理的工具,去发现有用的信息,以解决实际问题。数据采集与信息分析与处理的数学基础就是《概率论与数理统计》这门数学类专业的必修课程,这也是其它理工科专业的一门必修课程,只是对数学专业的`要求既注重理论又兼顾方法的实际应用,而对其它理工科专业,这门课程主要注重方法的应用。

但是,《概率论与数理统计》这门课程不同于以往学习的确定性数学,对于第一次接触这门课程的学生,理解起来会很困难,更不用说去利用它去进行统计数据的采集、整理、处理、分析等。因此,单从这点考虑,我们就有必要对其教学方法、手段等进行改革。从本门课程的应用目的角度来考虑,也必须进行改革,以增加实践性教学环节,培养学生应用概率论与数理统计的理论和方法解决实际问题的能力。

从培养学生利用数学的理论和方法、基于统计数据,建立和求解数学模型的能力的角度看,这完全符合现代大众化高等教育的目的,也符合我校的办学指导思想。

《概率论与数理统计》是其它随机数学的理论和方法的基础,这些课程是:多元统计分析、时间序列分析、随机过程,基于支持向量机的现代非参数统计学习方法等,为了这些知识和方法的学习与应用,我们也必须改变教学方式,为学生打下坚实继续学习的基础。

2 概率论与数理统计课程教学改革的思路与原则

通过以上的分析,我们认为概率论与数理统计课程的改革必须首先改变教学方法,抛弃那种古板的、填鸭式的、纯粹的重视逻辑推理而不重视应用的传统的教学观念,而采取不仅重视理论与方法的学习,为后继课程的学习打下良好基础,又能激发学生学习兴趣,同时还能培养学生应用所学理论和方法解决实际问题的能力的培养。

因此,概率论与数理统计课程的改革是一项系统工程,既要考虑课程本身理论与方法的学习,还要也兼顾后继课程的学习(有些课程是研究生的必修课),又要考虑学生应用理论与方法解决实际问题能力的培养,还要使得学生学习起来兴趣盎然。应用系统工程原理,从理论、实践、计算能力等全方位改革和建设,不能只重视某一个环节,而应从整体上思考。

在学时有限的约束条件下,我们必须改革教学内容,教学方法和教学手段,以期达到预期的改革目的。改革过程必须培养一批从事《概率论与数理统计》课程的课堂教学、实验教学的人才,积累改革的成果,不断总结经验。改革过程不会一番风顺,遇到非议也是可以理解的。但是,改革的决策一旦确定,就要毫不犹豫的进行下去。

3 概率论与数理统计课程教学改革的内容与措施

首先确定合理的教学学时,经过大家集思广益,制定了相应的教学大纲,使教学改革有法可依。为了达到上述改革目标,我们对教材的内容进行必要的增加和删减。由于,《概率论与数理统计》课程是大学生接触的第一门研究随机现象及其规律的数学学科,不同于以往的确定性数学,学生理解起来是相当困难的。为此,考虑到实际课时和课程的难度,在课堂教学中,借助于多媒体技术和计算机编程技术,增加了对一些随机现象的直观演示。删除掉一些陈旧的知识,比如关于一些定理的证明,或者保留这些证明,作为自学内容,提供给有能力学习的学生。这也起到因材施教的目的。经过多年的实践,编写了自己的教材《概率论与数理统计》(陕西师范大学出版社出版),该教材是国家面向21世纪规划教材。

为了达到培养学生利用计算机和数学软件,以及应用概率论与数理统计的理论和方法解决实际问题的能力,我们在自己编写的教材中,首次引入了SAS(Statistical Analysis Systems)高级程序设计语言。

为了使得课堂教学生动、有趣、直观以及指导学生的学习,我们研制开发了多媒体课件,并编写了与本门课程配套的课程学习指导教材。

为了达到培养学生的收集数据、整理数据、建立数学模型、利用相关的理论与方法解决实际问题的能力之目的,我们增加实践性教学环节。从1997级开始,我们在全国首次开设了《概率论与数理统计》的实验教学环节,并且编写相应实验教学大纲和实验指导书,使实验课有纲可循,有事可做而不流于形式。

为了培养学生的综合应用随机数学解决实际问题的能力,我们构建了以《概率论与数理统计》为核心的课程群,包括《多元统计分析》、《时间序列分析》、《教育测量与统计学》、《随机过程》、《数学模型与数学实验》、《数学软件》等选修课程,大大丰富了学生随机数学的理论与方法解决实际问题的数据处理与分析的能力及数学建模能力。

为了开拓学生的视野,在学年论文和毕业论文中,我们加强指导,向学生介绍了一种现代非参数统计学习方法:《基于支持向量机的统计学习方法》,将这种方法用于相关关系的学习中。

为了达到培养学生学习《概率论与数理统计》课程及其课程群的学习及其解决实际问题的能力,我们连续多年组织了对我校参加全国大学生数学建模竞赛的学生的培训工作,特别是随机数学解决实际问题能力的培养。

由于我们改革教学的内容,增加了实验教学环节,并注重学生平时能力的培养,所以我们改革考核方式:学生平时作业及考勤占总成绩的20%,实验占20%,课程考试占60%。

为了传承我们的改革成果,我们注意在改革中积累经验,培养人才,使我们的改革有了传承、继续推进的后备人才,形成本门课程及其课程群的年龄、学历层次和职称结构合理的教师队伍,有博士1个,硕士3个,学士5个;教授1个,副教授6个,讲师2个。

4 概率论与数理统计课程教学改革与实践的效果

通过几年来的改革实践,概率论与数理统计的教学取得了较显著的效果。教学内容、方法手段的改革增加了学生学习该课程的兴趣,使学生真正体会到该课程的内容在工农业生产以及科学研究中的应用价值,充分调动了学生学习的主动性,激发了学生的创造性思维,增加了学生应用概率统计方法解决实际问题的能力。该课程的改革与实践取得了良好的教学效果,提高了教学质量,得到了学生的认可和赞同,问卷调查表明90%以上的学生对现在的教学方式和考试方法给予肯定,大多数学生都认为概率统计课在各学科中有较重要的应用。说明同学们对该门课程的思想方法和应用性有了较深刻的认识,教学改革的总体方向是正确的。

随着本课程及相关课程的深入改革,有许多学生在学年论文及毕业论文的选题上倾向于采用《概率论与数理统计》课程的理论与方法。与本课程相关的多篇毕业论文被评为校级优秀论文

此外,本课程的任课教师还积极组织、培训、指导学生参加全国大学生数学建模竞赛并取得优异成绩。

参考文献:

[1]朱松涛.师专数学系《概率论与数理统计》课程教学的改革实践[J].数学通报,1998,(4).

[2]邓华玲等.概率论与数理统计课程的改革与实践[J].大学数学,2004,(1).

[3]陈新美等.《概率论与数理统计》教学改革与实践[J].湖南科技学院学报,2006,(11).

259 评论

相关问答

  • 真理与概率论文参考文献

    什么是真理?真理是这人世间最为难能可贵的东西,是人们所最渴望的东西,但也是最不易得的东西。以下是我整理的追求真理的 议论文 ,欢迎大家借鉴与参考! 追求真理

    天道酬勤1212 3人参与回答 2023-12-06
  • 毛概论文有参考文献

    毛泽东思想和中国特色社会主义理论体系概论.高等教育出版社.2010

    卖烧饼的小怪兽 4人参与回答 2023-12-10
  • 法学概论论文参考文献

    如何看待法律与道德的相互关系文∕樊 平【内容摘要】法律和道德作为两种不同的社会调整手段,在调整社会关系时的作用是不同的。倘若人们没有对“见死不救”现象具有很大

    西湖草莓 3人参与回答 2023-12-08
  • 电气概论论文参考文献

    电气工程专业概论课程论文暨学期总结2012年第一学期 电气工程专业概论是我们大一的第一门专业课,作为大一新生,刚接触这门课时,对于这门课感到非常陌生,甚至有些害

    狂睡不醒 3人参与回答 2023-12-06
  • 概率论与数理统计论文参考文献

    数理统计法在论文中要实际分析解决问题。 论文思路: 数学统计是使用数学统计分析方法解决实际问题的学科。它们是数学研究领域的一类分支,可以观察事物以确定基本规律这

    大灌篮2 3人参与回答 2023-12-09