Melinda麒儿
摘要:生物技术可以用来维持生态系统的良好状态,它可以将污染物转化为有用的产品,利用可再生的能源创造出可生物降解的材料,开发出对环境安全的生产制造工艺及处理处置方法本论文利用生物反应器研究了能同时去除硫化物及亚硝酸盐的新型废水处理工艺实验室规模的缺氧硫化物氧化反应器ArlOXic Sulfide-oxidizing Reactor,ASOR共计运行了135天,用于研究容积负荷,水力停留时间Hydr.aulic Retention Time,HRT以及基质浓度对反应器运行效能的影响硫化物和亚硝酸的最高容积负荷分别达到了 Kgm<'3>·d和 Kgm<'3>·d,HRT为天缺氧硫化物氧化工艺能够耐受进水中较高的硫化物浓度,在进水中硫化物浓度达到1920 mgL的条件下,硫化物的去除率始终能够保持在%以上反应过程中,消耗的亚硝酸盐和硫化物的量的比值为,硫化物的氧化并不完全该工艺同时也能够耐受较高的亚硝酸盐浓度,最高可达在反应器潜能研究中,分别采取了固定进水浓度,缩短HRT以及固定HRT,增加进水基质浓度两种提升负荷的方式对比发现,前者能够获得更高的容积负荷如果操作得当,HRT可以被缩短至天当HRT从天缩短至天期间,相对于硫化物的转化效率,亚硝酸的转化效率对HRT的变化更为敏感根据化学计量平衡以及分批实验的结果可以推算出,大部分硫化物89%~90%是被亚硝酸盐氧化的,其余部分10%~11%由进水中少量的溶解氧氧化当进水中亚硝酸盐浓度达到 mgL以上时,反应器内氨的浓度可以累计到可观的浓度200~550mgL,这会对整个过程产牛抑制作用该研究表明,在处理含有高浓度亚硝酸盐和硫化物的废水时,ASO工艺具有较高的实用价值,它可以在较短的HRT下,取得较高的转化效率 本研究比较了两个采用不同电子受体的缺氧硫化物氧化反应器AsOR的运行性能,用于考察其在处理模拟废水时,所能达到的负荷水平与采用硝酸盐作为电予受体的反应器相比,采用亚硝酸盐的反应器能够承受更高的进水基质负荷,并且在HRT同为2天或更短时,表现出更高运行效能在稳态运行时,其最大的硫化物及亚硝酸盐的容积玄除率分别可以达到 Kgm<'3>·d和 Kgm<'3>.d,而以硝酸盐为电了受体的反应器,其最大的硫化物及亚硝酸盐的容积去除率分别为 Kgm<'3>·d和 Kgm<'3>·d以亚硝酸盐为电了受体的反应器,能够耐受高达1920 mgL的硫化物浓度和 mgL的亚硝酸盐浓度而以硝酸盐为电予受体的反应器,其最高耐受的硫化物和硝酸盐的浓度分别为580 mgL和110 mgL在以亚硝酸盐为电了受体的情况下,反应器所能耐受的水力负荷也越高,能够适应更短的HRT实验证明,以亚硝酸盐为电子受体的反应器的运行效能整体优于以硝酸盐为电子受体的反应器这可能归因于亚硝酸盐具有更高的反应活性亚硝酸盐可能诱导产生了细胞色素,能够高效的接受来自硫化物的电子,从而消除了亚硝酸盐对反硝化菌的毒性在处理含有硫化物的废水过程中,亚硝酸是优于硝酸盐的电子受体 运用BP神经网络Back Propagation Neural Network系统对缺氧硫化物氧化反应器的运行数据进行分析,用以预测反应器后续的运行性能本研究选用了表征反应器进水性状的五个互不相关的因素作为人工神经网络Artificial NeuralNetwork模型的输入神经元,采用反向传播和通用回归算法来预测出水的性状人工神经网络模型对运试条件下硫化物及亚硝酸盐的去除效率有较好的预测结果,但是对硫酸盐牛成过程的预测结果不太理想人工神经网络除了能够对实验方法的设计有所帮助,还能较为有效的用于模拟预测实验结果,从而能优化基于缺氧硫化物氧化的反硝化过程对废水处理厂而言,通过收集出水,采用改进的处理系统以及新的处理技术,可以不断调整及优化操作,从而获得更好的出水水质 本文还通过运行缺氧硫化物氧化反应器研究了进水中不同的亚硝酸盐和硫化物的比例对硫化物及亚硝酸盐去除效率的影响在所运试的条件下,亚硝酸盐利硫化物比例不同的模拟进水,和均取得了较高的硫化物去除效率>99%通过对硫化物和亚硝酸盐的物料平衡可以推算出硫化物的氧化并不完全,硫酸盐的形成量随着进水硫化物浓度的升高而降低当硫酸盐的生成量高于250 mgL,以及随之形成的高pH环境可能会对硫化物的氧化过程产生抑制产物抑制实验结果表明,在进水亚硝酸盐和硫化物比例较高的条件下,反应器会获得较高的运行效能当进水中亚硝酸盐和硫化物的比例为,缺氧硫化物氧化反应器能够获得较高的亚硝酸盐及硫化物去除效率 本文还研究了pH对缺氧硫化物氧化过程的影响在反应器潜能实验过程中,即通过保持HRT,提升进水基质浓度,以及保持进水基质浓度,缩短HRT的实验过程中,进水的pH维持在7~之间,而其他运行期间,进水pH在4~11之间波动在进水pH保持在7~之间的潜能实验中,硫化物不完全氧化总体而言,硫酸盐的生成量随着进水硫化物负荷的提高而降低缺氧硫化物氧化反应器内的微生物对酸性环境更为敏感,在pH为3的情况下,亚硝酸盐和硫化物的去除率都急剧下降在较强的酸性及碱性环境中,水中二价硫离子,亚硝酸盐以及过量的硫酸盐>300 mgL都有可能抑制硫化物的氧化过程基于以上的研究,缺氧硫化物氧化反应器能够在较广的pH条件pH 5~11下良好的运行
豆瓣酱7
一、生物脱氮去除废水中的硝酸盐和亚硝酸盐生物脱氮主要是指生物反硝化作用,即用生化的方法将硝酸盐和亚硝酸盐转化为氮气.许多异氧微生物能在缺氧条件下产生反硝化作用.假若有足够的有机碳源,生物脱硝是在厌氧条件下由异氧微生物完成的,它利用硝酸盐作为氢受体.多种常见的兼性菌可完成脱硝作用.当氨和硝酸盐浓度类似于化肥水时,浓氨废水的硝化和浓硝酸盐废水的反硝化已有成功的例子二、离子交换去除废水中的硝酸盐和亚硝酸盐如果高效的除去或回收硝酸盐,则可采用离子交换法处理.离子交换法已成功地用于硝酸铵化肥废水中铵的回收.硝酸铵废水首先通过强酸性阳离子树脂除去铵离子.该离子交换往往出水中含有硝酸,这是废水中的硝酸盐与树脂中的氢离子反应所致.从阳离子交换柱中流出的无氨废水再通过阳离子交换柱,除去硝酸根.最后的出水中所含有铵离子和硝酸盐浓度均很低,因而可用作补充水.三、硝酸盐回收当废水中硝酸盐的浓度很高时,可以作为副产品回收.例如硝酸铵,由于其在废水中浓度很高,所以可以从硝酸铵生产冷凝液中进行回收.该高浓度硝酸盐废水可作为原料供给硝酸厂,使其在内部循环,同时提高产率.回收过程可与离子交换、蒸发等预浓缩处理相结合.四、其他方法去除废水中的硝酸盐和亚硝酸盐处理硝酸盐和亚硝酸盐的其他方法包括化学还原、土地应用及反渗透等.有几种化学药剂已被研究用来还原硝酸盐为氮气,只有亚铁离子在经济上可行,但还没有工业应用.该工艺中的反硝化过程要求用铜做催化剂,且必须在碱性PH值的条件下进行.硝酸盐的去除率只有70%,并存在使用大量亚铁的缺点.
随着科学技术的进步和社会生产力的发展,人类文明进程得到前所未有的发展,但是与此同时,人类社会也面临着一系列重大环境与发展问题。因此,发展环境工程意义重大。下文是
随着我国工业化和城市化的快速推进,废水种类和数量增加迅猛,对水体环境污染的压力加重,并威胁生态安全和居民健康。从环境保护角度看,工业废水处理比城市污水处理更为复
亚硝酸盐检测仪可以快速检测,检测精度为±0.01mg/L(测量值1.00 mg/L),大的厂家如环凯,可以去了解一下。
古代制造硝酸钾严格来说属于提纯,是从老墙土中提炼出来的,老墙上会长出白色的晶体,那就是硝。收集后先加水溶解,再除去泥沙,加热蒸发浓缩,冷却析出得到KNO3晶体。
浅谈纳滤技术在水污染处理领域的应用论文 在日常学习和工作生活中,大家都不可避免地要接触到论文吧,借助论文可以达到探讨问题进行学术研究的目的。如何写一篇有思想、有