• 回答数

    4

  • 浏览数

    217

dongdong88z
首页 > 职称论文 > 受迫振动的研究论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

鹭鹭的宝贝妞

已采纳

下面能当波动光学说明文wave optics以波动理论研究光的传播及光与物质相互作用的光学分支。17世纪,R.胡克和C.惠更斯创立了光的波动说。惠更斯曾利用波前概念正确解释了光的反射定律、折射定律和晶体中的双折射现象。这一时期,人们还发现了一些与光的波动性有关的光学现象,例如.格里马尔迪首先发现光遇障碍物时将偏离直线传播,他把此现象起名为“衍射”。胡克和R.玻意耳分别观察到现称之为牛顿环的干涉现象。这些发现成为波动光学发展史的起点。17世纪以后的一百多年间,光的微粒说(见光的二象性)一直占统治地位,波动说则不为多数人所接受,直到进入19世纪后,光的波动理论才得到迅速发展。1800年,T.杨提出了反对微粒说的几条论据,首次提出干涉这一术语,并分析了水波和声波叠加后产生的干涉现象。杨于1801年最先用双缝演示了光的干涉现象(见杨氏实验),第一次提出波长概念,并成功地测量了光波波长。他还用干涉原理解释了白光照射下薄膜呈现的颜色。1809年.马吕斯发现了反射时的偏振现象(见布儒斯特定律),随后.菲涅耳和.阿拉戈利用杨氏实验装置完成了线偏振光的叠加实验,杨和菲涅耳借助于光为横波的假设成功地解释了这个实验。1815年,菲涅耳建立了惠更斯-菲涅耳原理,他用此原理计算了各种类型的孔和直边的衍射图样,令人信服地解释了衍射现象。1818年关于阿拉戈斑(见菲涅耳衍射)的争论更加强了菲涅耳衍射理论的地位。至此,用光的波动理论解释光的干涉、衍射和偏振等现象时均获得了巨大成功,从而牢固地确立了波动理论的地位。19世纪60年代,.麦克斯韦建立了统一电磁场理论,预言了电磁波的存在并给出了电磁波的波速公式。随后.赫兹用实验方法产生了电磁波。光与电磁现象的一致性使人们确信光是电磁波的一种,光的古典波动理论与电磁理论融成了一体,产生了光的电磁理论。把电磁理论应用于晶体,对光在晶体中的传播规律给出了严格而圆满的解释。19世纪末,.洛伦兹创立了电子论,他把物质的宏观性质归结为构成物质的电子的集体行为,电磁波的作用使带电粒子产生受迫振动并产生次级电磁波,根据这一模型解释了光的吸收、色散和散射等分子光学现象。这种经典的电磁理论并非十全十美,因在关于光与物质相互作用的问题上涉及微观粒子的行为,必须用量子理论才能得到彻底的解决。波动光学的研究成果使人们对光的本性的认识得到了深化。在应用领域,以干涉原理为基础的干涉计量术为人们提供了精密测量和检验的手段(见干涉仪),其精度提高到前所未有的程度;衍射理论指出了提高光学仪器分辨本领的途径(见夫琅和费衍射);衍射光栅已成为分离光谱线以进行光谱分析的重要色散元件;各种偏振器件和仪器用来对岩矿晶体进行检验和测量,等等。所有这些构成了应用光学的主要内容。20世纪50年代开始,特别在激光器问世后,波动光学又派生出傅里叶光学、纤维光学和非线性光学等新分支,大大地扩展了波动光学的研究和应用范围。

355 评论

苦丁茶1苦丁茶

翼后的空腔带有一种象博的东西,胸部还有一种响板

163 评论

好色上上签

蝉是一种半翅目昆虫,我国就有一百二十种。一到夏天来临,它就会站在树上"知了-知了-知了"地叫个没完,声音传出很远。 蝉是一种昆虫,又称“知了”。其种类较多,雄蝉的腹部有一个发声器,能连续不断地发出响亮的声音;雌蝉虽然在腹部也有发声器,但不能发出声音。 幼虫生活在土里,吸食植物的根,在地下生活4年之后就会钻出地面,风光一时。成虫仅刺吸植物的汁。 蝉的一生,要经过卵、幼虫和成虫三个不同的时期。卵产在树上,幼虫生活在地下,成虫又重新回到树上。蝉在交配之后,雄蝉就完成了自己的使命,很快便死去。雌蝉则开始进行产卵的任务,它用尖尖的产卵器,在树枝上刺出小孔,刺一次产四到八粒,一个枝条上,往往要刺出几十个孔,然后雌蝉不吃不喝,也很快便死去了。卵在树枝里越冬,到第二年夏天,借助阳光的温度,才孵化出幼虫来。 全世界蝉的种类繁多,有3000多种,我国目前已知的有200种左右。在我国,土地辽阔,一年四季均有蝉鸣。春天有“春蝉”,鸣叫时大喊“醒啦——醒啦”;夏天有“夏蝉”,鸣叫时大喊“热死啦——热死啦”、“知了——知了”;秋天时有“秋蝉”,鸣叫时大喊“服了——服了”;冬天有“冬蝉”,鸣叫时大喊“完了——完了”。 蝉为什么喜欢激昂高歌,扯着“嗓门”大喊大叫呢?法国著名昆虫学家法布尔百思不得其解。他活了90多岁,把毕生的精力都倾注在昆虫学的研究上,写下100多万字的研究论文集——《昆虫记》。他曾对蝉进行了多年的观察研究,并做了极其生动而细致的描述。对蝉的鸣叫他是这样描写的:“蝉的翼后的空腔里,带着一种像钹一般的乐器。它还不满足,还要在胸部安置一种响板,以增强声音的强度,这种蝉为了满足对音乐的嗜好,确实作了很大的牺牲。因为有这种巨大的响板,使得生命器官都无处安置,只好把它们压紧到最小的角落里。为安置乐器而缩小内部器官,这当然是极热心于音乐的了。” 然而,法布尔为了弄清蝉究竟为什么要那样没完没了地拉着“肚皮”的钹,起劲地唱歌,是不是它根本就没有听到自己的大“嗓门”,怕别人也和自己一样还没有听到,才故意提高“嗓门”呢?于是,他进行了实验,来验证一下雄蝉究竟能不能听见声音。 他站在雄蝉的背后,在距离很近的地方大声讲话,使劲吹哨子,拍巴掌,用石头与石头撞击……使用种种响声来吓唬蝉。可是蝉满不在乎地继续唱歌。真是两耳不闻身后事,一心只唱只了歌。后来,法布尔索性找来两枝打野兽的火枪,里面装满火药,在蝉的旁边连连发射,声如霹雳,可是“歌手们”照样悠闲自得地唱着,连一点竟怕和不安的表现也没有。于是法布尔得出的结论是:雄蝉是没有听觉的,它听不见周围发出的任何声音,甚至连自己声嘶力竭的鸣叫也完全听不到,它是个地道的“聋子”。 雄蝉聋不聋呢? 这是有关蝉的第一个谜。 100多年来,法布尔的结论一直被人们广泛接受。甚至直至20世纪80年代,小学的语文教科书中关于蝉的部分仍沿用法布尔的观点:蝉是一个“聋子”。 可是,100多年前,人们一直认为雄蝉是能听到声音的。并给雄蝉冠以“音乐大师”的美称。甚至直至目前世界上的竖琴都用蝉来装饰并做为标志。这里还流传着一个典故:相传,古代希腊有两位名噪全国的音乐大师爱诺莫斯和阿里士多。这天,两位古艺术家正在雅典展开一场轰动全国的竖琴冠军赛。论竖琴的演奏技巧,爱诺莫斯要比阿里士多略胜一筹。哪料到,爱诺莫斯正弹奏得妙音如珠、扣人心弦的时刻,竖琴的琴弦突然断了。在这刻不容缓的时刻,恰巧飞来一只鸣蝉,把琴声继续下去了。爱诺莫斯只好顺水推舟,模拟蝉的鸣声而假奏。由于模拟的太逼真了,弄的真假难分。爱诺莫斯赢得了这场比赛的胜利。为了感谢蝉的“救场”之恩,爱诺莫斯便在竖琴上装饰了蝉,以作标志。 当然这只不过是一个传说而已,但它反映了人们对蝉的听觉的看法,蝉要是个“聋子”的话,哪能及时飞来“救场”呢? 近年来,许多昆虫学家对蝉是“聋子”的结论表示怀疑。雄蝉有高度发达的发声器,能发出令人烦躁的高音。中、小型蝉类的呼叫声一般可达80分贝~90分贝,大型蝉类的呼叫声可高达100~130分贝。我国四川峨眉山等地的一种震旦马蝉,其群鸣声响彻整个山谷,震耳欲聋,使人不堪忍受。蝉为何使出那么大的劲儿来叫喊?目的是招引远处的雌蝉前来交配,繁衍后代。但是雌蝉的发声器官已经退化,它只能听到雄蝉发出的邀请,却哑不做声。这就意味着“情侣”之间是没有“对唱”的,它们进行单向性声音通讯。因此,雄蝉鸣叫时必须能听到自己的叫声,才能知道叫得如何,进行不断地校正自己的叫声,以便更有效地招引雌蝉。 昆虫学家经过解剖发现:蝉两侧腹室的外缘(第二腹节左右侧)各有一个稍突起的听囊,腔内约有1500个听觉单元。当外界声波激励听膜振动时,听神经细胞产生兴奋,其神经冲动沿听神经传入大脑的听觉中枢,产生相应的听感觉。雌蝉的听膜虽比同种雄蝉小,但听脊却明显的大,听脊比听膜对声音的敏感性更高。所以证明雄蝉并不是“聋子”,只不过听觉不如雌蝉玲罢了。 但科学家在研究中发现,雄蝉的声音是由第一、二腹节内的发生机的收缩运动,分别牵动两侧发生膜受迫振动而发出。盖在发声膜上方的背瓣(即“鼓盖”)和所形成的鼓室以及腹部两块左右对称的腹瓣(即“音盖”)和下面的左右腹室,都有调音和扩音功能,而腹室内壁的上半部为近似白色的皱褶膜,下半部为内倾而近似半透明的听膜,透亮如镜,故称“镜膜”。而雄蝉的褶膜、镜膜和腹壁膜是接受声波的听膜,又是鸣声的辐射膜,相当于我们使用的单卡录音机,它是两用的,既可以录音,又可以放音。单卡录音机不能同时使用两种功能,录音时不能放音,放音也不能录音。 所以有的科学家认为,雄蝉是个“半聋子”,即静止不叫唤时能听到声音,若是高亢鸣叫时,它就听不到任何声音。那么这样问题又上来了。事实上,多种蝉类都具有合唱(群鸣)的习性。你不妨仔细倾听一下,蝉鸣都是这样的:先是大家一齐叫,节奏十分整齐,然后一起停叫。可见雄蝉鸣叫时,显然需要听到其他同类的鸣叫,以便调节自己的叫声,参加合唱。 这样,说雄蝉的镜膜既是听膜又是扩音膜是不可理解的。 看来,雄蝉到底聋不聋,还需要进一步探讨。 雌蝉一定是哑巴吗?这是蝉的第二个谜。 表面上看来,捕捉到的雌蝉,都是不会鸣叫的,所以人们都称雌蝉为“哑巴姑娘”。从上面所讲的来看,雄蝉的“镜膜”兼有收音和扩音的作用,那么,它在鸣叫时,镜膜在扩音,就必然听不到自己的鸣叫声。这样,雌蝉又不会说话,雄蝉又听不到自己在叫些什么,这不成了雄蝉在瞎叫唤吗?这样怎么会让远处的雌蝉准确无误地找到“男友”呢? 有的科学家认为,当雄蝉拼命地高歌鸣叫时,能把方圆1000多米内的雌蝉召唤过来。当雌蝉飞到近距离时,雄蝉不断发出特有的低音量的“求爱声”,吸引雌蝉靠近。与此同时,雌蝉也能发出低音量应答声。这样相互默契才能达到交配目的。只不过雌蝉的这种低音量次声人耳听不到。 不过,它们是否真的用低音量的声音在“交谈”,这还是个谜。 若蝉是怎样计时的?这是蝉的第三个谜。 雌雄蝉交配后,雄蝉很快就衰老而坠地死去,留下雌蝉。雌蝉用尖尖的产卵器在嫩枝上刺一圈小孔,把卵产在树木的木质内部,还要在嫩枝的下端,用口器刺破一圈韧皮,使树枝断绝水分和养料的供应,嫩枝渐渐枯死。这样,有卵的树枝容易被风吹落到地面,以便孵化出来的幼蝉(叫幼虫)钻进土里。 蝉产下的卵半个月就孵化出幼蝉。幼蝉的生活期特别长,最短的也要在地下生活2~3年,一般为4~5年,最长的为17年。幼蝉长期在地下生活,有着冬暖夏凉的条件,也很少有天敌来威胁,倒也算自在。它们经过4~5次蜕皮后,就要钻出地面,爬上树枝进行最后依次蜕皮(叫金蝉脱壳),成为成虫。 同样另昆虫学家大惑不解的是,蝉能够非常准确地确定时间,在“地狱”恰倒好处的完成从幼虫到成虫的过渡生长,并适时离开“地狱”爬出地面。这是个不可思议的奇迹。尤其是17年蝉,这种蝉都是不多不少,精确地度过17年“地狱”生活才见天日。要见到它的子女,必须再过17年。因此昆虫学家们总是像天文学家等待日食和哈雷慧星一样等待着“17年蝉”的出现。 幼蝉在暗无天日的地下,既看不见日出日落,也没有寒冬酷暑,它们是如何计量时间的?这是科学界的一大未解之谜。 PS:千古以来的人们,一直在猜测,知了知道了什么?有什么秘密是不为人所知的它的独家新闻呢?“知之为知之,不知为不知”,孔子的教诲是不是它也知晓。在“知了”声中,生命就了却了,它倒是活的明白! 它说的是实事求是吧!认真知道贯彻”三个代表”的精神,求真务实,为构建一个和谐社会而努力奋斗就行了! 不知道xuchu1222同志对”为什么知了在夏天会叫?”知道了吗?如果还不知道,请继续在baidu知道里寻找你不知道而又想知道的问题! 好了.我也不"知了-知了-知了"地叫个没完了,有问题就baidu一下,我知道!参考资料:

328 评论

只会品菜

●本节教材分析

本节从功能关系、动力学、运动学等多角度来研究受迫振动及其特例——共振现象。

在教学中应该充分发挥实验的作用,使学生理解物体在做受迫振动时其频率跟驱动力频率的关系,以及受迫振动的频率与物体固有频率接近时振动的特点.

另外,在本节的教学中应注意多举一些共振在实际中的应用以及避免共振的做法,培养学生理论联系实际的能力和习惯.

●教学目标

一、知识目标

1.知道什么是受迫振动,知道受迫振动的频率等于驱动力的频率.

2.知道什么是共振以及发生共振的条件.

3.知道共振的应用和防止的实例.

二、能力目标

1.通过分析实际例子,得到什么是受迫振动和共振现象,培养学生联系实际,提高观察和分析能力.

2.了解共振在实际中的应用和防止,提高理论联系实际的能力.

三、德育目标

1.通过共振的应用和防止的教学,渗透一分为二的观点.

2.通过共振产生条件的教学,认识内因和外因的关系.

●教学重点

1.什么是受迫振动.

2.什么是共振及产生共振的条件.

●教学难点

1.物体发生共振决定于驱动力的频率与物体固有频率的关系,与驱动力大小无关.

2.当f驱=f固时,物体做受迫振动的振幅最大.

●教学方法

1.实验演示,总结归纳得到什么是共振及受迫振动的频率决定于驱动力的频率.

2.多媒体演示、举例,了解共振的应用和防止.3.学生讨论,认识共振曲线的物理意义.

●教学用具

自制投影片、CAI课件、受迫振动演示仪共振演示仪、两个相同的带有共鸣箱的音叉、小槌.

●教学过程

用投影片出示本节课的学习目标:

1.知道什么叫驱动力,什么叫受迫振动,能举出受迫振动的实例.

2.知道受迫振动的频率等于驱动力的频率,跟物体的固有频率无关.

3.知道什么叫共振,知道共振发生的条件.

4.知道共振的应用和防止.

学习目标完成过程:

一、导入新课

1.什么是阻尼振动?

学生答:

实际的振动系统不可避免地要受到摩擦阻力和其他因素的影响,系统的机械能损耗,导致振动完全停止,这类振动叫阻尼振动.

2.引入:同学们,我们知道,物体之所以做阻尼振动,是由于机械能在损耗,那么如果在机械能损耗的同时我们不断地给它补充能量物体的振动情形又如何呢?本节课我们来研究有关的问题.

二、新课教学

1.受迫振动

(1)演示,用右图所示的实验装置

127 评论

相关问答

  • 振动工程学报于振动与冲击

    振动与冲击 EI CSCD核心 见刊至少一年 审稿速度快 录用后出版时间较长噪声与振动控制 CSCD扩展 三个月内审稿 一年内发表振动工程学报 EI CSCD核

    蛋糕上的草莓1 5人参与回答 2023-12-09
  • 简谐振动的研究论文

    骨笛遐想——浅析小提琴发声、调音的物理原理一.选题意义据我国最早的物理史学家吴南薰先生考证,世界上第一个人工制作的物理仪器就是在兽骨或竹管上挖孔并能吹出声音来的

    来去匆匆的我 3人参与回答 2023-12-10
  • 振动工程学报与振动与冲击

    振动工程学报振动与冲击都是EI收录。

    Charles2Lillian 5人参与回答 2023-12-06
  • 航空发动机振动研究的必要性论文

    航空发动机主轴振动信号分析是发动机运行状态的检测和诊断的重要手段,是发动机安全运行的重要保障。通过分析发动机主轴振动信号,可以发现发动机内部的异常状态,如叶片断

    lostangelus 1人参与回答 2023-12-05
  • 振动工程学报与振动冲击学报

    中国振动工程学会主办的科技期刊有4种: 《振动工程学报》、《振动与冲击》、《非线性力学学报》、《岩土工程学报》。

    我是你的大白 5人参与回答 2023-12-10