• 回答数

    3

  • 浏览数

    345

龙舌兰日出shine
首页 > 职称论文 > 检测与信号处理电气论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

WeiXin呵呵呵

已采纳

刘科满 刘修善 杨春国 张进双

(中国石化石油工程技术研究院,北京 100101)

摘 要 针对电磁波随钻测量系统易于受到井场噪声影响的现象,提出一种基于ZigBee协议的远程微弱低频电磁波阵列接收处理方法,用于电磁波随钻测量系统的电磁波信号远程接收及井下信息实时测量领域,以提高随钻测量系统地面接收机的检测性能。实验结果表明,该方法较传统的接收方法可提高处理增益10dB左右,在随钻测量领域具有良好的应用前景。

关键词 电磁波随钻测量 阵列信号 电磁波 ZigBee协议

Research of Remote Electromagnetic Signal Reception andProcessing Based on ZigBee Technology

LIU Keman,LIU Xiushan,YANG Chunguo,ZHANG Jinshuang

(SINOPEC Research Institute of Petroleum Engineering,Beijing 100101 ,China)

Abstract An algorithm of reception and processing of remote electromagnetic signal of Electromagnetic Measurement While Drilling System based on ZigBee technology is proposed method measured the electromagnetic signal by using an electrode array far away from a well site,which can enhances the communication receiver's ability to extract very weak signals from amounts of ambient environmental experimental results taken from a well site show that the proposed method can enhance the processing gain of10dB,and has good prospects for applying it to an Electromagnetic Measurement While Drilling system.

Key words Electromagnetic Measurement While Drilling;array signal processing;electromagnetic wave; ZigBee protocol

电磁波式随钻测量系统(Electromagnetic Measurement While Drilling,简称EM -MWD)作为解决气体钻井及各种充气钻井中随钻测量问题的主要技术手段,一直备受国内外石油服务公司的关注。然而,由于EM -MWD工作环境的特殊性,低频电磁波在地层介质中传播时不可避免地受到信道介质的影响,特别是在非均匀性分布地层传输信道介质中,电磁波传播的衰减、畸变更为严重,导致EM -MWD系统的传输性能急剧退化,使得其传输深度大大降低[1~4]。因此,在井场噪声和信道噪声干扰下,低频电磁波信号的接收与处理技术研究一直是EM -MWD系统研究的重点与难点。

目前,EM -MWD系统的地面接收机主要是采用检测地面电极与井架间携有井下信息的电磁信号来获取井下信息,电极与井架间距离约100m。其工作原理是:耦合变压器来感应携有井下信息的微弱电磁信号,然后通过前置放大器、低通滤波器等对数据进行处理,最后采用数字信号处理技术对携有井下测量信息的电磁信号解码,获取井下信息。专利申请号200810101407发明了一种使用两幅天线分别接收井下发送的电磁信号和井场噪声信号的EM-MWD系统,其地面接收机具有处理井下发送上来的携带有测量数据信息的电磁信号功能[5]。专利申请号发明了一种能够处理媒质中的电磁波信号的随钻测量遥测系统[6]。专利申请号发明了一种用解决井上测量系统拾取微弱电磁信号困难的问题。以上这些专利都是在井场电磁干扰环境下处理微弱电磁信号,然而这些方法不同程度地易受井场电磁噪声干扰,特别是这种接收方式易于受到井场各种电气设备如钻机、柴油机、发电机、泥浆泵、传动链条、振动筛等设备产生的电磁噪声的影响,使得EM -MWD系统地面接收机处理低频电磁信号的性能严重退化,接收灵敏度大大降低。

基金项目:国家重大专项《海相油气井井筒环境监测技术》(2011ZX05005-006)。

针对电磁波随钻测量系统易于受到井场噪声影响的现象,作者提出了一种基于ZigBee协议的远程微弱低频电磁波阵列接收处理方法,该方法以阵列信号处理为核心,用传感器阵列方式接收处理携有井下测量信息的微弱电磁波信号,采用ZigBee协议芯片实现信号的远程传输。该方法可有效地降低井场噪声对EM-MWD的影响,提高EM-MWD系统地面接收机的处理增益和灵敏度。

1 EM-MWD远程接收系统设计

EM-MWD远程接收系统工作原理及主要完成功能

EM-MWD远程接收系统由井场接收机和远程接收机组成;其中远程接收机包括传感器阵、耦合变压器、前置放大器、带通滤波器、DSP信号处理器和无线收发器。电磁波随钻测量系统远程无线接收系统如图1所示。

图1 电磁波随钻测量远程无线接收系统

电磁波随钻测量远程无线接收系统工作原理如下:定向探管测量井下信息,并按照指定的协议方式将测量信号传输至井下发射机,井下发射机在对测量信息进行编码和调制后,将携有井下测量信息的电磁波发出去,电磁波通过钻杆、裸露的井壁以及地层将电磁波传输至地面,安装在地面的远程传感器阵接收电磁波信号,接收到的电磁波信号经过滤波、放大、解调等处理后,再进行编码、加密等环节,通过基于ZigBee技术的无线收发器发射出去,井场接收机接收无线信号,将接收到的数据进行保存管理,并在司钻指示器上井下显示。

远程接收完成的主要功能有:(1)采用传感器阵列接收远离井场的井下EM -MWD系统发射的信号;(2)对接收到的微弱电磁波信号进行信号、消噪、叠加等处理;(3)将处理后的信号打包、加密,采用ZigBee协议模块发射。

远程无线接收系统与现有的电磁波随钻测量系统的不同在于:(1)增加了ZigBee技术,即使得地面电极远离井场,可有效地降低井场噪声干扰;(2)采用阵列接收方式,即采用多通道信息采集技术,并利用阵列信号处理技术,进行信号处理,降低噪声干扰。

传感器阵设计及阵列信号处理技术

现有的EM -MWD系统采用单通道差分接收方式接收井架与地面电极间的信号。为了有效地降低井场噪声的干扰,采用地面电极阵列接收携有井下信息的电磁信号。

假设接收装置的传感器组为N个阵元的天线阵,如图2所示。多通道的远程接收装置信号处理框图如图3所示。

图3 远程接收装置信号处理框图

阵元编号为1#、2#……N#,等间距阵元间距为d(图4),发射机载波频率为ω,波长为λ,传播速度v,信号到达2#阵元较1#阵元的传播时间延迟为τ,延迟路程为u,则相邻阵元间延迟为

图4 远程地面接收线阵

油气成藏理论与勘探开发技术:中国石化石油勘探开发研究院2011年博士后学术论坛文集.4

假设所接收信号为X(t),有用电磁信号为s(t),噪声为n(t),则有

油气成藏理论与勘探开发技术:中国石化石油勘探开发研究院2011年博士后学术论坛文集.4

则观测到的信号的总响应为

油气成藏理论与勘探开发技术:中国石化石油勘探开发研究院2011年博士后学术论坛文集.4

油气成藏理论与勘探开发技术:中国石化石油勘探开发研究院2011年博士后学术论坛文集.4

根据发射机发射频率、阵元间距、延迟等参数,可布设合适的传感器阵。从信号分析的观点来说,接收到的含有井下信息的电磁信号和干扰波之间存在以下不同:(1)载波信号的谱与噪声谱不同;(2)统计规律不同。因此,可采用数字信号处理技术如信号叠加法、时频滤波法等,从而有效地降低噪声干扰,提高处理增益和接收灵敏度。在EM-MWD远程接收系统中采用阵列设计的目的是为了最大限度地提高接收数据的信噪比,降低井场噪声的影响。在实际实施过程中,需合适地安排和选择接收点及其相互位置。采用线列阵而不是面阵,避免了调试的复杂性,降低了成本。

对于电磁波随钻测量系统的远程接收系统来说,远程接收系统采用单片机或DSP系统,构建远程主控单元,利用DSP强大的信号处理能力,对接收到的阵列信号进行处理,将处理结果通过ZigBee协议模块发送至井场接收机。本设计选用TMS320LF2812和含有ZigBee协议模块的芯片构建远程小型接收装置,井场接收机也配置同样ZigBee协议模块即可。这样,远程接收装置即可将远程的传感器阵列接收微弱电磁信号传输至井场接收机,完成远程信息的采集、接收和处理功能。电磁波随钻测量系统的远程接收系统监控软件设计包括DSP主程序、算法处理程序和监控程序。其中DSP程序和算法处理程序采用C语言编写,监控程序采用Labview编写。地面接收机软件包括DSP程序和地面监控程序。采用C语言编程实现,主要完成信号与噪声数据采集、A/D转换、数字滤波、解码,并通过RS-232接口与数传模块连接,数据由数传模块发送出去。此处不再赘述。

2 实验结果分析

2010年10月该系统在华北大牛地气田D66-129井进行了现场实验。电磁波随钻测量系统的远程接收系统的主要工作参数如下:EM-MWD远程接收系统的前置放大器放大倍数为1~100000倍可调,带通滤波器的频带范围为1~35Hz,带宽可调;井下发射机发射信号频率为3~25 Hz(根据地层特性可调);地面电极距井架500~1000 m,共用电极8组;采样8通道数据;观测灵敏度在-120dBV左右。图5给出了实时采集的井场噪声波形。采样频率fs=2000Hz。从图5可以看出,EM-MWD系统工作频带内存在两根线谱,即6Hz和。井场发电机组及相关钻井设备的50Hz工频也是井场噪声的主要组成部分。而发射机发射信号频率10Hz线谱很难从噪声谱中发现。

图5 D66-129井井场噪声波形

采用8通道数据采集后,利用式(6)和式(7),可得到图6所示噪声谱,明显看出,图7发射机频率的10Hz线谱较图6的10Hz线谱提高10dB左右。需要说明的是,由于井场工作设备仪器的启停在很大程度上会影响原有的EM-MWD系统的工作性能,特别是当较大功率的用电设备(如发电机组、泥浆泵)工作时。

图6 D66-129井井场噪声谱

图7 经过阵列信号处理后观测到的噪声谱

通过对D66-129井和DPS-2井的井场噪声分析,发现当关闭转盘或顶驱时,井场噪声近似平稳高斯分布;而当开启转盘或顶驱时井场噪声具有明显的非平稳、非高斯特性。这种非平稳、非高斯特性的噪声,直接影响着目前国内外EM-MWD系统的地面解码性能,特别是当转盘开启或顶驱开启时,数据误码率升高,数据的可信度降低。本文提出的远离井场的接收方法,虽然在一定程度上使得接收信号的幅度降低,但是噪声幅度的下降程度较信号的下降程度更明显。通过阵列信号处理及多通道数据叠加,可以有效地提高远程接收系统的处理增益。ZigBee远程接收装置,采用纽扣电池供电,这种采用ZigBee远程接收的方式,既省去了野外远距离布线的不便,又大大降低了成本。

3 结 论

本文提出的基于ZigBee协议的远程微弱低频电磁波阵列接收处理方法,用于解决目前EM -MWD系统的电磁波信号易于受到井场噪声干扰的问题。

通过现场试验表明:

1)在距离井架100m以外安放地面电极时,随着电极距离井场位移的增大,在相同的工作条件下,噪声的衰减幅度较信号的衰减幅度明显。

2)布设合适的传感器阵时,需考虑井下发射机以及井眼位置,特别是发射机发射频率、阵元间距、延迟等参数。实验结果表明,本文提出的方法较传统的接收方法可提高处理增益10dB左右。

参考文献

[1]刘修善,杨春国,涂玉林.我国电磁随钻测量技术研究进展[J].石油钻采工艺,2008,30(5):1~5.

[2]刘修善,侯绪田,涂玉林.电磁随钻测量技术现状及发展趋势[J].石油钻探技术,2006 34(5):4~9.

[3]McDonald W different systems used for MWD[J].Oil &Gag,1978,76(14):115~124.

[4]Soulier,Louis,Lemaitre, M-MWD Data Transmission Status and Perspectives[C].SPE/IADC 25686,1993:121~128.

[5]刘修善,高炳堂,杨春国,等.一种电磁随钻测量系统的地面信号接收装置及其接收方法[P].中国:200810101407,2008.

[6]苏义脑,盛利民,李林.一种随钻测量的电磁遥测方法及系统[P].中国:,2004.

[7]弓志谦.一种用于电磁波随钻测量的地面信号接收仪[P].中国:,2010.

234 评论

贝贝哈拉

浅谈机电一体化中的接口技术 摘要:接口技术是在机电一体化技术的基础上发展起来的,随着机电一体化技术的发展而变得越来越 重要。文章以机电一体化控制系统(微电子系统)为例,将接口分为人机接口与机电接口两大类进行探讨。 关键词:机电一体化;接口技术;人机接口;机电接口 机电一体化系统可分为机械和微电子系统两大部分,各部分 连接须具备一定条件,这个联系条件通常称为接口。各分系统又 由各要素(子系统)组成。本文以机电一体化控制系统(微电子 系统)为例,将接口分为人机与机电接口两大类。 一、机电接口:由于机械系统与微电子系统在性质上有很大 差别,两者间的联系须通过机电接口进行调整、匹配、缓冲,因 此机电接口起着非常重要的作用:(1)行电平转换和功率放大。一 般微机的I/O芯片都是TTL电平,而控制设备则不一定,因此必 须进行电平转换;另外,在大负载时还需要进行功率放大;(2)抗 干扰隔离。为防止干扰信号的串入,可以使用光电耦合器、脉冲 变压器或继电器等把微机系统和控制设备在电器上加以隔离;(3) 进行A/D或D/A转换。当被控对象的检测和控制信号为模拟量 时,必须在微机系统和被控对象之间设置A/D和D/A转换电路, 以保证微机所处理的数字量与被控的模拟量之间的匹配。1、模拟 信号输入接口:在机电一体化系统中,反映被控对象运行状态信 号是传感器或变送器的输出信号,通常这些输出信号是模拟电压 或电流信号(如位置检测用的差动变压器、温度检测用的热偶电 阻、温敏电阻、转速检测用的测速发电机等)计算机要对被控对 象进行控制,必须获得反映系统运行的状态信号,而计算机只能 接受数字信号,要达到获取信息的目的,就应将模拟电信号转换 为数字信号的接口——模拟信号输入接口。2、模拟信号输出接 口:在机电一体化系统中,控制生产过程执行器的信号通常是模 拟电压或电流信号,如交流电动机变频调速、直流电动机调速器、 滑差电动机调速器等。而计算机只能输出数字信号,并通过运算 产生控制信号,达到控制生产过程的目的,应有将数字信号转换 成模拟电信号的接口——模拟信号输出接口。任务是把计算机输 出的数字信号转换为模拟电压或电流信号,以便驱动相应的执行 器,达到控制对象的目的。模拟信号输出接口一般由控制接口、数 字模拟信号转换器、多路模拟开关和功率放大器几部分构成。3、 开关信号通道接口:机电一体化系统的控制系统中,需要经常处 理一类最基本的输入/输出信号,即数字量(开关量)信号包括: 开关的闭合与断开;指示灯的亮与灭;继电器或接触器的吸合与 释放;电动机的启动与停止;阀门的打开与关闭等。这些信号的 共同特征是以二进制的逻辑“1”和“0”出现的。在机电一体化 控制系统中,对应二进制数码的每一位都可以代表生产过程中的 一个状态,此状态作为控制依据。(1)输入通道接口。开关信号 输入通道接口的任务是将来自控制过程的开关信号、逻辑电平信 号以及一些系统设置开关信号传送给计算机。这些信号实质是一 种电平各异的数字信号,所以开关信号输入通道又称为数字输入 通道(DI)。由于开关信号只有两种逻辑状态“ON”和“OFF”或 数字信号“1”和“0”,但是其电平一般与计算机的数字电平不相 同,与计算机连接的接口只需考虑逻辑电平的变换以及过程噪声 隔离等设计问题,它主要由输入缓冲器、电平隔离与转换电路和 地址译码电路等组成。(2)输出通道接口。开关信号输出通道的 作用是将计算机通过逻辑运算处理后的开关信号传递给开关执行 器(如继电器或报警指示器)。它实质是逻辑数字的输出通道,又 称为数字输出通道(DO)。DO通道接口设计主要考虑的是内部与 外部公共地隔离和驱动开关执行器的功率。开关量输出通道接口 主要由输出锁存器、驱动器和输出口地址译码电路等组成。 二、人机接口:人机接口是操作者与机电系统(主要是控制 微机)之间进行信息交换的接口。按照信息的传递方向,可以分 为输入与输出接口两大类。机电系统通过输出接口向操作者显示 系统的各种状态、运行参数及结果等信息;另一方面,操作者通 过输入接口向机电系统输入各种控制命令,干预系统的运行状态, 以实现所要求的功能。1、输入接口。(1)拨盘输入接口。拨盘是 机电一体化系统中常见的一种输入设备,若系统需要输入少量的 参数,如修正系数、控制目标等,采用拨盘较为方便,这种方式 具有保持性。拨盘的种类很多,作为人机接口使用最方便的是十 进制输入、BCD码输出的BCD码拨盘。BCD码拨盘可直接与控 制微机的并行口或扩展口相连,以BCD码形式输入信息。(2)键 盘输入接口。键盘是一组按键集合,向计算机提供被按键的代码。 常用的键盘有:1)编码键盘,自动提供被按键的编码(如ASCII 码或二进制码);2)非编码键盘,仅仅简单地提供按键的通或断 (“0”或“1”电位),而按键的扫描和识别,则由设计的键盘程序 来实现。前者使用方便,但结构复杂,成本高;后者电路简单,便 于设计。2、输出接口。在机电一体化系统中,发光二极管显示器 (LED)是典型的输出设备,由于LED显示器结构简单、体积小、 可靠性高、寿命长、价格便宜,因此使用广泛。常用的LED显示 器有7段发光二极管和点阵式LED显示器。7段LED显示器原理 很简单,是同名管脚上所加电平高低来控制发光二极管是否点亮 而显示不同字形的。点阵式LED显示器一般用来显示复杂符号、 字母及表格等,在大屏幕显示及智能化仪器中有广泛应用。 结语:接口技术是研究机电一体化系统中的接口问题,使系 统中信息和能量的传递和转换更加顺畅,使系统各部分有机地结 合在一起,形成完整的系统。接口技术是在机电一体化技术的基 础上发展起来的,随着机电一体化技术的发展而变得越来越重 要;同时接口技术的研究也必然促进机电一体化的发展。从某种 意义上讲,机电一体化系统的设计,就是根据功能要求选择了各 部分后所进行的接口设计。接口的好与坏直接影响到机电一体化 系统的控制性能,以及系统运行的稳定性和可靠性,因此接口技 术是机电一体化系统的关键环节。 参考文献: [1]杨德麟等.例尺数字测图的理论方法与应用.大学出版社.2001 [2]李青岳.工程测量学.测绘出版社.2000 [3]张光东.数字化地形测量的实践.第一届全国交通工程测量学术讨论 会论文集.西安地图出版社

96 评论

三生皆缘

生物医学信号处理方法论文

生物医学信号处理是指据生物医学信号特点,应用信息科学的基本理论和方法,研究如何从扰和噪声淹没的观察记录中提取各种生物医学信号中所携带的信息,并对它们进步分析、解释和分类。以下是我精心准备的生物医学信号处理方法论文,大家可以参考以下内容哦!

摘 要: 生物医学信号是人体生命信息的集中体现,深入进行生物医学信号检测与处理的理论与方法的研究对于认识生命运动的规律、探索疾病预防与治疗的新方法都具有重要的意义。

关键词: 生物医学信号 信号检测 信号处理

1 概述

1。1 生物医学信号及其特点

生物医学信号是一种由复杂的生命体发出的不稳定的自然信号,属于强噪声背景下的低频微弱信号,信号本身特征、检测方式和处理技术,都不同于一般的信号。生物医学信号可以为源于一个生物系统的一类信号,这些信号通常含有与生物系统生理和结构状态相关的信息。生物医学信号种类繁多,其主要特点是:信号弱、随机性大、噪声背景比较强、频率范围一般较低,还有信号的统计特性随时间而变,而且还是非先验性的。

1。2 生物医学信号分类

按性质生物信号可分为生物电信号(Bioelectric Signals),如脑电、心电、肌电、胃电、视网膜电等;生物磁信号(Biomagnetic Signals),如心磁场、脑磁场、神经磁场;生物化学信号(Biochemical Signals),如血液的pH值、血气、呼吸气体等;生物力学信号(Biomechanical Signals),如血压、气血和消化道内压和心肌张力等;生物声学信号(Bioacoustic Signal),如心音、脉搏、心冲击等。

按来源生物医学信号可大致分为两类:(1)由生理过程自发产生的主动信号,例如心电(ECG)、脑电(EEG)、肌电(EMG)、眼电(EOG)、胃电(EGG)等电生理信号和体温、血压、脉博、呼吸等非电生信号;(2)外界施加于人体、把人体作为通道、用以进行探查的被动信号,如超声波、同位素、X射线等。

2 生物医学信号的检测及方法

生物医学信号检测是对生物体中包含的生命现象、状态、性质和成分等信息进行检测和量化的技术,涉及到人机接口技术、低噪声和抗干扰技术、信号拾取、分析与处理技术等工程领域,也依赖于生命科学研究的进展。信号检测一般需要通过以下步骤(见图1)。

①生物医学信号通过电极拾取或通过传感器转换成电信号;②放大器及预处理器进行信号放大和预处理;③经A/D转换器进行采样,将模拟信号转变为数字信号;④输入计算机;⑤通过各种数字信号处理算法进行信号分析处理,得到有意义的结果。

生物医学信号检测技术包括:(1)无创检测、微创检测、有创检测;(2)在体检测、离体检测;(3)直接检测、间接检测;(4)非接触检测、体表检测、体内检测;(5)生物电检测、生物非电量检测;(6)形态检测、功能检测;(7)处于拘束状态下的生物体检测、处于自然状态下的生物体检测;(8)透射法检测、反射法检测;(9)一维信号检测、多维信号检测;(10)遥感法检测、多维信号检测;(11)一次量检测、二次量分析检测;(12)分子级检测、细胞级检测、系统级检测。

3 生物医学信号的处理方法

生物医学信号处理是研究从扰和噪声淹没的信号中提取有用的生物医学信息的特征并作模式分类的方法。生物医学信号处理的目的是要区分正常信号与异常信号,在此基础上诊断疾病的存在。近年来随着计算机信息技术的飞速发展,对生物医学信号的处理广泛地采用了数字信号分析处理方法:如对信号时域分析的相干平均算法;对信号频域分析的快速傅立叶变换算法和各种数字滤波算法;对平稳随机信号分析的功率谱估计算法和参数模型方法;对非平稳随机信号分析的短时傅立叶变换、时频分布(维格纳分布)、小波变换、时变参数模型和自适应处理等算法;对信号的非线性处理方法如混沌与分形、人工神经网络算法等。下面介绍几种主要的处理方法。

3。1 频域分析法

信号的频域分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而将时间变量转变成频率变量,帮助人们了解信号随频率的变化所表现出的特性。信号频谱X(f)描述了信号的频率结构以及在不同频率处分量成分的大小,直观地提供了从时域信号波形不易观察得到频率域信息。频域分析的'一个典型应用即是对信号进行傅立叶变换,研究信号所包含的各种频率成分,从而揭示信号的频谱、带宽,并用以指导最优滤波器的设计。

3。2 相干平均分析法

生物医学信号常被淹没在较强的噪声中,且具有很大的随机性,因此对这类信号的高效稳健提取比较困难。最常用的常规提取方法是相干平均法。相干平均(Coherent Average)主要应用于能多次重复出现的信号的提取。如果待检测的医学信号与噪声重叠在一起,信号如果可以重复出现,而噪声是随机信号,可用叠加法提高信噪比,从而提取有用的信号。这种方法不但用在诱发脑电的提取,也用在近年来发展的心电微电势(希氏束电、心室晚电位等)的提取中。

3。3 小波变换分析法

小波分析是传统傅里叶变换的继承和发展,是20世纪80年代末发展起来的一种新型的信号分析工具。目前,小波的研究受到广泛的关注,特别是在信号处理、图像处理、语音分析、模式识别、量子物理及众多非线性科学等应用领域,被认为是近年来在工具及方法上的重大突破。小波分析有许多特性:多分辨率特性,保证非常好的刻画信号的非平稳特征,如间断、尖峰、阶跃等;消失矩特性,保证了小波系数的稀疏性;紧支撑特性,保证了其良好的时频局部定位特性;对称性,保证了其相位的无损;去相关特性,保证了小波系数的弱相关性和噪声小波系数的白化性;正交性,保证了变换域的能量守恒性;所有上述特性使小波分析成为解决实际问题的一个有效的工具。小波变换在心电、脑电、脉搏波等信号的噪声去除、特征提取和自动分析识别中也已经取得了许多重要的研究成果。

3。4 人工神经网络

人工神经网络是一种模仿生物神经元结构和神经信息传递机理的信号处理方法。目前学者们提出的神经网络模型种类繁多。概括起来,其共性是由大量的简单基本单元(神经元)相互广泛联接构成的自适应非线性动态系统。其特点是:(1)并行计算,因此处理速度快;(2)分布式存贮,因此容错能力较好;(3)自适应学习(有监督的或无监督的自组织学习)。

参考文献

[1] 邢国泉,徐洪波。生物医学信号研究概况。咸宁学院学报(医学版),2006,20:459~460。

[2] 杨福生。论生物医学信号处理研究的学科发展战略。国外医学生物医学工程分册,1992,4(15):203~212。

321 评论

相关问答

  • 数字信号的采集与处理论文

    基于DSP的图象处理系统设计摘要:文章提出一种基于丁工公司数字信号处理芯片TMS32OC6211的将模拟视频进行数字化处理的设计方案,其中视频解码模块完成复合视

    缘分百合 2人参与回答 2023-12-11
  • 信号估计与检测论文

    楼主,找了很就发现这点可怜的资料,给你参考:铁道信号——电缆市场浅析按照铁道部《中长期铁路网规划》,从2005年到2020年,铁道部将投入两万亿资金进行铁路建设

    小可憐兒 3人参与回答 2023-12-07
  • 信号检测与估值论文

    1. 《信号检测与估值》高等学校规划教材,西北工业大学出版社,2011.22. Xiaowei Li, Hong Liang, Xiang-Gen Xia.A

    西城桃乐蒂1126 4人参与回答 2023-12-10
  • 检测与信号处理论文

    对包装产品质量进行最后把关的包装测试技术,是包装这是我为大家整理的包装测试技术论文,仅供参考! [摘要]以培养应用型人才为教学目的,本文首先分析了包装工程专业学

    快乐糖糖K 2人参与回答 2023-12-07
  • 信号与信息处理毕业论文题目

    1.电子与通信工程  无线网络  光通信  多媒体通信 2.网络  软件技术在通信工程  微波工程  信息通信工程 3.人工智能  生物信息学  软件工程  信

    依玛语录 7人参与回答 2023-12-10