• 回答数

    4

  • 浏览数

    96

酸奶娃儿
首页 > 职称论文 > 直流减速电机选型毕业论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

西风华诞

已采纳

仅供参考一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。(2) 原始数据:滚筒圆周力F=;带速V=;滚筒直径D=220mm。运动简图二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=××××(2)电机所需的工作功率:Pd=FV/1000η总=1700××、确定电动机转速:滚筒轴的工作转速:Nw=60×1000V/πD=60×1000×π×220=根据【2】表中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×符合这一范围的同步转速有960 r/min和1420r/min。由【2】表查出有三种适用的电动机型号、如下表方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比KW 同转 满转 总传动比 带 齿轮1 Y132s-6 3 1000 960 3 Y100l2-4 3 1500 1420 3 综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。4、确定电动机型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y100l2-4。其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩。三、计算总传动比及分配各级的传动比1、总传动比:i总=n电动/n筒=1420/、分配各级传动比(1) 取i带=3(2) ∵i总=i齿×i 带π∴i齿=i总/i带=四、运动参数及动力参数计算1、计算各轴转速(r/min)nI=nm/i带=1420/3=(r/min)nII=nI/i齿=(r/min)滚筒nw=nII=(r/min)2、 计算各轴的功率(KW)PI=Pd×η带=××η轴承×η齿轮=××、 计算各轴转矩Td=×入/n1 = =入/n2=五、传动零件的设计计算1、 皮带轮传动的设计计算(1) 选择普通V带截型由课本[1]P189表10-8得:kA= P=×据PC=和n1=由课本[1]P189图10-12得:选用A型V带(2) 确定带轮基准直径,并验算带速由[1]课本P190表10-9,取dd1=95mm>dmin=75dd2=i带dd1(1-ε)=3×95×()= mm由课本[1]P190表10-9,取dd2=280带速V:V=πdd1n1/60×1000=π×95×1420/60×1000=在5~25m/s范围内,带速合适。(3) 确定带长和中心距初定中心距a0=500mmLd=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0=2×500+(95+280)+(280-95)2/4×450=根据课本[1]表(10-6)选取相近的Ld=1600mm确定中心距a≈a0+(Ld-Ld0)/2=500+()/2=497mm(4) 验算小带轮包角α1= ×(dd2-dd1)/a=×(280-95)/497=>1200(适用)(5) 确定带的根数单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=查[1]表10-3,得Kα=;查[1]表10-4得 KL= PC/[(P1+△P1)KαKL]=[() ××]= (取3根)(6) 计算轴上压力由课本[1]表10-5查得q=,由课本式(10-20)单根V带的初拉力:F0=500PC/ZV[(α)-1]+qV2=[()]+ =则作用在轴承的压力FQFQ=2ZF0sin(α1/2)=2×3×()=、齿轮传动的设计计算(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;精度等级:运输机是一般机器,速度不高,故选8级精度。(2)按齿面接触疲劳强度设计由d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3确定有关参数如下:传动比i齿=取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=取z2=78由课本表6-12取φd=(3)转矩T1T1=×106×P1/n1=×106×(4)载荷系数k : 取k=(5)许用接触应力[σH][σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:σHlim1=610Mpa σHlim2=500Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算N1=60××10×300×18= /×108查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=按一般可靠度要求选取安全系数SHmin=[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa[σH]2=σHlim2ZN2/SHmin=故得:d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3=模数:m=d1/Z1=取课本[1]P79标准模数第一数列上的值,m=(6)校核齿根弯曲疲劳强度σ bb=2KT1YFS/bmd1确定有关参数和系数分度圆直径:d1=mZ1=×20mm=50mmd2=mZ2=×78mm=195mm齿宽:b=φdd1=×50mm=55mm取b2=55mm b1=60mm(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=(8)许用弯曲应力[σbb]根据课本[1]P116:[σbb]= σbblim YN/SFmin由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1计算得弯曲疲劳许用应力为[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa校核计算σbb1=2kT1YFS1/ b1md1=< [σbb1]σbb2=2kT1YFS2/ b2md1=< [σbb2]故轮齿齿根弯曲疲劳强度足够(9)计算齿轮传动的中心矩aa=(d1+d2)/2= (50+195)/2=(10)计算齿轮的圆周速度V计算圆周速度V=πn1d1/60×1000=××50/60×1000=因为V<6m/s,故取8级精度合适.六、轴的设计计算从动轴设计1、选择轴的材料 确定许用应力选轴的材料为45号钢,调质处理。查[2]表13-1可知:σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d≥C查[2]表13-5可得,45钢取C=118则d≥118×()1/3mm=考虑键槽的影响以及联轴器孔径系列标准,取d=35mm3、齿轮上作用力的计算齿轮所受的转矩:T=×106P/n=×106× N齿轮作用力:圆周力:Ft=2T/d=2×198582/195N=2036N径向力:Fr=Fttan200=2036×tan200=741N4、轴的结构设计轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。(1)、联轴器的选择可采用弹性柱销联轴器,查[2]表可得联轴器的型号为HL3联轴器:35×82 GB5014-85(2)、确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合分别实现轴向定位和周向定位(3)、确定各段轴的直径将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.(5)确定轴各段直径和长度Ⅰ段:d1=35mm 长度取L1=50mmII段:d2=40mm初选用6209深沟球轴承,其内径为45mm,宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:L2=(2+20+19+55)=96mmIII段直径d3=45mmL3=L1-L=50-2=48mmⅣ段直径d4=50mm长度与右面的套筒相同,即L4=20mmⅤ段直径d5=52mm. 长度L5=19mm由上述轴各段长度可算得轴支承跨距L=96mm(6)按弯矩复合强度计算①求分度圆直径:已知d1=195mm②求转矩:已知T2=③求圆周力:Ft根据课本P127(6-34)式得Ft=2T2/d2=2×④求径向力Fr根据课本P127(6-35)式得Fr=Ft?tanα=×tan200=⑤因为该轴两轴承对称,所以:LA=LB=48mm(1)绘制轴受力简图(如图a)(2)绘制垂直面弯矩图(如图b)轴承支反力:FAY=FBY=Fr/2=由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为MC1=FAyL/2=×96÷2=截面C在水平面上弯矩为:MC2=FAZL/2=×96÷2=(4)绘制合弯矩图(如图d)MC=(MC12+MC22)1/2=()1/2=(5)绘制扭矩图(如图e)转矩:T=×(P2/n2)×106=(6)绘制当量弯矩图(如图f)转矩产生的扭剪文治武功力按脉动循环变化,取α=,截面C处的当量弯矩:Mec=[MC2+(αT)2]1/2=[(×)2]1/2=(7)校核危险截面C的强度由式(6-3)σe=×453=< [σ-1]b=60MPa∴该轴强度足够。主动轴的设计1、选择轴的材料 确定许用应力选轴的材料为45号钢,调质处理。查[2]表13-1可知:σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d≥C查[2]表13-5可得,45钢取C=118则d≥118×()1/3mm=考虑键槽的影响以系列标准,取d=22mm3、齿轮上作用力的计算齿轮所受的转矩:T=×106P/n=×106× N齿轮作用力:圆周力:Ft=2T/d=2×53265/50N=2130N径向力:Fr=Fttan200=2130×tan200=775N确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位,4 确定轴的各段直径和长度初选用6206深沟球轴承,其内径为30mm,宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。(2)按弯扭复合强度计算①求分度圆直径:已知d2=50mm②求转矩:已知T=③求圆周力Ft:根据课本P127(6-34)式得Ft=2T3/d2=2×④求径向力Fr根据课本P127(6-35)式得Fr=Ft?tanα=×⑤∵两轴承对称∴LA=LB=50mm(1)求支反力FAX、FBY、FAZ、FBZFAX=FBY=Fr/2=(2) 截面C在垂直面弯矩为MC1=FAxL/2=×100/2=19N?m(3)截面C在水平面弯矩为MC2=FAZL/2=×100/2=(4)计算合成弯矩MC=(MC12+MC22)1/2=(192+)1/2=(5)计算当量弯矩:根据课本P235得α=[MC2+(αT)2]1/2=[(×)2]1/2=(6)校核危险截面C的强度由式(10-3)σe=Mec/()=(×303)=<[σ-1]b=60Mpa∴此轴强度足够(7) 滚动轴承的选择及校核计算一从动轴上的轴承根据根据条件,轴承预计寿命L'h=10×300×16=48000h(1)由初选的轴承的型号为: 6209,查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=, 基本静载荷CO=,查[2]表可知极限转速9000r/min(1)已知nII=(r/min)两轴承径向反力:FR1=FR2=1083N根据课本P265(11-12)得轴承内部轴向力FS= 则FS1=FS2=(2) ∵FS1+Fa=FS2 Fa=0故任意取一端为压紧端,现取1端为压紧端FA1=FS1=682N FA2=FS2=682N(3)求系数x、yFA1/FR1=682N/1038N = =根据课本P265表(14-14)得e=48000h∴预期寿命足够二.主动轴上的轴承:(1)由初选的轴承的型号为:6206查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,基本额定动载荷C=,基本静载荷CO=,查[2]表可知极限转速13000r/min根据根据条件,轴承预计寿命L'h=10×300×16=48000h(1)已知nI=(r/min)两轴承径向反力:FR1=FR2=1129N根据课本P265(11-12)得轴承内部轴向力FS= 则FS1=FS2=(2) ∵FS1+Fa=FS2 Fa=0故任意取一端为压紧端,现取1端为压紧端FA1=FS1= FA2=FS2=(3)求系数x、yFA1/FR1= = =根据课本P265表(14-14)得e=48000h∴预期寿命足够七、键联接的选择及校核计算1.根据轴径的尺寸,由[1]中表12-6高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79大齿轮与轴连接的键为:键 14×45 GB1096-79轴与联轴器的键为:键10×40 GB1096-792.键的强度校核大齿轮与轴上的键 :键14×45 GB1096-79b×h=14×9,L=45,则Ls=L-b=31mm圆周力:Fr=2TII/d=2×198580/50=挤压强度: =<125~150MPa=[σp]因此挤压强度足够剪切强度: =<120MPa=[ ]因此剪切强度足够键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。八、减速器箱体、箱盖及附件的设计计算~1、减速器附件的选择通气器由于在室内使用,选通气器(一次过滤),采用M18×油面指示器选用游标尺M12起吊装置采用箱盖吊耳、箱座吊耳.放油螺塞选用外六角油塞及垫片M18×根据《机械设计基础课程设计》表选择适当型号:起盖螺钉型号:GB/T5780 M18×30,材料Q235高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235螺栓:GB5782~86 M14×100,材料Q235箱体的主要尺寸::(1)箱座壁厚z=× 取z=8(2)箱盖壁厚z1=× 取z1=8(3)箱盖凸缘厚度b1=×8=12(4)箱座凸缘厚度b=×8=12(5)箱座底凸缘厚度b2=×8=20(6)地脚螺钉直径df =×(取18)(7)地脚螺钉数目n=4 (因为a<250)(8)轴承旁连接螺栓直径d1= =×18= (取14)(9)盖与座连接螺栓直径 d2=()df =× 18= (取10)(10)连接螺栓d2的间距L=150-200(11)轴承端盖螺钉直d3=()df=×18=(取8)(12)检查孔盖螺钉d4=()df=×18= (取6)(13)定位销直径d=()d2=×10=8(14)至外箱壁距离C1(15) (16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。(17)外箱壁至轴承座端面的距离C1+C2+(5~10)(18)齿轮顶圆与内箱壁间的距离:> mm(19)齿轮端面与内箱壁间的距离:=12 mm(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm(21)轴承端盖外径∶D+(5~5.5)d3D~轴承外径(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.九、润滑与密封1.齿轮的润滑采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。2.滚动轴承的润滑由于轴承周向速度为,所以宜开设油沟、飞溅润滑。3.润滑油的选择齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。4.密封方法的选取选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为轴承盖结构尺寸按用其定位的轴承的外径决定。十、设计小结课程设计体会课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。十一、参考资料目录[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版

135 评论

毛的惊喜

要看重量了,你说的太模糊,还有很多参数呢。在驱动功率一定的条件下,驱动轮半径越大,速度越快。V=ωR=2π*nR/60 ,n为电机额定转速,R为轮缘半径。地面摩擦力f=μG, μ为驱动轮表面材料与地面的动摩擦因素,G为驱动轮所承受的压力。 一般过程是,先设计轮子,选材料,确定轮子直径(这些都是粗选)。比如说,市面上能买到一种直径120mm的橡胶轮,查手册,知道摩擦系数μ=,如果车重50Kg,你用两个轮子(后面再加个万向轮),那么每个轮子摩擦力f=*50/2=;轮子承受的转矩就是 T=fR=*6=*cm。如果你选用2HDA永磁直流减速电机,现有参数如下:型 号 ZGA37k 电 压 12V功 率 20W 30W转 速 130r/min 150r/min力 矩 15kg·cm 17kg·cm减速比 1:40 1:35看转矩,这两个都能用,即使超过额定转矩,也可以用,只不过如果电机质量一般的话(国产电机),齿轮箱的铜齿轮会消耗很快(齿都能被磨成平的)。然后看你要的运行速度了,根据转速自己换算单位算吧…… 对机器人制作感兴趣的可以交流

326 评论

L趣多多

这款机械手使用的是TT直流减速电机。直流减速电机的优点就是控制简单,不足就是转动角度控制不精确。为了精确控制机械手的张开/闭合以及抬升/放下等动作,我们在两个活动关节的地方,为电机增加了两个光电码盘。当码盘转动时,每两个黑白辐条经过光电反射传感器,传感器的OUT输出端就产生一个脉冲。我们对产生的脉冲进行计数,就可以知道这个关节的电机转动了多少度,即能换算出机械手的动作范围。信号输出:红色:VCC;白色:OUT;黑色:GND。对于对抬升/下降角度要求不高的场合,我们还设置了两个限位开关,只要机械手抬升或下降到一定位置时,碰触开关就会闭合,这样“红色”和“黑色”端口就会短路。更多资料,请见:

260 评论

阳光的玖零

1、首先,减速电机的型号选择与减速比有关,已知输送带速度,可以求得输送带滚轮回转数,但还需要已知滚轮的直径,输送带滚轮回转数=输送带速度/(滚轮直径*);再求出减速机出力轴回转数=输送带滚轮回转数*(铁轮齿数/减速机齿数);则减速比=减速机出力轴回转数/入力轴转数(ps:入力轴转数参照下面齿轮减速电机标准规格性能表,一般是1450rpm),这样确定了减速比。2、其次,减速电机的型号选择与安装方式有关,根据减速电机所配用的机械确定是卧式安装抑或立式安装,根据安装方式不同大体有以下两种类型(gh卧式以及gv立式):3、再次,减速电机的型号选择与电机功率、出力轴轴长有关,一般中型减速电机有75w/100w/200w/400w/750w/1500w/2200w/3700w,大型减速电机有3700w/5500w/7500w/11000w/15000w,依据所使用的机械条件选择功率与出力轴长度,一般有18轴、22轴、28轴、32轴、40轴、55轴、60轴等,轴长单位为mm。4、最后,依照安装方式、减速比、功率、轴长才确定了型号,比如gh(卧式)22(轴长)-400(功率)-60(减速比)。在有已知数据的情况下就需要你自己计算了。

262 评论

相关问答

  • 直流牵引电动机毕业论文

    直流电机优点 1、可以实现平滑而经济地调速。 2、不需要其他设备的配合,只要改变输入或励磁电压电流就能实现调速。 3、直流电机的转矩比较大。 直流电机缺点: 1

    秋水伊人ying 4人参与回答 2023-12-10
  • 串联型直流稳压电源毕业论文

    1.概述1.1课题名称:串联型直流稳压电源1.2设计目的和要求:设计并制作用晶体管、集成运算放大器电阻、电阻器、电容组成的串联型直流稳压电源。指标:1、输入电压

    活性炭1986 9人参与回答 2023-12-10
  • 直流电机调速毕业论文结论

    他励直流电动机有三种调速方法1 、降低电枢电压调速 ——基速以下调速2 、电枢电路串电阻调速——3 、弱磁调速——基速以上调速各种调速成方法特点:1 、降低电枢

    wisteria1221 3人参与回答 2023-12-09
  • 基于直流电机调速毕业论文

    液压伺服系统设计 液压伺服系统设计 在液压伺服系统中采用液压伺服阀作为输入信号的转换与放大元件。液压伺服系统能以小功率的电信号输入,控制大功率的液压

    shaaaronzy 5人参与回答 2023-12-10
  • 无刷直流电机毕业论文

    人类社会文明的进步,急迫需要社会工业化程度的加速。社会工业化发展的动力和加速度只能依赖电气工程自动化技术的迅速发展和进步。下面是我为大家整理的电气工程及其自动化

    爱吃牛蛙的鱼 5人参与回答 2023-12-07