• 回答数

    4

  • 浏览数

    264

疯*草莓
首页 > 职称论文 > 电磁学的发展史论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

初记装饰

已采纳

电磁,物理概念之一,是物质所表现的电性和磁性的统称。如电磁感应、电磁波等等。电磁是丹麦科学家奥斯特发现的。电磁现象产生的原因在于电荷运动产生波动,形成磁场,因此所有的电磁现象都离不开磁场。电磁学是研究电磁和电磁的相互作用现象,及其规律和应用的物理学分支学科。麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术,深刻地影响着人们认识物质世界的思想。电磁是能量的反应是物质所表现的电性和磁性的统称,如电磁感应、电磁波、电磁场等等。所有的电磁现象都离不开磁场;而磁场是由运动电荷产生的。运动电荷可以产生波动。其波动机理为:运动电荷e运动时,必然受到其毗邻e地阻碍,表现为运动电荷带动其毗邻1向上运动,即毗邻随同运动电荷e一起向上运动;当毗邻1向上运动时,必然受到其自身毗邻1地阻碍,表现为毗邻1带动其自身毗邻向上运动,即毗邻2随同毗邻1一起向上运动。这样以此向前传播,形成波动。显然,真空中这种波动的传播速度为光速。

147 评论

牛牛1223

我国古代和古希腊,人类从生产实践和日常生活中便了解到电和磁的一些现象和知识.:春秋时代(公元前六百多年)十三世纪前后.欧洲学术复兴.通过实验研究自然规律蔚然成风.当时得到磁学实验,发现了磁石有两极,并命名为N极和S极,并通过实验证实了异性磁极相吸,同性磁极相斥.一根磁针断为两半时.每一半又各自成为一根独立的小磁针.但这股实验风气,立即遭到教廷中那些僧侣的反对,被压了下去.电和磁的研究又进入了停顿期.十六世纪.英国:吉尔伯特:发现了电和磁有一些不同的性质.制作了第一只实验用的验电器1660年,德国工程师盖利克,发明了第一台较大的摩擦起电机,使较大量电荷的获得成为可能.1729年,英国:格雷:发现了导体和绝缘体具有不同的导电特性,这为电荷的输运奠定了基础.1733年,法国:杜费:发现了两种性质完全不同的电荷.1745年:荷兰:物理学家穆欣布罗克:发明了莱顿瓶,为电荷的储存提供了有效的手段,也为电的进一步研究提供了条件.1747年:美国:富兰克林:在杜费的基础上,引入了正电和负电的规定,为定量研究电现象提供了一个基础,具有重大的意义.他还认为.摩擦的作用是使电从一个物体转移到另一物体,而不是创造电荷;任何一与外界绝缘的体系中,电的总量使不变的.这就是通常所说的电荷守恒原理.电荷的获得、储存和传递为定量研究电现象提供了充分的条件.在认识了电荷分为正负两种,同性相斥异性相吸后,人们很快便转向研究电荷之间相互作用利的定量规律.1750年,德国:埃皮诺斯:发现了两电荷之间的相互作用力随其距离的减小而增大的现象,但他没有深入的研究下去给出定量的规律.1766年:德国:普里斯特利:通过一系列实验证明,带电的空心金属容器内表面上没有电荷,而且对内部空间没有任何电力作用,他做了猜测,认为电荷之间的作用力与万有引力相似,即与他们之间距离的平方成反比.但他仅仅停留在猜测阶段.1769年:英国:罗宾逊:他通过实验测出两个同种电荷之间的排斥力与距离的次方成反比,他进一步猜想正确的应当使平方反比关系.但他和普里斯特利的工作都没有受到当时科学界的足够重视.1785年,法国:库仑:设计了精巧的扭秤实验,才直接测定了两个静止的同种点电荷之间的斥力与他们之间距离的平方成反比,与他们的电量乘积成正比.经过不断的探索,他又用电扭摆实验对吸引力测出了相同的结果.至此,库仑定律得到了世界公认,从而开辟了近代电磁理论研究的新纪元.(值得一提的是:在此之前1773年,英国科学家卡文迪许用数学方法得出了类似关系,但他得成果未公开发表,一直到1879年,才由英国物理学家麦克斯韦整理.注释出版了这些手稿)1800年,意大利:伏打:制成了伏打电堆,这便是电池得原型.有了稳定得电源,就为人类从研究静电现象过渡到研究动电现象提供了坚实得技术基础.

187 评论

喵喵:小妹

应用及未来的发展方向 是什么啊???

318 评论

小墩子921

电磁学的发展史 电磁学的历史背景 静电和静磁现象很早就被人类发现,由于摩擦起电现象,英文中“电”的语源来自希腊文“琥珀”一词。然而真正对电磁现象的系统研究则要等到十六世纪以后,并且静电学的研究要晚于静磁学,这是由于难以找到一个能产生稳定静电场的方法,这种情况一直持续到1660年摩擦起电机被发明出来。十八世纪以前,人们一直采用这类摩擦起电机来产生研究静电场,代表人物如本杰明·富兰克林[26],人们在这一时期主要了解到了静电力的同性相斥、异性相吸的特性、静电感应现象以及电荷守恒原理。 静电学和库仑定律 库仑定律是静电学中的基本定律,其主要描述了静电力与电荷电量成正比,与距离的平方反比关系。人们曾将静电力与在当时已享有盛誉的万有引力定律做类比,发现彼此在理论和实验上都有很多相似之处,包括实验观测到带电球壳内部的球体不会带电,这和有质量的球壳内部物体不会受到引力作用(由牛顿在理论上证明,是平方反比力的一个特征)的情形类似。其间苏格兰物理学家约翰·罗比逊(1759年)[27]和英国物理学家亨利·卡文迪什(1773年)等人都进行过实验验证了静电力的平方反比律,然而他们的实验却迟迟不为人知。法国物理学家夏尔·奥古斯丁·库仑于1784年至1785年间进行了他著名的扭秤实验[28],其实验的主要目的就是为了证实静电力的平方反比律,因为他认为“假说的前一部分无需证明”,也就是说他已经先验性地认为静电力必然和万有引力类似,和电荷电量成正比。扭秤的基本构造为:一根水平悬于细金属丝的轻导线两端分别置有一个带电小球A和一个与之平衡的物体P,而在实验中在小球A的附近放置同样大小的带电小球B,两者的静电力会在轻导线上产生扭矩,从而使轻杆转动。通过校正悬丝上的旋钮可以将小球调回原先位置,则此时悬丝上的扭矩等于静电力产生的力矩。如此,两者之间的静电力可以通过测量这个扭矩、偏转角度和导线长度来求得。库仑的结论为: “ ……对同样材料的金属导线而言,扭矩的大小正比于偏转角度,导线横截面直径的四次方,且反比于导线的长度…… ” —夏尔·奥古斯丁·库仑, 《金属导线扭矩和弹性的理论和实验研究》 库仑在其后的几年间也研究了磁偶极子之间的作用力,他也得出了磁力也具有平方反比律的结论。不过,他并未认识到静电力和静磁力之间有何内在联系,而且他一直将电力和磁力吸引和排斥的原因归结于假想的电流体和磁流体——具有正和负区别的,类似于“热质”一般的无质量物质。 静电力的平方反比律确定后,很多后续工作都是同万有引力做类比从而顺理成章的结果。1813年法国数学家、物理学家西莫恩·德尼·泊松指出拉普拉斯方程也适用于静电场,从而提出泊松方程;其他例子还包括静电场的格林函数(乔治·格林,1828年)和高斯定理(卡尔·高斯,1839年)。 对稳恒电流的研究 十八世纪末,意大利生理学家路易吉·伽伐尼发现蛙腿肌肉接触金属刀片时会发生痉挛,他其后在论文中认为生物中存在着一种所谓“神经电流”。意大利物理学家亚历山德罗·伏打对这种观点并不赞同,他对这种现象进行研究后认为这不过是外部电流的作用,而蛙腿肌肉只是起到了导体的连接作用。1800年,伏打将锌片和铜片夹在用盐水浸湿的纸片中,得到了很强的电流,这称作伏打电堆;而将锌片和铜片浸入盐水或酸溶液中也能得到相同的效果,这称作伏打电池。伏打电堆和电池的发明为研究稳恒电流创造了条件。 1826年,德国物理学家格奥尔格·欧姆从傅立叶对热传导规律的研究中受到启发,在傅立叶的热传导理论中,导热杆中两点的热流量正比于这两点之间的温度差[29]。因而欧姆猜想电传导与热传导相似,导线中两点之间的电流也正比于这两点间的某种驱动力(欧姆称之为电张力,即现在所称的电动势)。欧姆首先尝试用电流的热效应来测量电流强度,但效果不甚精确,后来欧姆利用了丹麦物理学家汉斯·奥斯特发现的电流的磁效应,结合库仑扭秤构造了一种新型的电流扭秤,让导线和连接的磁针平行放置,当导线中通过电流时,磁针的偏转角与导线中的电流成正比,即代表了电流的大小。欧姆测量得到的偏转角度(相当于电流强度)与电路中的两个物理量分别成正比和反比关系,这两个量实际相当于电动势和电阻。欧姆于1827年发表了他的著作《直流电路的数学研究》,明确了电路分析中电压、电流和电阻之间的关系,极大地影响了电流理论和应用的发展,在这本书中首次提出的电学定律也因此被命名为欧姆定律。 库仑发现了磁力和电力一样遵守平方反比律,但他没有进一步推测两者的内在联系,然而人们在自然界中观察到的电流的磁现象(如富兰克林在1751年发现放电能将钢针磁化)促使着人们不断地探索这种联系。首先发现这种联系的人是丹麦物理学家奥斯特[30][31],他本着这种信念进行了一系列有关的实验,最终于1820年发现接通电流的导线能对附近的磁针产生作用力,这种磁效应是沿着围绕导线的螺旋方向分布的。 安培的电磁学定理 在奥斯特发现电流的磁效应之后,法国物理学家让-巴蒂斯特·毕奥和费利克斯·萨伐尔进一步详细研究了载流直导线对周围磁针的作用力,并确定其磁力大小正比于电流强度,反比于距离,方向垂直于距离连线,这一规律被归纳为著名的毕奥-萨伐尔定律。而法国物理学家安德烈-玛丽·安培在奥斯特的发现仅一周之后(1820年9月)就向法国科学院提交了一份更详细的论证报告[32][33],同时还论述了两根平行载流直导线之间磁效应产生的吸引力和排斥力。在这期间安培进行了四个实验,分别验证了两根平行载流直导线之间作用力方向与电流方向的关系、磁力的矢量性、确定了磁力的方向垂直于载流导体以及作用力大小与电流强度和距离的关系。安培并且在数学上对作用力进行了推导,得到了普遍的安培力公式,这一公式在形式上类似于万有引力定律和库仑定律。1821年,安培从电流的磁效应出发,设想了磁效应的本质正是电流产生的,从而提出了分子环流假说,认为磁体内部分子形成的环形电流就相当于一根根磁针。1826年,安培从斯托克斯定理推导得到了著名的安培环路定理,证明了磁场沿包围产生其电流的闭合路径的曲线积分等于其电流密度,这一定理成为了麦克斯韦方程组的基本方程之一。安培的工作揭示了电磁现象的内在联系,将电磁学研究真正数学化,成为物理学中又一大理论体系——电动力学的基础[34]。麦克斯韦称安培的工作是“科学史上最辉煌的成就之一”,后人称安培为“电学中的牛顿”。 电磁感应现象 英国物理学家迈克尔·法拉第早年跟随化学家汉弗里·戴维从事化学研究,他对电磁学的贡献还包括抗磁性的发现、电解定律和磁场的旋光性(法拉第效应)[35]。 在奥斯特发现电流的磁效应之后的1821年,英国《哲学学报》邀请当时担任英国皇家研究所实验室主任的法拉第撰写一篇电磁学的综述,这也导致了法拉第转向电磁领域的研究工作。法拉第考虑了奥斯特的发现,也出于他同样认为自然界的各种力能够相互转化的信念,他猜想电流应当也如磁体一般,能够在周围感应出电流。从1824年起,法拉第进行了一系列相关实验试图寻找导体中的感应电流,然而始终未获成功。直到1831年8月29日,他在实验中发现对于两个相邻的线圈A和B,只有当接通或断开线圈回路A时,线圈B附近的磁针才会产生反应,也就是此时线圈B中产生了电流。如果维持线圈A的接通状态,则线圈B中不会产生电流,法拉第意识到这是一种瞬态效应。一个月后,法拉第向英国皇家学会总结了他的实验结果,他发现产生感应电流的情况包括五类:变化中的电流、变化中的磁场、运动的稳恒电流、运动的磁体和运动的导线。法拉第电磁感应定律从而表述为:任何封闭电路中感应电动势的大小,等于穿过这一电路磁通量的变化率。不过此时的法拉第电磁感应定律仍然是一条观察性的实验定律,确定感应电动势和感应电流方向的是俄国物理学家海因里希·楞次,他于1833年总结出了著名的楞次定律[36]。法拉第定律后来被纳入麦克斯韦的电磁场理论,从而具有了更简洁更深刻的意义。 法拉第另一个重要的贡献是创立了力线和场的概念,力线实际是否认了超距作用的存在,这些思想成为了麦克斯韦电磁场理论的基础。爱因斯坦称其为“物理学中引入了新的、革命性的观念,它们打开了一条通往新的哲学观点的道路”,意为场论的观念是有别于旧的机械观中以物质为主导核心的哲学观念[14]。 麦克斯韦电磁场理论 詹姆斯·克拉克·麦克斯韦对电磁理论的贡献是里程碑式的[21][37]。麦克斯韦自1855年开始研究电磁学,1856年他发表了首篇专论《论法拉第力线》[38],其中描述了如何类比流体力学中的流线和法拉第的力线,并用自己强大的数学功底重新描述了法拉第的实验观测结果,这部分内容被麦克斯韦用六条数学定律概括。1861年至1862年间,麦克斯韦发表了第二篇电磁学论文《论物理力线》[38],在这篇论文中麦克斯韦尝试了所谓“分子涡流”模型,他假设在磁场作用下的介质中存在大量排列的分子涡流,这些涡流沿磁力线旋转,且角速度正比于磁场强度,分子涡流密度正比于介质磁导率。这一模型能很好地通过近距作用之说来解释静电和静磁作用,以及变化的电场与磁场的关系。更重要的是,它预言了在电场作用下的分子涡流会产生位移,从而以势能的形式储存在介质中,这相当于在介质中产生了电动势,这成为了麦克斯韦预言位移电流存在的理论基础。此外,将这种介质理论应用到弹性波上,可以计算求得在真空或以太中横波的传播速度恰好和当时已知的光速(斐索,1849年)非常接近,麦克斯韦由此大胆预言: “ 我们难以排除如下的推论:光是由引起电现象和磁现象的同一介质中的横波组成的。 ” —詹姆斯·克拉克·麦克斯韦, 《论物理力线》 1865年麦克斯韦发表了他的第三篇论文《电磁场的动力学理论》[38],在论文中他坚持了电磁场是一种近距作用的观点,指出“电磁场是包含和围绕着处于电或磁状态的物体的那部分空间,它可能充有任何一种物质”。在此麦克斯韦提出了电磁场的方程组,一共包含有20个方程(电位移、磁场力、电流、电动势、电弹性、电阻、自由电荷和连续性方程)和20个变量(电磁动量、磁场强度、电动热、传导电流、电位移、全电流、自由电荷电量、电势)。这实际是8个方程,但到1890年才由海因里希·鲁道夫·赫兹给出了现代通用的形式[39],这是赫兹在考虑了阿尔伯特·迈克耳孙在1881年的实验(也是迈克耳孙-莫雷实验的先行实验)中得到了以太漂移的零结果后对麦克斯韦的方程组进行的修改。1887年至1888年间,赫兹通过他制作的半波长偶极子天线成功接收到了麦克斯韦预言的电磁波,电磁波是相互垂直的电场和磁场在垂直于传播方向的平面上的振动,同时赫兹还测定了电磁波的速度等于光速。赫兹实验证实电磁波的存在是物理学理论的一个重要胜利,同时也标志着一种基于场论的更基础的物理学即将诞生。爱因斯坦盛赞法拉第、麦克斯韦和赫兹的工作是“牛顿力学以来物理学中最伟大的变革”,而“这次革命的最大部分出自麦克斯韦”。

201 评论

相关问答

  • 研究遗传学的发展史论文

    遗传携带者的检出 遗传携带者(genetic carrier)是指表型正常,但带有致病遗传物质的个体。一般包括: ①隐生遗传杂合子;②显性遗传病的未显者;③表型

    沁水冰心 4人参与回答 2023-12-06
  • 天文学发展史论文

    浅论天文 天文学历史 天文学的起源可以追溯到人类文化的萌芽时代。远古时代,人们为了指示方向、确定时间和季节,而对太阳、月亮和星星进行观察,确定它们的位置、找出它

    小璇璇APPLE 3人参与回答 2023-12-08
  • 物理学的发展史论文

    这个题目太扯了!500字就能写出物理学发展史?光罗列一下对物理学作出杰出贡献的物理学家,500字都不够用的。要写物理学发展史,500万字起,你别嫌多,还不打折!

    maggielj520 3人参与回答 2023-12-07
  • 电磁学的发展史论文

    电磁,物理概念之一,是物质所表现的电性和磁性的统称。如电磁感应、电磁波等等。电磁是丹麦科学家奥斯特发现的。电磁现象产生的原因在于电荷运动产生波动,形成磁场,因此

    疯*草莓 4人参与回答 2023-12-08
  • 数学发展史论文300

    数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论

    茶痴吃茶去 4人参与回答 2023-12-06