七月紫梦
结构方程简介 不论是因果关系的证明或量表内在结构的确认,均有赖于事前研究变项的性质与内容的厘清,并清楚描述变项的假设性关系,由研究者提出具体的结构性关系的假设命题,寻求统计上的检证。尤其在社会与行为科学领域所探究的变项结构性关系,大多是由一群无法直接观察与测量的抽象命题(或称为构念)所组成,需获得严谨的统计数据来证明构念的存在,此点也是SEM的主要长处之一(Bollen, 1989)。(三)模型比较分析(modeling analysis and comparison)SEM 的第三个主要特征,是模块化分析的应用。利用先前所讨论的假设检定与结构化验证功能,结构方程模式可以将一系列的研究假设同时结构成一个有意义的假设模型(hypothetical model),然后经由统计的程序对于此一模型进行检证。不同的模型之间,则可进行竞争比较。在社会与行为科学的研究中,往往相同的一组变项会因为理论观点的不同,对于变项之间的假设关系亦会有不同的主张,因此,研究者可以基于不同的理论与假设前提,发展出不同的替代模型(alternative model),进行模式间的竞争比较。此一利用假设模型进行统计检证的优点,大大改善了传统路径分析在多组回归等式进行同时估计的限制,也提高了分析的应用广度。Jöreskog & Sörbom(1996)指出SEM的模块化应用策略有三个层次,第一是单纯的验证(confirmatory),也就是针对单一的先验假设模型,评估其适切性,称为验证型研究;第二是模型的产生(model generation),其程序是先设定一个起始模型,在与实际观察资料进行比较之后,进行必要的修正,反复进行估计的程序以得到最佳契合的模型,称为产生型研究;第三是替代模型的竞争比较,以决定何者最能反应真实资料,称为竞争型研究。Maccallum & Austin(2000)从文献整理中发现,以单纯的验证与模型产生为目的SEM研究约占20%与25%,涉及竞争比较的SEM研究则有55%。 Maccallum & Austin(2000)认为模型产生型SEM研究有其限制存在,尤其在模型修饰的过程中,往往过度依赖资料所呈现的讯息而忽略理论的意义,过度滥用修正程序以获得对自己有利的结果,是相当危险的作法,使用者应小心为之。相对之下,竞争比较的研究则有较为强固的理论基础,修饰问题较少,而可以发挥较大的弹性与说服力。结构方程模式的此一模块化分析功能,最主要的一个贡献,即是为社会与行为科学研究界对于抽象理论进行实证的检验提供了一套严谨的程序,使得研究者可以透过统计的分析去检验所提出的理论模型(theoretical model)。此举将假设检定的运用,自单一参数的考验提升至理论模型整体考验的更高层次,突破了传统上计量技术对于理论模型欠缺整合分析能力的困境。二、结构方程模式的特性Hoyle(1995)指出,结构方程模式可视为不同统计技术与研究方法的综合体。从技术的层面来看,SEM并非单指某一种特定的统计方法,而是一套用以分析共变结构的技术的整合。SEM有时以共变结构分析(covariance structure analysis)、共变结构模型(covariance structure modeling)等不同的名词存在,有时则单指因素分析模式的分析,以验证性因素分析(CFA)来称呼之;有时,研究者虽然以SEM的分析软件来执行传统的路径分析,进行因果模型(causal modeling)的探究,但不使用SEM的名义,事实上这也是SEM的重要应用之一。不论是用何种名词来称呼,这些分析技术具有一些基本的共同特质(Kline, 1996, pp. 8-13),说明如下。(一)SEM具有理论先验性SEM分析最重要的一个特性,是它必须建立在一定的理论基础之上,也就是说,SEM是一个用以检证某一先期提出的理论模型(priori theoretical model)的适切性的一种统计技术。这也是SEM被视为是一种验证性(confirmatory)而非探索性(exploratory)统计方法的主要原因。SEM的分析过程中,从变项内容的界定、变项关系的假设、参数的设定、模型的安排与修正,一直到应用分析软件来进行估计,其间的每一个步骤都必须要有清楚的理论概念或逻辑推理作为依据。从统计的原理来看,SEM也必须同时符合多项传统统计分析的基本假设(例如线性关系、常态性)以及SEM分析软件所特有的假设要件,否则所获得的统计数据无法采信。
Angelcat930
结构方程模型的初衷在于针对潜变量之间关系进行建模。例如,智商,情商,成功这三个潜变量之间到底是何种关系?但是它们三个本身不可直接测量,于是需要通过一定手段对它们进行测量。你当然可以先通过量表各自“估计”这三个潜变量,再建立三者间的模型。结构方程模型实现了这两步的一体化,优势在于,估计的过程中充分考虑了潜变量间的关系。而分开两步是不能做到的。当然这是否真的是优势有待商榷。结构方程模型的估计方法主要有三类:第一种是协方差分析法,第二种是偏最小二乘法,第三种是贝叶斯法。协方差分析认为,潜变量间的关系反映在可测变量的协方差关系中,由模型产生的协方差结构和真实协方差结构应一致(理想情况)。于是以协方差矩阵的差异作为优化准则。偏最小二乘的想法为:考虑潜变量结构的前提下,“最好”的潜变量应该与对应可测变量“最接近”。于是,其优化准则本质是OLS。贝叶斯也是对潜变量假定先验,然后用MCMC直接对潜变量进行抽样,既然潜变量的样本都有了,结构方程模型也就退化为了一堆回归。国内很多文献把结构方程模型等同于上述第一种估计方法,这是一种误区。每一种方法都有各自的检验和评价手段。三种方法孰优孰劣?难以确定,只能说,各有各的优势和不足。另外,结构方程模型定位是验证性分析,这需要大量背景知识支撑,否则建模必然失败。近年来,发展了探索性的结构方程模型,题主不妨找找cnki。
纳兰美黛子
结构方程模型主要用于研究多个潜变量之间的影响关系,能够处理多个因变量,同时考虑各因子之间的关系。如果要分析,可以使用SPSSAU在线完成分析,操作非常简单,输出标准格式结果和结构图,针对每一步分析还会提供智能分析建议。
分析结果
结构图
冰心草堂123
结构方程如下:
一、基础解释
结构方程模型是社会科学研究中的一个非常好的方法。该方法在20世纪80年代就已经成熟。“在社会科学以及经济、市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接观测的变量(即潜变量)。
这些都是传统的统计方法不能很好解决的问题。20世纪80年代以来,结构方程模型迅速发展,弥补了传统统计方法的不足,成为多元数据分析的重要工具。结构方程式模型假定在一组潜在变量中存在因果关系,这些潜在变量可以分别用一组可观测的变量表示。
二、介绍
这一组潜在变量分别是那些观测变量中的某几个的线性组合。在技术上,通过验证观测变量之间的协方差,可以估计出这个基本线性回归模型的系数值,从而在统计上检验所假设的模型对所研究的过程是否合适,也就是检验观测变量的方差协方差矩阵与模型拟合后的引申方差协方差矩阵的拟和程度,如果证实所假设的模型合适,就可以得出结论。
三、结构方程模型的优点
结构方程分析可同时考虑并处理多个因变量。在回归分析或路径分析中,就算统计结果的图表中展示多个因变量,其实在计算回归系数或路径系数时,仍是对每个因变量逐一计算。所以图表看似对多个因变量同时考虑,但在计算对某一个因变量的影响或关系时,都忽略了其他因变量的存在及其影响。
论文的结构主要是以下几种: (1)论文标题。论文标题的文字需要概括精练,一般不可以超过15-20个字,论文标题要居中(单行),论文标题上行比下行题目长(双行);
论文框架由以下几部分组成: 1、介绍 简要地总结论文主题,说明为什么这个主题有价值,也许还可以概述一下你的主要结果。 2、背景信息(可选) 简短地介绍背景信息是
这些沙雕都在回答什么,那个应该是效应值,直接的或者间接的。可以看看这个了解。看看有帮助吗
论文框架由以下几部分组成: 1、介绍 简要地总结论文主题,说明为什么这个主题有价值,也许还可以概述一下你的主要结果。 2、背景信息(可选) 简短地介绍背景信息是
结构方程模型主要用于研究多个潜变量之间的影响关系,能够处理多个因变量,同时考虑各因子之间的关系。如果要分析,可以使用SPSSAU在线完成分析,操作非常简单,输出