• 回答数

    3

  • 浏览数

    343

Lisa艳艳
首页 > 毕业论文 > 随机游走算法毕业论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

奶油花生AAA

已采纳

王家华

(西安石油学院计算机科学系,西安710065)

张团峰

(西安石油学院基础科学部,西安710065)

黄沧钿

(西安石油学院计算机科学系,西安710065)

摘要本文用随机游走模型模拟了频繁连接和分支的辫状河道的二维分布。作为渗透率、孔隙度和泥质含量三个参数的线性组合,二维网格数据PP(i,j)可用来区分网格节点的类型:河道、泥岩或介于河道与泥岩之间的砂岩。使用了分数维布朗运动来模拟油井中这三个参数的二维分布。首先定义河道中心线,然后再考虑河道边界。在文末,描述了辽河油田的有100口井的沈-84地区的一个研究实例。

关键词随机游走模拟实现辫状河道

1引言

研究区位于三角洲前扇和三角洲平原之间的子区域,沉积物来自于东北方向,由辫状河道和介于河道与泥岩之间的砂岩组成。由于三角洲扇沉积时弱的水动力条件,故位于河道和点砂坝之间的砂岩很少,且辫状河道是研究区域的主骨架。

在储层中,单独河道砂体有鞋带状和扁豆状两种形态。所有的辫状河道呈东北到西南方向展布。由于河道宽度小,在沉积过程中河道频繁地发生分支,所以这些辫状河道常常分路迂回、相互连接、相互交叉。

储层的油藏物理参数变化很大。例如,在相同的层,纵向和横向的渗透率可以相差10~100倍。

2储层油藏物理参数的条件模拟

由于储层强烈的非均质性,可以用分数维布朗运动来模拟地球物理参数的分布。即可用二维随机场{Z(x);x∈D)来建立地球物理参数模型,并假设随机场的增量满足从一种趋势移走的高斯过程。在研究中,使用了一次趋势面。期望值EZ(x)选择如下:

fT(x)β=β1+β2x1+β3x2

式中:βT=(β1,β2,β3)。

考虑滤掉这种趋势面的随机过程:

Y(x)=Z(x)-fT(x)β

式中:Y(x)为EY(x)=0的平稳高斯过程。令DL为研究区域中的一个大小为(2n+1)×(2n+1)的网格系统,N0=(2n+1)×(2n+1)-1,D0代表位置i从DL移出之后DL的剩余部分。于是,此条件概率的分布就是高斯型的:

数学地质和地质信息

式中: ;γ是模型的变异函数,γi是一个大小为1×(N0+1)的向量,其第j个分量为-γ|i-j|,当j∈D0时,向量的第(N0+1)个分量为1; 是一个大小为(N0+1)×(N0+1)的矩阵,其元素为-γ|k-l|,k,l∈D0,除了(N0+1)×(N0+1)位置处的元素为0外,最后一行和最后一列元素为1;Z*是一个大小为1×(N0+1)的向量,其分量为Zj;j∈D0,最后分量值为0。

渗透率、孔隙度和泥质含量的实现可通过序贯窗口层次算法获得,并可用它来作模拟辫状河道的输入。实际过程如下。

3辫状河道的条件模拟

根据研究区域的储层特征,用前面的三个地球物理参数来确定辫状河道的位置。当深度增加时,由于地球物理参数会变小,于是,为了确定河道,就应用深度来校准这些值。

令Per、Por、Sh和H分别代表渗透率、孔隙度、泥质含量和层深。可以用一个区分值PP来确定一个二维点是否属于一个河道:

数学地质和地质信息

式中:α1、α2、a3是由地质经验确定的非原始系数,且依赖于深度H。若PP≥Q,则此位置属于一个河道;若PP<Q,则此位置属于介于河道和泥岩之间的砂岩;若Per=0,则此位置属于泥岩。在这里,值Q是一个由地质经验确定的值,且也依赖于深度H。

基于公式(1),可以利用Por,Per,Sh的网格数据得到网格数据{PP(i,j);j=1,…,Ny;i=1,…,Nx)。Nx是x方向的网格节点数,Ny是y方向的网格节点数。PP值可作为模拟河道位置的输入,当要确定河道宽度时会再一次考虑它。

下面讨论模拟辫状河道位置的过程。第一,模拟每一河道的中心线;第二,通过加宽河道中心线来得到河道的边界。此过程可保证被模拟的河道以1的概率穿过所观察的井中河道。河道的连接和分支遵循地质经验。

辫状河道位置的模拟

核心技术是辫状河道位置的模拟。首先,在研究区域里搜索每一河道的出发点,然后用随机游走模型来找出河道中心线。其结果是一系列的网格节点,在这些节点中,开始点就是第一节点。

在这里要考虑的主要因素有:①井的位置;②由井中数据(河道、泥岩及介于河道与泥岩之间的砂岩)所表示的相分布;③PP值。以这些为基础,可以确定所有可能的河道,同时也考虑了辫状河道的连接与分支。

首先,把在每一井中的有关的相信息分配到距井位置最近的一个网格节点。一个整数KG(i,j)可能会有下面几个可能的值:

数学地质和地质信息

河道开始位置

令DL是一个在研究区域的网格系统(图1),Δx和Δy包含若干个网格间距(在这里是5个),是两个窄带的相应宽度。从(i,j)开始,在沿着东西方向的一个窄带中,i从1到Nx,j从Ⅳj到Ny搜索。假如在KG(i1,j1)等于3的网格节点发现了第一个位置(i1,j1),并且在KG(i2,j2)等于2或1的网格节点获得下一位置(i2,j2),那么就可以认为i1是第一个河道开始点的x坐标。

同理,从(i,j)点开始,在沿着南北方向的另一个窄带中,i从N,到Nx,j从1到Ny搜索。假如在KG(i3,j3)等于3处找到了第一个位置(i3,j3),这样就能够把j3-Nj标记为一个河道开始位置的y坐标。

图1寻找河道初始位置

图2网格节点的转移

在研究区域内,全部可能河道的开始点可以根据前面的过程依次找到。

可以用二维随机游走模型来确定一个网格节点是否向a、b和c中的一个方向转移(见图2)。

第一个河道的流动和分叉位置的条件模拟

设当前位置为Q(i,j),下一点的确定就依赖于a、b、c三方向之一。

(1)方向a

沿着方向a从位置Q(i,j)出发找到最近的观察位置(ia,j),在这里,ia表示相应的最近的位置。令Λ表示“找到一个位置(i,j+1),它满足KG(i,j+1)=3”。假如P〔Q(i,j)→Q(i+1,j)代表转移概率,则有

数学地质和地质信息

式中:DA=|ia-i|×dx

;Dx=(Nx-1)×dx;dx表示x方向上两个相邻网格节点间的距离;maxPP是网格系统中PP值的最大值;α1、α2、α3、α4是由地质经验来确定的非负值,且0<αi<1,i=1,2,3,4。

假如沿着方向a找到了下一点,就令KG(i+1,j)=3,否则就考虑方向b。

(2)方向b

方向b是向左下方的,迁移概率为P〔Q(i,j)→Q(i+1,j+1)〕:

数学地质和地质信息

式中: ;dx表示在x方向上两个相邻网格节点间的距离。Dy-(Ny-1)×dy;dy表示在y方向上两个相邻网格节点间的距离。β1,β2,β3,β4是由地质经验来确定的非负值,且0<βi<1,i=1,2,3,4。

假如一个河道的实现正向方向b转移,也就是Q(i,j)→Q(i+1,j+1),则令KG(i+1,j+1)=3,否则就考虑方向c。

(3)方向c

如果转移方向既不是a也不是b,那一定是c,其通路就是从Q(i,j)到Q(i,j+1),同时,令KG(i,j+1)=3。

重复执行前面的过程直至KG(i,j)=一1,这样就模拟出了第一个河道的位置。

所有其他可能河道的模拟

为了模拟其他河道的位置,KG(i,j)的值就要作如下改变:

数学地质和地质信息

在下面几部分将会考虑河道的连接和分支。

(1)方向a

令位置Q(i,j)向方向a转移,直到找到第一个河道的位置是(ia,j)为止,并且A=“从位置(i,j+1)向方向a找到一个位置(i,j+1),它满足KG(i,j+1)=3,并且i″满足i<i″<i′,KG(i″,j+1)=1或KG(i″,j+1)=2″。P〔Q(i,j)→Q(i+1,j)表示转移概率,这样就有

P〔Q(i,j)→Q(i+1,j)〕=

数学地质和地质信息

式中:DA=|ia一i|×dx,Dx与dx和前面一样有相同含义;maxPP是网格系统中PP值的最大值;γ1,γ2,γ3,γ4,γ5,γ。是由地质经验来确定的非负值,且

0<γi<1,i=1,2,3,4,5,6;

γ1+γ2≤1,γ3+γ4≤1,γ5+γ6≤1;

γ1≥γ3≥γ5,γ2≥γ4≥γ6。

显然,假如最近的搜索位置属于一个河道,则最近搜索距离就越小,转移概率就越大。因此,河道将以更大的概率相互连接。条件γ1≥γ3≥γ5及γ2≥γ4≥γ6可以表示这样的特征:在河道间观测到泥岩,则河道的分支机会就会增加。

假如河道轨迹是从Q(i,j)到Q(i+1,j),当位置Q(i+1,j)不是河道位置时就令KG(i+1,j)等于4,否则就令KG(i+1,j)等于5。如果河道轨迹不是从Q(i,j)到Q(i+1,j),就要考虑方向b。

(2)方向b

令位置Q(i,j)向左下方向转移直到找到标记为(ia,jb)的第一个位置。如果KG(i+1,j)=1或=2,并且Q(i,j)没有转移到Q(i+1,j+1),这样从Q(i,j)到Q(i+1,j+1)的转移概率就是

数学地质和地质信息

式中: ;Dx,Dy,dx及dy的含义同前面;δ1,δ2,δ3,δ4,δ5,δ6是由地质经验确定的非负参数,且

0<δi<1,i=1,2,3,4,5,6;

δ1+δ2≤1,δ3+δ4≤1;δ5+δ6≤1;

δ1≥δ3≥δ5,δ2≥δ4≥δ6。

因为河道轨迹是从东北到西南方向伸展的,参数δi及γi必须满足下面的关系:

δi>γi,i=1,2,3,4,5,6

如果河道轨迹是向着方向b的,也就是Q(i,j)→Q(i+1,j+1),那么就令

数学地质和地质信息

否则,就要考虑方向c。

(3)方向c

假如河道轨迹既不沿方向a也不沿方向b,那一定是沿方向c,也就是Q(i,j)→Q(i,j+1)。同时,必须用(2)式来修改KG(i,j+1)的值。

为了找到更多的分支河道,就重复执行前面的过程直到KG(i,j)=-1,此过程的循环参数依赖于研究区域的实际地质特征。总体看来,搜索到的分支河道数越多,河道的连接与分支就越频繁。在研究中,每一河道仅搜索一个分支河道。

其他河道及其分支河道的模拟

可以用同样的方法来找到其他河道及其分支河道。

4河道边界的确定

每一河道的宽度依赖于PP值。PP值越大,河道就越宽。

参数

假如河道轨迹是M→N→L,就应移去位置N。显然这种处理可以简化加宽河道这一过程,但它不会改变每一河道的轨迹(图3)。

图3加宽河道前的预处理

河道边界的确定

河道宽度公式如下:

宽度=Δ1+PP(i,j)×Δ2/maxPP

式中:Δ1是研究区域中河道宽度最小值;Δ2是河道宽度最大值;PP(i,j)是与河道相邻位置的最近的网格节点的PP值(图4)。

5案例研究

本案例研究区域为中国辽河油田的沈-84。

图4加宽河道

在这一区域,使用了100口井的数据,包括如渗透率、孔隙度和泥质含量这样的油藏物理参数信息,以及如河道、泥岩和介于河道与泥岩之间的砂岩这样的相信息。通过分数维布朗运动模型得到了三个地球物理参数的实现。

以这些地球物理参数的模拟为基础,通过随机游走模型可以产生相的实现(图5)。

图5辫状河道模拟的一个实现

该模型的参数通过如下方法来选择:

Nx=Ny=65;Dx=50m,Dy=30m;

α1=,α2=,α3=,α4=;

β1=,β2=,β3=,β4=;

γ1=,γ2=,γ3=,γ4=,γ5=,γ6=;

δ1=,δ2=,δ3=,δ4=,δ5=,δ6=,Δ1=70m,Δ2=50m。

6结论

在三角洲沉积环境中,由辫状河道控制的储层具有极大的非均质性,这是因为河道的宽度较窄且有频繁的连接与分支。描述辫状河道的二维分布是十分重要的。

在本文中,随机游走作为一种二维随机模拟方法,可用来描述辫状河道的分布。这些实现产生了一些重要的辫状河道的特征:频繁发生的河道连接与分支。同时,在模型中也考虑了河道的宽度,并且保留了河道连续性和平滑性。

致谢特别感谢辽河石油管理局地质科学院的郑容植和李焕鹏两位高级工程师的技术支持。

参考文献

[1] new approach to shale management in field scale simulation (10976),1984,447~457.

[2] Fouqqet, and simulation of the geometry of fluriodeltaic 62nd Annual Conference Dallas,Texas,1987,591~599.

[3]Olivier review of stochastic models for petroleum ~506.

288 评论

Herculeses

随机漫步理论(Random Walk Theory)——反技术图表派的基础 随机漫步理论(Random Walk Theory)认为,证券价格的波动是随机的, 像一个在广场上行走的人一样,价格的下一步将走向哪里, 是没有规律的。 证券市场 中,价格的走向受到多方面因素的影响。 一件不起眼的小事也可能对市场产生巨大的影响。 从长时间的价格走势图上也可以看出, 价格的上下起伏的机会差不多是均等的。

316 评论

斗真山下

随机游走本来是“物理上布朗运动”相关的分子,还是微观粒子的运动形成的一个模型。现在过多的谈到随机游走假说是数理金融中最重要的假设,它把有效市场的思想与物理学中的布朗运动联系起来,由此而来的一整套的随机数学方法成为构建数理金融的基石。(其研究的机理已经在股票研究中应用很广泛) 随机游走模型的提出是与证券价格的变动模式紧密联系在一起的。最早使用统计方法分析收益率的著作是在 1900年由路易·巴舍利耶(Louis Bachelier)发表的,他把用于分析赌博的方法用于股票、债券、期货和期权。在巴舍利耶的论文中,其具有开拓性的贡献就在于认识到随机游走过程是布 朗运动。1953年,英国统计学家肯德尔在应用时间序列分析研究股票价格波动并试图得出股票价格波动的模式时,得到了一个令人大感意外的结论:股票价格没 有任何规律可寻,它就象“一个醉汉走步一样,几乎宛若机会之魔每周仍出一个随机数字,把它加在目前的价格上,以此决定下一周的价格。”即股价遵循的是随机 游走规律。随机游走模型有两种,其数学表达式为 :Y t =Y t-1 +e t ①Y t =α+Y t-1 +e t ②式中:Y t 是时间序列(用股票价格或股票价格的自然对数表示);e t 是随机项,E(e t )=0;Var(e t )=σ 2 ;α是常数项。模型①称为“零漂移的随机游走模型”,即当天的股票价格是在前一天价格的基础上进行随机变动。股票价格差全部包含在随机项 e t 中。模型②称为“α漂移的随机游走模型”,即当天的股票价格是在前一天价格的基础上先进行一个固定的α漂移,再进行随机变动。股票价格差包括两部分,一部分是固定变动α,另一部分也是随机项 e t 。由以上随机游走模型可以看出,证券价格的时间序列将呈现随机状态,不会表现出某种可观测或统计的确定趋势。即证券价格的变动是不可预测的,这恰恰是随机 游走模型所揭示的证券价格变动 规律 的中心思想。那么,随机游走模型下所确定的证券价格的这一变动模式与资本市场的效率性之间是什么关系呢?随机变动的证券价格,不仅不是市场非理性的证据, 而正是众多理性的投资者开发有关信息,并对其做出反映的结果。事实上,如果证券价格的变动是可以预测的,那才真正说明市场的无效率和非理性。也就是说,若 证券市场是有效率的,证券价格应当真正符合随机游走模型。t)=0,而这正是独立随机过程所必须的条件。然而当H≠1/2时,不管t取何值,C(t)≠0。分数布朗运动的这一特征,导致了状态持续性或逆状态持续性。当H>1/2时,存在状态持续性,即在某一时刻t以前存在上升(或下降)趋势隐含着在时刻t以后总体上也存在着上升(或下降)的趋势;反之,当H<1/2 时存在逆状态持续性,即在某一时刻t以前存在上升(或下降)趋势隐含着在时刻t以后总体上也存在着下降(或上升)的趋势进一步地,应用R/S分析法,可以确定信息的两个重要方面,Hurst指数H和平均的周期长度。周期的存在对于进一步的讨论分析具有重要影响。当H≠1 /2时,概率分布不是正态分布;当1/2

331 评论

相关问答

  • 计算机毕业论文实现方法

    四、政府知识管理系统实例分析 下面以由苏州欧索软件公司开发的“Bluten政府知识管理平台”③为主导,结合北京俊和在线网络科技有限公司的知识管理系统④作实例分析

    多好的青年被 6人参与回答 2023-12-07
  • 计算机旅游开发毕业论文

    我自己找资料写太难受了,最后实在不行了就找了六月雪毕业设计网,顺利过了。

    厦门小鱼网 7人参与回答 2023-12-07
  • 随机系统毕业论文

    毕业设计(论文)原文、开题报告、任务书、中期检查、答辩记录及成绩评定表等过程材料与完成情况进行抽查。 一、任务书 1、任务书封面格式不统一; 2、指导教师下达任

    薇宝儿521 6人参与回答 2023-12-05
  • 计算机算法毕业论文答辩

    1、技术含量。以本科生为例,如果题目涉及到的是进销存管理系统,那么当前的进销存管理系统如何面对大数据时代的要求,以及能否满足互联网业务的需求,这些都是可能会面临

    特别爱吃大蒜 5人参与回答 2023-12-10
  • 毕业论文计算机作图方法

    只要是你用office做出来的图,都可以直接放到word里

    小妮子乖乖81 7人参与回答 2023-12-10