周周-Sophia
—— 管壳式换热器也称列管式换热器,是一种以封闭在壳体中管束的壁面作为传热面的间壁式换热器。管壳式换热器具有结构坚固、适应性强、选材广、易于制造及成本低等优点,在炼油、石油化工、医药、化工以及其他工业中广泛运用,他适用于冷却、冷凝、加热、蒸发和废热回收等各方面[1]。本文通过对影响传热系数的因素- 换热器结构、流体物理性质和污垢热阻等进行分析,以便在设计过程中合理调整结构参数使换热器提高化热性能,在换热器使用过程中合理维护防止换热性能恶化。 1· 传热系数 传热速率方程式[2]: Q = AKΔtm( 1) 式中: Q———传热速率( 冷、热负荷) ,W A———传热面积,m2 K———总传热系数,W· ( m2·℃) - 1 Δtm———平均温差,℃ 在传热量Q 和冷、热流体温差确Δtm的情况下,设法提高传热系数K 可减小传热面积A,即减小换热器的结构尺寸,这一点在工程应用上有重要经济意义。 在绝大部分的化工操作中,两个传热流体是不相互混合的,两流体间的传热是通过管壁进行的。热流体向冷流体传递热量需经过三个过程。即热量通过层流底层的传热过程,热量通过间壁传热的过程,以及热量通过冷流体的层流底层的传热过程[1]。在化工操作过程中,随着时间的推移,作为冷、热流体的介质往往会在传热间壁的两边结垢,这种污垢的存在会影响传热。由于污垢的厚度和导热系数难以获得,因此,在工程一般用一个系数( 污垢热阻) 来计污垢对传热的影响。故传热系数可以用下式计算: 2 ·传热系数的影响因素 Nusselt 准数关系式:对于一定的传热面和流动情况,当Re 和Pr 确定后,强制对流式的Nu 也就被决定。强制湍流下对流传热系数的准数关系式[2]:2. 1 列管换热器结构 对流传热是流体主体中的对流和层流底层中的热传导的复合现象。任何影响流体流动的因素( 引起流动的原因、流动型态和有无相变化等) 必然对对流传热系数有影响[2]。Reynolds准数表示惯性力和粘滞力之比,是表征流动状态的准数。 2. 1. 1 换热管规格 换热管可选择外径规格在Φ14 ~ Φ57 mm 之间标准管。由于小直径换热管具有单位体积传热面积大,换热器结构紧凑,金属耗量少,传热系数高的特点,在换热器结构设计中,对于管程介质清洁、不易结垢的介质,采用小管径管束能有效增加换热面积。在换热面积相同条件下,采用Φ19 mm 管束比采用Φ25 mm 管束提高流体流速约30%,从而增加了湍流程度。 2. 1. 2 管子布局 标准换热器设计规范中规定了四种排列角度。30°和60°排列紧凑,相同壳径下可获得较大传热面积,具有较高的换热系数,但压降较高,且不利于机械清洗。而45°和90°排列适用于需要机械清洗的场合,且压降较小。从传热效果及压降角度分析90° > 45° > 60° > 30°,其中30°和45°使用较多,采用30°排列可以比45°多排列约17%的换热管[3]。根据换热器设计规范要求,管间距t( mm) 不应小于1. 25 倍管外径,常用的管间距有25 mm( Φ19) 和32 mm( Φ25) 。 2. 1. 3 管程数 为增加换热面积,必须增加换热管数量N,而介质在管束中的流速随着换热管的增加而下降,结果反而是流体的传热系数降低,故增加换热管不一定达到所需换热要求。因此要保持流体在换热管束中较大流速可将管束分成若干程数,使流体依次通过各程换热管,以增加流体流速,提高对流传热系数[4]。换热器常用推荐流速范围见表1。 2. 1. 4 壳程内径 换热器通常采用多管程结构,壳程内径可根据经验计算: 2. 1. 5 折流板 为增进对壳程流体的扰动、提高壳程流体的对流传热系数,同时支撑换热管束以防止其挠曲变形,在列管式换热器的壳程通常设置有折流挡板,常见有弓形折流板、矩形折流板和圆盘—圆环形折流板,其中以圆缺形( 又称单弓形) 的构造最简单、对壳程流体的扰动最剧烈、支撑效果最佳,标准列管换热器中多采用此种。国内换热器设计标准规定折流板间距B( mm)最小为1 /5 壳程直径,且不小于50 mm。建议切割部分高度在0. 2 ~ 0. 45 倍壳体内径,通常选择切割率为20% ~ 25%。 通过式( 8) 可以看出减小折流板间距B 和壳程内径D 可以减小壳程流通截面积So,即在流量一定的条件下提高壳程流速,加强扰动。 2. 1. 6 折流杆 传统的装有折流板的管壳式换热器存在着影响传热的死区,流体阻力大,且易发生换热管振动与破坏。为了解决传统折流板换热器中换热管的切割破坏和流体诱导振动,并且强化传热提高传热效率,近年来开发了一种新型的管束支承结构—折流杆支承结构。 2. 2 换热管材质及厚度 换热管常用材料常用的为碳钢、低合金钢、不锈钢、铜、铜镍合金、铝合金等。由于物质导热系数和物质的组成、结构、密度、压力和温度等有关,在工作压力、温度、介质腐蚀性等条件满足的情况下选择导热系数与壁厚比值较大者,即减小壁间传热导热热阻,提高传热系数。 2. 3 流体物理性质 导热系数、粘度、比热、密度等对对流传热系数α 的值影响也比较大。 Prandtle 准数表示速度边界层和热边界层相对厚度的一个参数,反映与传热有关的流体物理性质。 2. 4 污垢热阻 污垢热阻表示换热设备传热面上因沉积物而导致传热效率下降程度的数值,即换热面上沉积物所产生的传热阻力,又称污垢系数,指换热器换热表面上积有某种污垢( 如水垢、污泥、油污和烟灰等) 。污垢热阻的逐步形成,必将导致换热器传热系数的相应减小,促使换热器的传热性能日益恶化。对于容易结垢的介质,尽量提高流体流速,换热器间壁应定期清洗,以防止传热系数K 值的明显下降。 3 ·强化传热技术 对于管壳式换热器,强化传热[5 - 6]方法按是否消耗外加功率可分为有源技术( Active Technology ) 和无源技术( PassiveTechnology) ,前者消耗外加能量,后者不消耗能量。后者主要是使传热壁面的温度边界层减薄或调换传热壁面附近的流体。主要有2 种实施途径[7 - 10]: ( 1) 对传热表面的结构、形状适当加以处理与改造; ( 2) 在传热面或传热流路上设置湍流增进器,或在流体中加入添加剂,特别是加入适当的固体颗粒,不仅强化传热,还可以防垢和除垢。 4· 结论 ( 1) 合理设计换热器结构,对实现工艺过程、提高传热效率、节省能源及降低设备投资等方面有重要意义。因此,设计换热器时应反复计算,综合分析,不断调整优化换热器结构,从而进一步提高整体传热效果,以获得满足工艺要求的最优结果。 ( 2) 传热系数K 总是接近于α 小的流体的对流传热系数,且永远小于α 的值。因此传热系数K 受α 小的一侧控制。 ( 3) 如传热间壁上的污垢很厚时,污垢热阻会大大降低设备的传热效果。因此容易结垢的介质,换热间壁应定期经常清洗,以防止换热器换热效果恶化。
Agent数码Reaper
这只是个模板,你还要自己修改数据,其中有些公式显示不出来。一.设计任务和设计条件某生产过程的流程如图所示,反应器的混合气体经与进料物流患热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶组分。已知混和气体的流量为227301㎏/h,压力为 ,循环冷却水的压力为 ,循环水的入口温度为29℃,出口温度为39℃ ,试设计一台列管式换热器,完成该生产任务。物性特征:混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容 =℃热导率 =粘度循环水在34℃ 下的物性数据:密度 =㎏/m3定压比热容 =℃热导率 =℃粘度二. 确定设计方案1. 选择换热器的类型两流体温的变化情况:热流体进口温度110℃ 出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。2. 管程安排从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下贱,所以从总体考虑,应使循环水走管程,混和气体走壳程。三. 确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为T= =85℃管程流体的定性温度为t= ℃根据定性温度,分别查取壳程和管程流体的有关物性数据。对混合气体来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容 =℃热导率 =粘度 =×10-5Pas循环水在34℃ 下的物性数据:密度 =㎏/m3定压比热容 =℃热导率 =℃粘度 =×10-3Pas四. 估算传热面积1. 热流量Q1==227301××(110-60)=×107kj/h =.平均传热温差 先按照纯逆流计算,得=3.传热面积 由于壳程气体的压力较高,故可选取较大的K值。假设K=320W/(㎡k)则估算的传热面积为Ap=4.冷却水用量 m= =五. 工艺结构尺寸1.管径和管内流速 选用Φ25×较高级冷拔传热管(碳钢),取管内流速u1=。2.管程数和传热管数 可依据传热管内径和流速确定单程传热管数Ns=按单程管计算,所需的传热管长度为L=按单程管设计,传热管过长,宜采用多管程结构。根据本设计实际情况,采用非标设计,现取传热管长l=7m,则该换热器的管程数为Np=传热管总根数 Nt=612×2=12243.平均传热温差校正及壳程数 平均温差校正系数按式(3-13a)和式(3-13b)有 R=P=按单壳程,双管程结构,查图3-9得平均传热温差 ℃由于平均传热温差校正系数大于,同时壳程流体流量较大,故取单壳程合适。4.传热管排列和分程方法 采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。见图3-13。取管心距t=,则 t=×25=≈32㎜隔板中心到离其最.近一排管中心距离按式(3-16)计算S=t/2+6=32/2+6=22㎜各程相邻管的管心距为44㎜。管数的分成方法,每程各有传热管612根,其前后关乡中隔板设置和介质的流通顺序按图3-14选取。5.壳体内径 采用多管程结构,壳体内径可按式(3-19)估算。取管板利用率η= ,则壳体内径为D=按卷制壳体的进级档,可取D=1400mm6.折流板 采用弓形折流板,去弓形之流板圆缺高度为壳体内径的25%,则切去的圆缺高度为H=×1400=350m,故可 取h=350mm取折流板间距B=,则 B=×1400=420mm,可取B为450mm。折流板数目NB=折流板圆缺面水平装配,见图3-15。7.其他附件拉杆数量与直径按表3-9选取,本换热器壳体内径为1400mm,故其拉杆直径为Ф12拉杆数量不得少于10。壳程入口处,应设置防冲挡板,如图3-17所示。8.接管壳程流体进出口接管:取接管内气体流速为u1=10m/s,则接管内径为圆整后可取管内径为300mm。管程流体进出口接管:取接管内液体流速u2=,则接管内径为圆整后去管内径为360mm六. 换热器核算1. 热流量核算(1)壳程表面传热系数 用克恩法计算,见式(3-22)当量直径,依式(3-23b)得=壳程流通截面积,依式3-25 得壳程流体流速及其雷诺数分别为普朗特数粘度校正(2)管内表面传热系数 按式3-32和式3-33有管程流体流通截面积管程流体流速普朗特数(3)污垢热阻和管壁热阻 按表3-10,可取管外侧污垢热阻管内侧污垢热阻管壁热阻按式3-34计算,依表3-14,碳钢在该条件下的热导率为50w/(m•K)。所以(4) 传热系数 依式3-21有(5)传热面积裕度 依式3-35可得所计算传热面积Ac为该换热器的实际传热面积为Ap该换热器的面积裕度为传热面积裕度合适,该换热器能够完成生产任务。2. 壁温计算因为管壁很薄,而且壁热阻很小,故管壁温度可按式3-42计算。由于该换热器用循环水冷却,冬季操作时,循环水的进口温度将会降低。为确保可靠,取循环冷却水进口温度为15℃,出口温度为39℃计算传热管壁温。另外,由于传热管内侧污垢热阻较大,会使传热管壁温升高,降低了壳体和传热管壁温之差。但在操作初期,污垢热阻较小,壳体和传热管间壁温差可能较大。计算中,应该按最不利的操作条件考虑,因此,取两侧污垢热阻为零计算传热管壁温。于是,按式4-42有式中液体的平均温度 和气体的平均温度分别计算为×39+×15=℃(110+60)/2=85℃5887w/㎡•㎡•k传热管平均壁温℃壳体壁温,可近似取为壳程流体的平均温度,即T=85℃。壳体壁温和传热管壁温之差为 ℃。该温差较大,故需要设温度补偿装置。由于换热器壳程压力较大,因此,需选用浮头式换热器较为适宜。3.换热器内流体的流动阻力(1)管程流体阻力, ,由Re=35002,传热管对粗糙度,查莫狄图得 ,流速u=,,所以,管程流体阻力在允许范围之内。(2)壳程阻力 按式计算, ,流体流经管束的阻力F=×××(14+1)× =75468Pa流体流过折流板缺口的阻力, B= , D=总阻力75468+43218=× Pa由于该换热器壳程流体的操作压力较高,所以壳程流体的阻力也比较适宜。(3)换热器主要结构尺寸和计算结果见下表:参数 管程 壳程流率 898560 227301进/出口温度/℃ 29/39 110/60压力/MPa 物性 定性温度/℃ 34 85密度/(kg/m3) 90定压比热容/[kj/(kg•k)] 粘度/(Pa•s) ××热导率(W/m•k) 普朗特数 设备结构参数 形式 浮头式 壳程数 1壳体内径/㎜ 1400 台数 1管径/㎜ Φ25× 管心距/㎜ 32管长/㎜ 7000 管子排列 △管数目/根 1224 折流板数/个 14传热面积/㎡ 673 折流板间距/㎜ 450管程数 2 材质 碳钢主要计算结果管程 壳程流速/(m/s) 表面传热系数/[W/(㎡•k)] 5887 污垢热阻/(㎡•k/W) 阻力/ MPa 热流量/KW 10417传热温差/K 传热系数/[W/(㎡•K)] 400裕度/% 七. 参考文献:1. 刘积文主编,石油化工设备及制造概论,哈尔滨;哈尔滨船舶工程学院出版社,1989年。2. ——84机械制图图纸幅面及格式3. GB150——98钢制压力容器4. 机械工程学会焊接学会编,焊接手册,第3卷,焊接结构,北京;机械工业出版社 1992年。5. 杜礼辰等编,工程焊接手册,北京,原子能出版社,19806. 化工部六院编,化工设备技术图样要求,化学工业设备设计中心站,1991年。
烟气凝结换热器传热强化与工程应用研究,我的题目,还不错吧。之前也是苦于无奈,实在是弄不出来。还是寝室哥们给的莫文网,专家就是不一样,很快就完成了参考下思路:实验
计算平均温度差,并根据温度差校正系数不小于0.8的原则,确定壳程数或调整加热介质或冷却介质的终温
换热器的设计主要需要以下一些参数:热流体的入口温度,冷流体的入口温度以及出口温度,热流体的流量以及管道参数,制冷机组的蓄水量,预设换热器内部结构,即几根冷却管,
你这都不会。。。。 毕业设计拖到最后一个星期。。。。可以查 《化工原理>>, 和换热器设计手册,三大力学
1、温度差:汽水换热器的换热效率与热源和冷却介质之间的温度差有关。温度差越大,换热效率越高2、流量:流体在汽水换热器中的流速和流量也会影响换热效率。一般来说,流