吃货阿呀
工具变量的本质特征是外生性,即工具变量与扰动项不相关,如果工具变量外生,且为强工具变量,则工具变量法的逻辑必然成立,可得到回归方程的一致估计。
由于工具变量的相关性易检验(比如,考察第一阶段回归的 F 统计量),而工具变量的外生性不易检验,故对于使用 IV 的实证论文,工具变量的外生性常常成为审稿人、主编与作者的分歧焦点。
通过排他性约束来定性探讨工具变量的外生性,在实践中需要将 影响 的所有可能渠道列出,然后将除以外的渠道全部排除(比如,通过讨论认为这些其他渠道不存在或可以忽略)。
在回归模型中,当解释变量与误差项存在相关性(内生性问题),使用工具变量法能够得到一致的估计量。内生性问题一般产生于被忽略变量问题或者测量误差问题。
当内生性问题出现时,常见的线性回归模型会出现不一致的估计量,此时如果存在工具变量,那么人们仍然可以得到一致的估计量。
根据定义,工具变量应该是一个不属于原解释方程并且与内生解释变量相关的变量。在线性模型中,一个有效的工具变量应该满足变量和内生解释变量存在相关性。
林hui杨65928
工具变量其实,即使工具变量通过检验,也不一定是个好工具变量。斯坦福大学的Xu yiqing老师最近发了一篇文章,重现了几个顶刊上几十篇论文的结论,发现工具变量存在一定程度的滥用。好的工具变量一定是先在逻辑上行得通,然后通过检验。而且题主说的检验不知道是什么检验,单个工具变量需要关注外生性、相关性两个条件,多个工具变量还需要关注过度识别等问题。因此,题主遇到的“加入工具变量后不显著”的问题,可能有两个原因:不加入工具变量时,其他因素对被解释变量的影响被错误的认为是核心解释变量的显著作用,这种情况下需要逻辑上先判断哪些因素会影响核心解释变量,是否能控制都尽量控制住了,如果没有,就有必要使用其他方法进行因果识别,例如工具变量法、倾向匹配法,如果是面板数据也要考虑更换方法加入工具变量变得不显著,有两种情况,1)当工具变量选取的合适的时候,核心解释变量对被解释变量的因果关系被正确识别,可能这个关系就是不显著的,工具边框堵上了未观测因素的“后门”;2)当工具变量选取的不合适时,加入错误的工具边框可能会扭曲因果关系,参考前文说的xu yiqing老师的文章。
浅谈如何实施应急预案演练提高护士急救能力教育论文 【摘要】 目的 探讨模拟仿真急救演练的方法,提高急诊科护士急救能力。方法 对急诊科护士开展应急预案学习及仿真
浅析船舶建造的安全现状及改善措施1. 引言目前,浙江船舶已出口至全球24个国家和地区,尤其是出口欧盟市场的浙江船舶附加值较高。 浙江海关统计分析认为,尽管出
1、LS最小二乘法,可以用于线性回归模型、ARMA等模型2、TSLS两阶段最小二乘法3、GMM广义矩估计方法4、ARCH自回归条件异方差,还可以估计其他各种AR
那就说明你这个问卷设计不合理嘛。两个办法:
社会对护士需求量不断增加,对护士的要求不断提高,但护理队伍的流失率却一直居高不下,导致护理人力资源的严重短缺。下面是我为大家整理的护理系本科毕业论文,供大家参考