夏可兒雲卿
实对称矩阵一定满秩吗 实对称矩阵在数学中扮演着重要的角色。它们具有很多有用的特性,例如对角化、正交对角化等。但是,一个常见的问题是,实对称矩阵一定满秩吗? 实对称矩阵的定义 在开始讨论这个问题之前,我们先来回顾一下实对称矩阵的定义。一个实矩阵是对称的,如果它等于它的转置,即满足$A=A^T$。如果矩阵的元素都是实数,则称它是实对称矩阵。 实对称矩阵的性质 实对称矩阵具有很多重要的性质: 所有实对称矩阵都可以对角化。 对于任何两个不同特征值所对应的特征向量,它们是正交的。 对于实对称矩阵而言,对角化的过程可以通过正交变换来完成。 实对称矩阵的秩 现在,我们回到本文的主题,即实对称矩阵的秩。 结论是,实对称矩阵一定是满秩的,除非它是一个零矩阵。 为什么呢?首先,我们回忆一下矩阵的秩的定义。一个矩阵的秩是它的行向量或列向量的极大线性无关组的元素个数。 对于实对称矩阵,因为它可以对角化,并且对角矩阵的对角线上是特征值,所以这个矩阵的秩等于它的特征值个数。如果存在零特征值,那么这些特征值对应的特征向量会构成一个线性相关的集合,因此矩阵不是满秩的。 但是,对于实对称矩阵而言,所有的特征值都是实数,因此不存在虚特征值。而且,因为特征向量构成一个线性无关的集合,所以这个矩阵的秩等于它的特征值个数,也就是它的阶数。 实例分析 下面,我们通过一个例子来验证这个结论。考虑下面这个实对称矩阵: $$ A = \\begin{bmatrix} 1 & 2 & 3 \\\\ 2 & 4 & 5 \\\\ 3 & 5 & 6 \\\\ \\end{bmatrix} $$ 它的特征值为$0,1,10$,对应的特征向量为: $$ v_1 = \\begin{bmatrix} \\\\ \\\\ \\\\ \\end{bmatrix}, v_2 = \\begin{bmatrix} \\\\ \\\\ \\\\ \\end{bmatrix}, v_3 = \\begin{bmatrix} \\\\ \\\\ \\\\ \\end{bmatrix} $$ 可以看到,这些特征向量是线性无关的,因此矩阵是满秩的。 总结 通过本文的分析,我们得出了一个非常有用的结论:实对称矩阵一定是满秩的,除非它是一个零矩阵。这个结论对于理解实对称矩阵的性质以及解决相关问题都是非常有帮助的。
江南Andy
实对称矩阵:如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),则称A为实对称矩阵。
主要性质:
1.实对称矩阵A的不同特征值对应的特征向量是正交的。
2.实对称矩阵A的特征值都是实数,特征向量都是实向量。
阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。
4.若λ0具有k重特征值必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。
扩展资料:
对称矩阵性质:
1.对于任何方形矩阵X,X+XT是对称矩阵。
为方形矩阵是A为对称矩阵的必要条件。
3.对角矩阵都是对称矩阵。
4.两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。
5.用<,>表示 上的内积。n×n的实矩阵A是对称的,当且仅当对于所有X, Y∈ , 。
6.任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种方法写成一个对称矩阵和一个斜对称矩阵之和:
7.每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。
8.若对称矩阵A的每个元素均为实数,A是Hermite矩阵。
9.一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零的时候成立。
10.如果A是对称矩阵,那么AXAT也是对称矩阵。
阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。
参考资料:百度百科----实对称矩阵
协方差矩阵的计算公式如下: Conv=frac {1} {n-1}tilde {X} tilde {X}^ {T}\ ktimes n 和 ntimes k 的
设G为群, ,定义G中元 ,称为a和b的换位子,所有这样的换位子生成的子群 称为G的换位子群 当G为交换群时,任意两个元的换位子 都是单位元,故
这个可以继续化简:1.用第3行把的1把所有的第四列的数都化为012-900-1500001(下面的不写了)2.用第2行的-1把第1行的2消去10100-1500
不可以的.矩阵的对角化不是只用初等变换把它变成对角线形式就叫对角化了,而是对角线必须为特征值.如果把它变成对角线形式就叫对角化,那可以在任一行乘个数,结果就变了
先说对称矩阵吧.可以从代数和几何两个方面上来讲.代数方面,首先每个对称矩阵A唯一对应于一个二次型x'Ax.因此对称矩阵对二次型的研究有着重要的作用.二次型是什么