叫我姐姐SAMA
本文仅供学习使用,并非商业用途,全文是针对哈尔滨工业大学刘文之的论文《移动机器人的路径规划与定位技术研究》进行提炼与学习。论文来源中国知网,引用格式如下: [1]刘文之. 基于激光雷达的SLAM和路径规划算法研究与实现[D].哈尔滨工业大学,2018.
相关坐标系转换原理已经在前一篇文章写完了,直接上转换方程。
这里他的运动模型选择的是基于里程计的运动模型,还有一种基于速度的运动模型,其实都差不多,整体思想都一样。里程计是通过计算一定时间内光电编码器输出脉冲数来估计机器人运动位移的装置,主要是使用光电码盘。根据光电码盘计算出此时轮子的速度,然后通过已知的轮子半径来获得单位时间 每个轮子 的位移增量。
高等数学可知单位时间位移增量就是速度,对速度在一定时间上进行积分就得到这一段时间所走过的路程。
根据上图,我们可以求出来机器人航向角角速度、圆弧运动半径和机器人角度变化量,由此可以解的机器人在当前时刻的位姿。
实际上也是有误差,所以单独依靠里程计会与实际结果产生较大误差,所以必须引入其他的外部传感器对外部环境的观测来修正这些误差,从而提高定位精度。
首先肯定需要将激光雷达所测得的端点坐标从极坐标、机器人坐标中转换到世界坐标中。
这张略过,暂时不需要看这个
路径规划算法介绍:
因为该算法会产生大量的无用临时途径,简单说就是很慢,所以有了其他算法。
了解两种代价之后,对于每一个方块我们采用预估代价与当前路径代价相加的方法,这样可以表示每一个路径点距离终点的距离。在BFS搜索过程的基础上,优先挑选总代价最低的那个路径进行搜索,就可以少走不少弯路。(算法讲解 )
在局部路径规划算法之中,我们选用DWA算法(dynamic window approach),又叫动态窗口法。动态窗口法主要是在速度(v, w)空间中采样多组速度,并模拟机器人在这些速度下一定时间内的轨迹。在得到多组轨迹后,对这些轨迹进行评价,选取最优的轨迹所对应的速度来驱动机器人运动。 state sampling就是按照之前给出的全局路径规划,无论是Dijkstra还是A* 都可以方便的得到state sampling,DWA算法所需要提前建立的action sampling有两种:
但是无论是什么情况,上述所做的工作就是把机器人的位移转化到世界坐标中来,而不是机器人坐标系。速度采样结束之后,只需要对小车的轨迹进行评判,就可以得到最优解了。下面介绍速度采样的办法。
对速度进行采样一般有以下三个限制:
当确定了速度范围之后,就需要根据速度分辨率来对小车速度离散化,在每一时刻将小车在不同直线速度角速度组合下所即将要行驶的距离都可视化出来。
其中每一条轨迹都是很多小直线连接起来的。
需要用评价函数来对上述轨迹进行选择,选择最适合的轨迹
最后为了让三个参数在评价函数里所发挥的作用均等,我们使用归一化处理来计算权重。
算法流程整体如下:
少女心-
一、啥是SLAM?
1. slam
slam就是 同步定位与建图(Simultaneous Localization and Mapping)。指机器人通过根据自身位置和地图实现自主定位和导航。
2. 技术和场景
SLAM系统包括两个主要组件:
1)前端将传感器数据抽象为可用于估计的模型
2)后端则对前端生成的抽象数据进行推理
两类技术路线:
激光slam(基于激光雷达):可靠性高,技术成熟;但 有雷达探测范围的限制和安装的结构要求
视觉slam(基于摄像头);
复合slam(激光+视觉)
主要应用于机器人,无人机,无人驾驶,AR/VR领域。
3.前景和风险
slam相关技术正越来越多地部署在从自动驾驶 汽车 到移动设备的各种现实环境中。由于移动设备和代理的定位信息的价值,云端位置服务会有很大的商业应用价值。
slam仍然是大多数机器人应用场景不可或缺的支柱,尽管在过去的几十年中取得了惊人的进步,但现有的SLAM系统在性能,理解力,推理力上远不能达到大规模商业推广的要求。
二、啥是DPU?
1. DPU
数据处理单元,类比CPU--中央处理单元;GPU--图形处理单元,是数据中心场景中的第三颗重要算力芯片,为数据密集的计算场景提供计算引擎。通俗点说就是,把网络数据的处理从CPU端解放出来,放到DPU端来做,这样做可以节省8核CPU的至少一半算力。
GPU的出现是为了处理越来越复杂的图形化计算,而DPU则是为了处理越来越庞大的数据量而诞生。
2. 技术和场景
三大特点:
卸载:数据中心的 网络服务,存储服务和安全服务的卸载
加速:硬件加速
隔离:隐私计算,数据隔离
应用场景:数据中心和云计算、网络安全、高性能计算及AI、通信及边缘计算、流媒体等。目前以数据中心和云计算为主。
与智能网卡(smart nic)的区别:功能类似,但技术架构不同。DPU架构是在DPU上插入一台服务器,而智能网卡架构是在服务器上插入一个网卡。
3.前景和风险
DPU是在目前算力困境的大背景下产生的,预示着一个新的算力时代的到来。行业需要更多的技术创新,更好的服务 “东数西算”国家大战略和数字经济发展。
三种市场策略:
传统处理器大厂通用领域耕耘,目标是全行业通吃,很注重产品的“通用性”,稳健布局 (英伟达)
小厂在行业细分场景耕耘,比如数据库加速、统一通信加速。定制化多,市场规模也有限。(中科驭数,云豹智能,星云智联)
云大厂垂直整合:云服务商使用DPU是必然趋势,但通用型DPU无法满足,DPU需要云OS加持(AWS,阿里,博通)
也有一些投资人认为,DPU赛道比较鸡肋:CPU/GPU同量级的高投入,但市场规模却不大。并且因为DPU跟用户的业务休戚相关(场景的软硬件解耦难度大),很多用户倾向自研,这进一步导致公开市场规模更加有限。
三、啥是氢能源?
1. 氢能源
氢能是一种不依赖化石燃料的储量丰富的新的清洁能源
特点:
1)重量轻且形态多:数百个大气压下,液氢可变为金属氢。
2)发热值高且燃烧性好:是汽油发热值的3倍。
3)储量丰富且运输方便
4)可回收且环保
5)耗损少且利用率高
2. 技术和场景
美国的航天飞机,和我国的运载火箭都已成功使用液氢做燃料
氢能源主要可应用于氢燃料电池和氢能 汽车 。与目前市面上的主流新能源车型相比,氢燃料电池才真正算得上是环保能源。
氢燃料电池技术,一直被认为是利用氢能解决未来人类能源危机的终极方案。上海一直是中国氢燃料电池研发和应用的重要基地,包括上汽、上海神力、同济大学等也一直在从事研发氢燃料电池和氢能车辆。用氢能作为 汽车 的燃料无疑是最佳选择。
电动 汽车 的核心:电机+电控+动力电池组。难题: 续航里程+充电难+电池报废的环保问题
氢能源 汽车 的核心:电机+电控+动力电池组+燃料电池堆+高压储氢罐。 难题:大量而低价生产氢(常规方法太不环保,电解水太耗电)+加氢难
3.前景和风险
利用太阳能来分解水生产氢是一个氢能源的主要研究方向,关键在于找到一种合适的催化剂。如今世界上有50多个实验室在进行研究,但至今尚未有重大突破,但它蕴育着广阔的前景。
日本丰田和韩国现代就是氢燃料电池的先驱者。目前的电动车应该只是临时过渡产品,当氢能源车的诸多技术瓶颈得到解决,氢能源车普及的时代也会到来。因此日本并没有全力发展电动车,而是把更多精力放在了构建氢能源为主的 社会 上。
当然可以了,只要是毕业论文项目需要的地方都可以编写程序加上去,这样论文显得更完整更容易通过。
机器人是由计算机控制的通过编程具有可以变更的多功能的自动机械,下面是我整理的机器人技术论文,希望你能从中得到感悟! 刍议智能机器人及其关键技术 【摘 要】文章介
本文仅供学习使用,并非商业用途,全文是针对哈尔滨工业大学刘文之的论文《移动机器人的路径规划与定位技术研究》进行提炼与学习。论文来源中国知网,引用格式如下:
The rapid advancement of technology has opened up new possibilities and sparked
给个邮箱发给你