失踪的第九个梦
我从初中开始就对初等几何非常感兴趣,后来哪怕是在高考前几个月也一直在看初等几何方面的书 结合我跟一个数学系教授的讨论,基本上初等几何已经不能算是研究了,能够被发现的定理都已经有人提出来了初等几何本身有一种魔力,作为智力的挑战而言的话它的价值是不言而喻的,但是它的价值也就仅此而已了 说到这,不得不提近现代几何学的发展初等几何通常指的是欧几里德的二维平面几何,发展了两千年,经过了笛卡尔的坐标系与代数紧密结合之后一直到了非欧几何的出现,几何才有了全新的活力,从那以后几何开始大放异彩,从黎曼几何到爱因斯坦的广义相对论,从陈省身的纤维丛理论到杨振宁的规范场论,乃至于超弦理论,这里面都有着几何的身影。这里提到的是几何的现代发展,主要是在微分几何领域,这可就跟初等几何有着天壤之别。总之,我的看法是初等几何作为业余爱好而言很有味道,作为研究的话那就乏善可陈了,不过几何是一种十分重要的思想,假如说真的很感兴趣的话不妨去接触一些微分几何的东西,毕竟初等几何的视野还是太窄了仅供参考。。。
穗宝儿yz
现实意义:
1、培养人的逻辑思维能力;
2、逻辑能力的培养不能被数学的其他科目完全取代;
3、学习初等几何可发展人的空间想象能力和识图能力;
4、学习初等几何有助于在生活现实中独立自主,提高动手能力,更是继续学习的基础。
初等几何学是指用几何方法来解决数学问题的学科。几何方法主要是图形以及图形中所产生产生的公理、定理等。
几何方法:
1、基本逻辑方法:贯彻于整个初等几何中的基本方法,主要是指分析法与综合法,是其他几何方法的基础,这是初等几何的本质,所以初等几何也有叫它为综合几何。
2、度量化方法:就几何图形内在性质的表现形式的转化而言的,它是初等几何的常用方法。
3、变换(化)方法:就几何图形内在关系结构的转化而言的,它是初等几何的辅助方法。
4、代数化方法:就空间关系结构表现形式的转化而言的,它是超脱于几何图形性质本身的辅助方法。
5、机械化证明方法:就几何关系结构转化为按程序计算而言的,它是超脱于人们对初等几何问题原有思路的现代化的科学方法。
将常量写到单元格中,然后将公式中的常量改为单元格。例:=20*C1+D1在A1中填入:20,就可改为:=A1*C1+D1
我从初中开始就对初等几何非常感兴趣,后来哪怕是在高考前几个月也一直在看初等几何方面的书 结合我跟一个数学系教授的讨论,基本上初等几何已经不能算是研究了,能够被
积分变换可以把微分方程变换为初等方程,求解方便。另外求线性系统的响应,用积分变换不用考虑初始状态,非常方便。可以实现时域和频域的变换,方便对谐波进行分析计算。使
第一:许多图形应用涉及到几何变换,主要包括平移、旋转、缩放。以矩阵表达式来计算这些变换时,平移是矩阵相加,旋转和缩放则是矩阵相乘,综合起来可以表示为p'=p*m
所谓变分法的思想,就是任选一个辅助函数,给泛函一个微扰,使得任何可能的选择都能纳入进来,由于这个辅助函数是任意的,因此最佳选择就必然与辅助函数无关。这就是变分法