首页 > 毕业论文 > 毕业论文矩阵的特征值

毕业论文矩阵的特征值

发布时间:

毕业论文矩阵的特征值

定义 设A是n阶方阵,如果数λ和n维非零列向量x使关系式AX=λX (1)成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量.(1)式也可写成,( A-λE)X=0 (2)这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0 , (3)

对应特征向量是[ ]matlab 计算的结果全部特征值为 + - + - + -

如何理解矩阵,特征值和特征向量?答:线性空间中,当你选定一组基之后,不仅可以用一个向量来描述空间中的任何一个对象,而且可以用矩阵来描述该空间中的任何一个运动(变换),从而得出矩阵是线性空间里的变换的描述。而使某个对象发生对应运动(变换)的方法,就是用代表那个运动(变换)的矩阵,乘以代表那个对象的向量。转换为数学语言: 是矩阵, 是向量, 相当于将 作线性变换从而得到 ,从而使得矩阵 (由n个向量组成)在对象或者说向量 上的变换就由简单的实数 来刻画,由此称 为矩阵A的特征值,而 称为 对应的特征向量。总结来说,特征值和特征向量的出现实际上将复杂的矩阵由实数和低维的向量来形象的描述(代表),实现了降维的目的。在几何空间上还可以这样理解:矩阵A是向量的集合,而 则是向量的方向, 可以理解为矩阵A在 方向上作投影,而矩阵又是线性空间变换的描述,所以变换后方向保持不变,仅是各个方向投影后有个缩放比例 。

矩阵的特征值有以下用处:

(1)可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中。例如,在力学中,惯量的特征向量定义了刚体的主轴。惯量是决定刚体围绕质心转动的关键数据。

(2)被数学生态学家用来预测原始森林遭到何种程度的砍伐,会造成猫头鹰的种群灭亡。

(3)著名的图像处理中的PCA方法,选取特征值最高的k个特征向量来表示一个矩阵,从而达到降维分析+特征显示的方法,还有图像压缩的K-L变换。再比如很多人脸识别,数据流模式挖掘分析等方面。

(4)在谱系图论中,一个图的特征值定义为图的邻接矩阵A的特征值,或者(更多的是)图的拉普拉斯算子矩阵,Google的PageRank算法就是一个例子。

矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。在这个变换的过程中,原向量主要发生旋转、伸缩的变化。

如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。

毕业论文矩阵特征值

用 Matlab 的计算结果为:>> eig(M) --所有特征值ans = + - + - + - >> [V,D]=eig(M);V = - + - + + - + - + - + - - + + - - + + - - + - + + - 每一列是对应的特征向量对的不齐, 对应 特征值 的特征向量是

设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是矩阵A的一个特征值。非零向量x称为A的对应于特征值λ的特征向量。在数学中,矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。

性质1:n阶方阵A=(aij)的所有特征根为λ1,λ2,…,λn(包括重根),则:

性质2:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。

性质3:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。

性质4:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。

不太懂编程, 不过有现成工具可用.Mathematica只需要一个函数就能得到所有特征值和对应的特征向量:Eigensystem[{{1, 1/3, 1, 1/6, 1/5, 1/3, 1/2},{3, 1, 3, 1/3, 1/4, 1/2, 1/2},{1, 1/3, 1, 1/5, 1/5, 1/5, 1/3},{6, 3, 5, 1, 1, 2, 1},{5, 4, 5, 1, 1, 2, 2},{3, 2, 5, 1/2, 1/2, 1, 1/2},{2, 2, 3, 1, 1/2, 2, 1}}]数值结果用:N[Eigensystem[{{1, 1/3, 1, 1/6, 1/5, 1/3, 1/2},{3, 1, 3, 1/3, 1/4, 1/2, 1/2},{1, 1/3, 1, 1/5, 1/5, 1/5, 1/3},{6, 3, 5, 1, 1, 2, 1},{5, 4, 5, 1, 1, 2, 2},{3, 2, 5, 1/2, 1/2, 1, 1/2},{2, 2, 3, 1, 1/2, 2, 1}}]]输出为{{, + I, - I, + I, - I, + I, - I}, {{, , , , , , 1.},{ - I, + I, - I, + I, - I, + I, 1.},{ + I, - I, + I, - I, + I, - I, 1.},{ - I, - I, + I, + I, - I, - I, 1.},{ + I, + I, - I, - I, + I, + I, 1.},{ - I, + I, + I, + I, - I, - I, 1.},{ + I, - I, - I, - I, + I, + I, 1.}}}第一组为特征值, 后面为依次对应的特征向量.所以只有一个实特征值: , 相应特征向量:{, , , , , , 1.}.刚看到另一个一样的问题(不过(1,6)和(6,1)两个位置不一样).特征向量乘以非零数还是特征向量.作为权重是要各分量之和为1?那不妨将上面所得特征向量除以各分量之和, 得.{, , , , , , }.

定义 设A是n阶方阵,如果数λ和n维非零列向量x使关系式AX=λX (1)成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量.(1)式也可写成,( A-λE)X=0 (2)这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0 , (3)

毕业论文特殊矩阵

matlab两个矩阵的相关性的分析方法:用corrcoef(X,Y) 函数实现两个矩阵的相关性的分析。函数格式 corrcoef(X,Y) 函数功能:其中%返回列向量X,Y的相关系数,等同于corrcoef([X Y]);函数举例:在命令窗口产生两个10*3阶的随机数组x和y,计算关于x和y的相关系数矩阵:x=rand(10,3);y=rand(10,3);cx=cov(x) cy=cov(y) cxy=cov(x,y) px=corrcoef(x) pxy= corrcoef(x,y)矩阵相当于向量,行列式相当于向量的模。一般教学上都先介绍行列式,再进行对矩阵的介绍,我觉得这样是不好的。应该先了解矩阵。一开始,在实际应用的时候,会出现很多很多的未知数,为了通过公式解出这些未知数,就进行联立方程组进行求解。比如要知道x1,x2的值,就联立方程{a*x1+b*x2=ic*x1+d*x2=j},这样子来求解。可是啊,现实生活中,特别遇到一些复杂的工艺的时候,就会出现超级多的未知数,所以就会有超级多的方程需要联立求解

出现奇异矩阵是因为数据组里面会有相类似系数的数据。即约化后会有相同的数据组造成数据组不足,可以增加数据组,或者进行矩阵简化,找出有问题的数据进行修正。

六组数据是什么意思个人经验觉得是数据样本太少

matlab两个矩阵的相关性的分析方法:用corrcoef(X,Y) 函数实现两个矩阵的相关性的分析。函数格式 : corrcoef(X,Y) ;函数功能:其中%返回列向量X,Y的相关系数,等同于corrcoef([X Y]);函数举例:在命令窗口产生两个10×3阶的随机数组x和y,计算关于x和y的相关系数矩阵:x=rand(10,3);y=rand(10,3);cx=cov(x)cy=cov(y)cxy=cov(x,y)px=corrcoef(x)pxy= corrcoef(x,y)

毕业论文特征值与特征向量

特征值和特征向量是矩阵的重要性质,它们之间存在密切的关系。特征向量是指矩阵在经过某种线性变换之后,仍然沿着原来的方向,只改变了向量的长度的向量。通常情况下,矩阵有多个特征向量。特征值是矩阵对应特定特征向量的值,它是在经过线性变换后得到的标量。每个矩阵对应于一组特征值和特征向量,特征向量的个数等于矩阵的维度。特征值和特征向量之间的关系可以表示为以下形式:Ax = λx其中,A是矩阵,x是特征向量,λ是特征值。该方程表示矩阵通过向量x的线性变换后,得到的新向量依然在同一方向上,只是在长度上发生了变化。特征向量x与特征值λ是一一对应的。

特征向量是一个非简并的向量,在这种变换下其方向保持不变。该向量在此变换下缩放的比例称为其特征值(本征值)。

特征值是线性代数中的一个重要概念。

线性变换通常可以用其特征值和特征向量来完全描述。特征空间是一组特征值相同的特征向量。“特征”一词来自德语的eigen。

求矩阵的全部特征值和特征向量的方法

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组的一个基础解系,则的属于特征值的全部特征向量是(其中是不全为零的任意实数)。

乘积等于对应方阵行列式的值,和等于对应方阵对角线元素之和。

特征值是指设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值或本征值。

非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。

扩展资料:

若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。

A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵;A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|。

特征值的求法毕业论文

给你提供一种很专业的数值算法“幂法”,这是专门用来算矩阵最大特征值的经典算法。“幂法“的算法过程其实很简单,就是拿一个向量,不停地用a乘,最后就会慢慢趋近于最大特征值对应的特征向量。“幂法”在矩阵拥有唯一最大特征值的前提下,迭代足够多次,就一定能收敛的,可以用线性代数的矩阵相似性原理证明。我这段代码迭代了100次,取了随便一个向量[100000]'作为初始值(一般是取个随机向量,其实没啥大差别)。a=[111/4333;111/4333;441555;1/31/31/5122;1/31/31/51/213;1/31/31/51/21/31];v=[100000]';fori=1:100v=a*v;v=v/sqrt(sum(v.^2));endlamda=sqrt(sum((a*v).^2))/sqrt(sum(v.^2))v结果:lamda=你会发现,和内置算法的eigs命令求出的结果是一样的。>>eigs(a)ans=最大特征值同样是。

你说的应该是层次分析中的一致性检验吧。下面是我准备美赛建模时提前写的一个程序。输入相应矩阵后自动判断是否通过一致性检验。若通过则给出最大特征值和标准化特征向量。结果为“pass”,恭喜通过一致性检验。输入要判定的矩阵A=[1,1/2,2,1/3,3,1/4;2,1,3,1/2,4,1/3;1/2,1/3,1,1/4,2,1/5;3,2,4,1,5,1/2;1/3,1/4,1/2,1/5,1,1/6;4,3,5,2,6,1]特征向量及特征值为:V = + - - + + - - + - + + - + - + - - + - + D = 0 0 0 0 0 0 + 0 0 0 0 0 0 - 0 0 0 0 0 0 + 0 0 0 0 0 0 - 0 0 0 0 0 0 CR = 权向量为B =

数学领域中的一些著名悖论及其产生背景

matlab求解矩阵的最大特征值及对应的正规化特征向量:[V, D] = eig(A);D = diag(D); % 特征值[D, idx] = sort(D, 'descend');V = V(:, idx); % 特征向量矩阵这样,D(1)是最大特征值,V(:,1)是最大特征向量只会这些了。

  • 索引序列
  • 毕业论文矩阵的特征值
  • 毕业论文矩阵特征值
  • 毕业论文特殊矩阵
  • 毕业论文特征值与特征向量
  • 特征值的求法毕业论文
  • 返回顶部