几何变换是指将一幅图像映射到另一副图像内的操作,根据映射关系的不同,有缩放、翻转、仿射变换、透视、重映射等。 在OpenCV中使用函数()实现对图像的缩放: (src, dsize[,fx[,fy[, interpolation]]]) src :代表要缩放的原始图像; dsize : 代表输出图像大小,第一个值为目标图像的宽度,第二个值为目标图像的高度 fx : 代表水平方向的缩放比 fy : 代表垂直方向的缩放比 interpolation: 代表插值方式。插值是指在对图像进行几何处理时,给无法直接通过映射得到值的像素点赋值。当缩小图像时,使用区域插值方式( INTER_AREA)能够得到最好的效果;当放大图像时,使用三次样条插值(INTER_CUBIC)方式和双线性插值(INTER_LINEAR)方式都能得到较好的效果。三次样条插值方式速度较慢,双线性插值方式速度相对较快且效果并不逊色。 【注】:fx、fy只要当dsize=None时才起作用。 import cv2 import numpyas np img = ('') shape_img = print(shape_img) biger_img = (img,(720,480),interpolation=) smaller_img = (img,None,fx=) ('img',img) ('biger_img',biger_img) ('smaller_img',smaller_img) return_value = (0) () 在OpenCV中,图像的翻转采用函数()实现,该函数能实现水平方向、垂直方向、两个方向同时翻转。 dst = (src, flipCode) src : 表示要处理的图像; flipCode : 表示旋转类型,为0时,表示绕X轴旋转;为正数,表示绕y轴旋转;为负数,表示绕x、y轴同时旋转。 dst: 返回和原图像有相同大小和类型的目标图像。 img = ('') shape_img = print(shape_img) x_img = (img,1) xy_img = (img,-1) ('img',img) ('x_img',x_img) ('xy_img',xy_img) return_value = (0) () 仿射是指图像可以经过一系列的几何变换来实现平移、旋转等多种操作。该变换能够保持图像的平直性(变换前后,直线仍是直线)和平行性(变换前后,平行线仍是平行线)。 OpenCV中的仿射函数是(),其通过一个变换矩阵M实现变换,具体为:dst = (src,M,dsize[,flags[,borderMode[,borderValue]]]) dst: 表示输出图像,它和原始图像有相同的类型,大小由dsize决定; src: 表示原始图像; M: 代表一个2X3的变换矩阵。 dsize: 输出图像的尺寸大小; flags : 代表插值方法,默认为INTER_LINEAR。当该值是WARP_INVERSE_MAP时,意味着M是逆变换矩阵,实现从目标图像dst到原始图像src的逆变换。 borderModer : 代表边类型,默认为BORDER_CONSTANT.当该值为BORDER_TRANSPARENT时,意味着目标图像内的值不做改变,这些值对应原始图像内的异常值。 borderValue : 代表边界值,默认是0. 1)平移 平移的矩阵M: M = [[1,0,x],[0,1,y]] 将图像水平向右移动100像素,垂直向下平移150像素。 import cv2 import numpyas np img = ('') shape_img = print(shape_img) M = ([[1,0,100],[0,1,150]]) warp_img = (img,M,(shape_img[1],shape_img[0])) rut_warp_img = (img,M,(shape_img[1],shape_img[0]),borderMode=) ('img',img) ('warp_img',warp_img) ('rut_warp_img',rut_warp_img) return_value = (0) () 2)旋转 在使用wrapAffine()对图像进行旋转时,可以通过函数(center,angle,scale)获取转换矩阵。其中: center为旋转中心; angle为旋转角度; scale为变换尺度。 例如:以图像中心点为旋转中心,顺时针旋转45°,图像缩小到原来的倍。 img = ('') height,width = [:2] M = ((width/2,height/2),45,) rota_img = (img,M,(width,height)) ('img',img) ('rota_img',rota_img) 3)更复杂的仿射 对于更复杂的仿射变换,Opencv提供了函数()来生成仿射函数所需要的转换矩阵M. (src,dst) src 代表输入图像的三个点坐标 dst 代表输出图像的三个点坐标 该函数定义了两个平行四边形,src和dst中的三个点分别对应平行四边形的左上角、右上角、左下角。它确定了原图像到目标图像的映射关系。 img = ('') height,width = [:2] # 确定两个平行四边形 p1 = ([[0,0],[width-1,0],[0,height-1]]) p2 = ([[0,height*],[width**],[height**]]) M = ((width/2,height/2),45,) retval = (p1,p2) rota_img = (img,M,(width,height)) dst_img = (img,retval,(width,height)) ('img',img) ('rota_img',rota_img) ('dst_img',dst_img) 仿射变换可以将矩形变成任意平行四边形,透视变换可以将矩形映射到任意四边形。 透视变换通过()实现: dst = (src, M, dsize[,flags[,borderMode[,borderValue]]]) dsize :决定输出图像的大小 M :代表一个3X3的变换矩阵 flags: 代表差值方法,默认为INTER_LINEAR。当该值是WARP_INVERSE_MAP时,意味着M是逆变换类型 borderValue :代表边界值,默认是0 与仿射变换一样,同样可以使用一个函数来生成M: (src,dst) src,dst 都是一个包含四个坐标点的数组。 例如: img = ('') height,width = [:2] # 确定两个平行四边形 p1 = ([[0,0],[100,0],[0,50],[100,50]]) p2 = ([[20,20],[50,30],[30,70],[70,60]]) retval = (p1,p2) dst_img = (img, retval, (width,height)) ('img',img) ('dst_img',dst_img) 把一幅图像的像素点放到另一幅图像的指定范围,这个过程称为图映射。OpenCV提供了多种重映射方式,其中dst = (src, map1, map2, interpolation[,borderMode[,borderValue]]) dst 和src有相同的大小和类型。 map1 参数都有两种可能的值: 1)表示(x,y)点的一个映射 2)表示CV_16SC2,CV_32FC1,CV_32FC2类型(x,y)点的x值 map1 参数同样有两种可能的值: 1)当map1表示(x,y)时,该值为空 2)当map1表示(x,y)点的x值时,该值是CV_16UC1,CV_32FC1类型(x,y)点的y值。 Interpolation代表插值方式,这里不支持INTER_AREA方法。 重映射通过修改像素点的位置得到一幅新图像。在构造新图像时,需要确定新图像中每一个像素点在原始图像中的位置,因此映射函数的作用是查找新图像在原始图像中的位置,该过程是将新图像映射到原始图像的过程,因此被称为反向映射。 在函数()中,参数map1和map2用来说明反向映射,map1针对的是坐标x,指代像素所在位置的列号,map2针对的是坐标y,指代像素所在位置的行号。map1和map2的值都是浮点数。因此目标函数可以映射回一个非整数的值,这意味着可以将目标图像“反向映射”到原始图像中两个像素之间的位置(这样的位置是不存在的)。这是采用不同的方法来插值处理。 将map1的值设为对应位置上的x轴坐标值 将map2的值设为对应位置上的y轴坐标值 假如想让图片绕X轴翻转,则图像x坐标不变,y坐标变为总行数-1-当前行号; 如果想让它绕y轴翻转,也同理:总列数-1-当前列号 将x轴的值调整为所在行的行号;将y轴的值调整为所在列的列号 注:如果行数和列数不等,可能出现存在值不能映射的情况。默认情况下,无法完成的值会被处理为0. 将图像缩小为原来的两倍,并居中处理: 结果如下:
摘 要:数学广泛存在于生活中,善于开发和利用学生身边的数学资源与素材进行加工和创造,有利于提高学生的知识视野。关注数学活动的教学,更能激发学生学习数学的兴趣,注重数学模型的作用,有助于学生创造能力的培养。 关键词:三角板;旋转的不变性;创造能力;逻辑思维能力 随着课改的进行及《义务教育数学课程标准》的实施,处处体现生活中存在数学。怎样去发现数学,其实数学就在身边,留心观察,细心思考,你会体会到数学的奇妙与快乐。下面就简单的一副三角板的开发和利用,谈点自己的看法与启示。 首先进入我们视野的是等腰直角三角形,这是一个德才兼备的几何图形,它既具有等腰三角形的性质又具有直角三角形的性质。研究起来会妙笔生花,细心的品读它带给我们的快乐。取一对全等的含45度角的三角板进行简单的探究活动,将△MNK的直角顶点M放在△ABC的斜边中点上。设AC=BC=4, (1)如图1,两三角板重叠部分为△ACM,则重叠部分的面积是多少?周长为多少? 显而易见:△ACM的面积等于△ABC的一半周长等于AB+AC,而AB的长由勾股定理求得。 (2)将图1中的三角板MNK绕顶点M逆时针旋转45度角,得到图2,则重叠部分的面积会发生变化吗?周长为多少?类比图1很快就会发现没有变化周长为8。 (3)将△MNK绕点M旋转到不同于图1和图2的位置,你猜想此时重叠部分面积会发生变化吗?如果不发生变化,请说出理由。于是学生投入到激烈讨论中,这种跳跃性思维跃然于纸上。启发在已有的研究成果基础上去构造,既然△MNK是旋转变化的,能不能转换为图1于图2的图形。观察与研究发现面积不变,那又怎样证明。连接CM会发现△CMG会和△APM全等,可以看成△CMG绕点M旋转90度角得到的,此时图形旋转起到了一个惊人的变化。由特殊到一般揭示了图形变换的本质,一石激起千层浪,让学生自己拼图利用三角板反复进行仔细观察会发现什么?小组讨论、研究。追问:在图3中,AP=1的情况下,怎样求重叠部分的周长?生1:坏了,这下掉进老师设的陷阱里了,出不来了。此时,我静静地等待学生研究成果。生2:AP=1,CP=3,由三角形全等知:CG=AP=1,可PM=MG=?此时,陷入僵局,大部分同学投入积极的思考中,既然是旋转大家能不能转化为图1,图2呢?从中得到哪些启示。图3能转化为图2吗?联想与旋转变化交替进行,是数学思维活动进入了又一个高峰。积极的思考和点拨,让学生在思维的碰撞中产生火花。生3:老师我知道了。生4:我也知道了。我抓住有利时机,问什么在这里起到了重要的作用,勾股定理即可求DM的长。从中看到了旋转的作用,全等变换其形变本质不变,找到恰当的解题方法,达到融会贯通的目的。 思维的发散与变式正是研究问题的恰好时机,此时展示2013年河南省中考试题,实现思维的正向迁移。 将两块全等的含30度的三角板如图4放在一起,△ABC与△DEC重合放置,∠C=90度,∠B=∠E=30度。(1)操作发现:固定△ABC绕点C旋转,点D恰好落在AB边上时,如图5,填空:①线段DE与AC位置关系_______。②设△BCD的面积与△AEC的面积的数量关系是 。③猜想论证:当△DEC绕点C旋转到图6的位置时,小马猜想②中的结论仍然成立,并尝试分别做△BDC和△AEC的BC与CE边上的高,请你证明小马的猜想。 有了前一个习题的铺垫,①②两问学生会顺利地得到解答。③的解答细细的思考会发现,既然是旋转,抓住旋转的不变性及旋转前后的图形全等的特征,可证△ACN≌△DCM即可。 当替换条件时,∠BAC=36度,△ABC为等腰三角形,上述条件不改变,就变为一般情况,这样从一般到特殊的思维方法。拓展学生的知识视野,举一反三,融会贯通使知识达到成片开发,提高学生的想象能力及逻辑思维能力,达到训练目的。 启示:在这节习题课中,旋转的特殊性质,抓住旋转的不变性,利用全等条件,仔细观察图形的变化,启发学生思维开发和利用旋转的内在联系,一题多用,变换条件。螺旋上升,使学生的视野开阔,提升解答问题的能力。教学中只要留心观察,认真研究习题的变化和解题规律就会有所收获。充分利用学生手中的三角板进行演示,拼接通过全方位观察思考,运用工具进行知识重组和解答,无疑对培养学生思维的灵活性和独创性有着十分重要的意义。事实上,充满思考性的练习题即使学生没能完全正确解答出来,也能有效地训练学生的创新思维。这不仅有利于提高学生思考、分析的积极性,也有利于开发学生的创造潜能。创造性思维不仅要求思维的数量,还要求思维的深度和灵活性,即思维的变通性。创造性教学则是培养创造性思维和创新能力的基础。所以教师在教学过程中要从多角度训练学生的思维品质,使学生能独立地、自觉地运用所给问题的条件,并做出新的变换和组合,培养学生灵活应变能力。所以在教学中要关注学生的数学活动,培养动手操作能力,及时转换为数学模型,挖掘数学习题的内在潜质,去发现共性进而研究这类习题的解题规律。 以上三例的演示与启发使我认识到:教师一定要充分收集利用已有的数学资源,进行加工与创造培养学生的探究精神。去追求数学知识的内在联系,加强创新思维训练与培养,有待于我们去研究和利用。 (作者单位 永吉县第七中学) 编辑 鲁翠红
我要是会我问你干嘛~ 几何变换 在几何的解题中,当题目给出的条件显得不够或者不明显时,我们可以将图形作一定的变换,这样将有利于发现问题的隐含条件,抓住问题的关键和实质,使问题得以突破,找到满意的解答.图形变换是一种重要的思想方法,它是一种以变化的、运动的观点来处理孤立的、离散的问题的思想,很好地领会这种解题的思想实质,并能准确合理地使用,在解题中会收到奇效,也将有效地提高思维品质. 初中图形变换包含平移、翻折和旋转,我们要通过实验、操作、观察和想象的方法掌握运动的本质,在图形的运动中找到不变量,然后解决问题.
毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。
本科数学毕业论文题目
★浅谈奥数竟赛的利与弊
★浅谈中学数学中数形结合的思想
★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学
★中数教学研究
★XXX课程网上教学系统分析与设计
★数学CAI课件开发研究
★中等职业学校数学教学改革研究与探讨
★中等职业学校数学教学设计研究
★中等职业学校中外数学教学的比较研究
★中等职业学校数学教材研究
★关于数学学科案例教学法的探讨
★中外著名数学家学术思想探讨
★试论数学美
★数学中的研究性学习
★数字危机
★中学数学中的化归方法
★高斯分布的启示
★a二+b二≧二ab的变形推广及应用
★网络优化
★泰勒公式及其应用
★浅谈中学数学中的反证法
★数学选择题的利和弊
★浅谈计算机辅助数学教学
★论研究性学习
★浅谈发展数学思维的学习方法
★关于整系数多项式有理根的几个定理及求解方法
★数学教学中课堂提问的误区与对策
★怎样发掘数学题中的隐含条件
★数学概念探索式教学
★从一个实际问题谈概率统计教学
★教学媒体在数学教学中的作用
★数学问题解决及其教学
★数学概念课的特征及教学原则
★数学美与解题
★创造性思维能力的培养和数学教学
★教材顺序的教学过程设计创新
★排列组合问题的探讨
★浅谈初中数学教材的思考
★整除在数学应用中的探索
★浅谈协作机制在数学教学中的运用
★课堂标准与数学课堂教学的研究与实践
★浅谈研究性学习在数学教学中的渗透与实践
★关于现代中学数学教育的思考
★在中学数学教学中教材的使用
★情境教学的认识与实践
★浅谈初中代数中的二次函数
★略论数学教育创新与数学素质提高
★高中数学“分层教学”的初探与实践
★在中学数学课堂教学中如何培养学生的创新思维
★中小学数学的教学衔接与教法初探
★如何在初中数学教学中进行思想方法的渗透
★培养学生创新思维全面推进课程改革
★数学问题解决活动中的反思
★数学:让我们合理猜想
★如何优化数学课堂教学
★中学数学教学中的创造性思维的培养
★浅谈数学教学中的“问题情境”
★市场经济中的蛛网模型
★中学数学教学设计前期分析的研究
★数学课堂差异教学
★一种函数方程的解法
★浅析数学教学与创新教育
★数学文化的核心—数学思想与数学方法
★漫话探究性问题之解法
★浅论数学教学的策略
★当前初中数学教学存在的问题及其对策
★例谈用“构造法”证明不等式
★数学研究性学习的探索与实践
★数学教学中创新思维的培养
★数学教育中的科学人文精神
★教学媒体在数学教学中的应用
★“三角形的积化和差”课例大家评
★谈谈类比法
★直觉思维在解题中的应用
★数学几种课型的问题设计
★数学教学中的情境创设
★在探索中发展学生的创新思维
★精心设计习题提高教学质量
★对数学教育现状的分析与建议
★创设情景教学生猜想
★反思教学中的一题多解
★在不等式教学中培养学生的探究思维能力
★浅谈数学学法指导
★中学生数学能力的培养
★数学探究性活动的内容形式及教学设计
★浅谈数学学习兴趣的培养
★浅谈课堂教学的师生互动
★新世纪对初中数学的教材的思考
★数学教学的现代研究
★关于学生数学能力培养的几点设想
★在数学教学中培养学生创新能力的尝试
★积分中值定理的再讨论
★二阶变系数齐次微分方程的求解问题
★浅谈培养学生的空间想象能力
★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育
★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计
★培养学生学习数学的兴趣
★课堂教学与素质教育探讨
★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施
★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题
★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣
★数学教学中探究性学习策略
★论数学课堂教学的语言艺术
★数学概念的教与学
★优化课堂教学推进素质教育
★数学教学中的情商因素
★浅谈创新教育
★培养学生的数学兴趣的实施途径
★论数学学法指导
★学生能力在数学教学中的培养
★浅论数学直觉思维及培养
★论数学学法指导
★优化课堂教学焕发课堂活力
★浅谈高初中数学教学衔接
★如何搞好数学教育教学研究
★浅谈线性变换的对角化问题
本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法
生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。
1数学建模在煤矿安全生产中的意义
在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。
只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。
2煤矿生产计划的优化方法
生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。
基于数学模型的方法
(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。
(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。
基于人工智能方法
(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。
(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。
3煤矿安全生产中数学模型的优化建立
根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。
建立简化模型
模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。
很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式
式中x2---B工作面瓦斯体积分数;
u2---B工作面采煤进度;
w1---B矿井所对应的空气流速;
w2---相邻A工作面的空气流速;
a2、b2、c2、d2---未知量系数。
CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】
式中x3、x4---C、D工作面的瓦斯体积分数;
e1、e2---A、B工作面的瓦斯体积分数;
a3、b3、c3、d3---未知量系数:
f1、f2---A、B工作面的瓦斯绝对涌出量。
系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。
模型的转型及其离散化
因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】
在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若表示通风口的开通程度是,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。
依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。
模型的应用效果及降低瓦斯体积分数的措施
以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。
综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。
4结语
应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。
参考文献:
[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.
[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.
[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.
代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
3、 [电气工程与自动化]电力变压器的差动保护 论文+答辩ppt摘 要电力变压器是电力系统普遍使用的重要电气设备,它的安全运行直接关系到电力系统供电和稳定运行,特别是大容量变压器。同时差动保护是变压器非常重要的保护,因此,必须根据变压器的容量和参... 类别:毕业论文 大小:650 KB 日期:2008-09-24 4、 [电气工程与自动化]电力变压器电流保护 论文+答辩ppt摘 要电力变压器是电力系统中普遍使用的重要电气设备,他的安全运行直接关系到电力系统供电和稳定运行,因此,必须根据变压器的容量和重要程度装设性能良好的、动作可靠的保护元件。本次毕业设计... 类别:毕业论文 大小:725 KB 日期:2008-09-24 5、 [电气工程与自动化]35KV工厂电源变压器保护设计 论文+答辩ppt摘 要变压器是工厂供配电系统中不可缺少的重要电能转换设备,它的故障给供电可靠性和系统的正常运行带来严重的后果,同时大容量变压器也是非常贵重的元件。所以必须根据变压器的容量和重要程度装... 类别:毕业论文 大小: MB 日期:2008-09-24
农网建设10kV配电变压器的选用及安装分析论文
摘要: 本文从农网改造的重要性和特殊意义出发,重点对农网建设中配电变压器的选用、安装进行了详细的阐述。
关键词: 网改建设;10kV配电变压器;选用及安装
随着我国经济的快速发展,电力网络的建设也上了一个新台阶,作为电网重要组成元件之一的变压器,其数量也在激增。变压器的安装是一个工序相当复杂和重要的过程,安装质量的好坏直接影响到变压器的安全稳定运行,因此,如何合理选择配电变压器和正确安装,也是农网改造设计与施工中需要重点解决的问题。本人根据参加农网改造的实践和参考有关电力技术规程,对变压器的安装提出以下几点看法,以供参考。
一、10kV配电变压器台区的定位
农村配电变压器的台区应按“小容量,密布点,短半径”的原则来建设改造。变压器应尽可能安装在负荷中心或重要负荷附近,同时还应尽量避开车辆、行人较多的场所,且便于更换和检修设备的地方。最佳位置是指能使该台区内低压电网的线损、低压线路的投资和消耗的材料最少的位置。位置选择前应对现有的和未来10年内的负荷情况进行全面深入细致的调查和预测,使配电变压器安装位置居于负荷中心。从而使低压供电线路投资最省,电压降最小,低压线路损耗小。这与供电单位本身的经济效益和减轻农民负担密切相关。改造后的低压台区供电半径一般不大于300m,这样,既减少了线路损耗,又提高了电压质量。
总之,配电变压器安装位置的选择,关系到保证低压电压质量、减少线损、安全运行、降低工程投资、施工方便及不影响市容等。应从实际出发,全面考虑。
二、10kV配电变压器型号的选择
网改前,大部分采用高损耗SJ系列的变压器供电,损耗比重大。近年来,国家新开发的新型节能型变压器有S8和S9及S11三大类。
S9系列配电变压器的设计以增加有效材料用量来实现降低损耗,主要是增加铁心截面积以降低磁通密度,高低压绕组均使用铜导线,并加大导线截面,降低绕组电流密度,从而降低空载损耗和负载损耗。
S9与S7系列变压器相比,空载损耗平均降低10%,负载损耗平均降低25%。而S11系列变压器是在S9系列的基础上改进结构设计,选用超薄型硅钢片,进一步降低空载损耗而开发出来的,目前S11系列变压器的空载损耗比S9系列降低了30%,但投资相对比较高。因此,从性价比来考虑,新建或改造变压器时,一般应选择使用S9型低损耗变压器,原来高损耗配电变压器已全部淘汰,S7型系列配电变压器也被更换。
三、10kV配电变压器容量的选择
过去,在选择配电变压器时,由于缺乏科学分析计算,“大马拉小车”现象普遍存在,只依据用电户数大概来选择变压器容量,没科学依据,没考虑到如果选择容量过大,会出现“大马拉小车”的现象,这不仅会增加一次性投资,并且增加了空载损耗。如果选择容量太小,会引起变压器超负荷运行,过载损耗增加,最终导致烧毁变压器。为此,在选择配电变压器容量时,应按实际负荷及5~10年电力发展计划来选定,一般按变压器容量的45%~70%来选择。另外,考虑到农村有其自身的用电特点,受季节性、时间性强及用电负荷波动大的影响。有条件的村庄可采用母子变压器或调容变压器供电,以满足不同季节、不同时间的需求。
四、10kV配电变压器台架的安装
10KV配电网中杆架变压器的安装,最大容量一般控制在400KVA及以下,两杆的中心间距为,变压器在杆上倾斜不大于20mm,配电变压器台架用两根[12×3000]的槽钢固定于两电杆上,台架距地面不低于3m,台架水平倾斜不应大于台架长度的1/100。变压器脚底与台架用4根螺丝上紧,同时变压器的高、低压柱头要加装防尘罩,变压器要悬挂警告牌。另外安装铁件均需镀锌,并且100KVA以上的变压器要安装一台隔离开关。
五、跌落式熔断器的安装
配电变压器的高、低压侧均应装设熔断器。高压侧熔断器的底部对地面的垂直距离不低于,各相熔断器的水平距离不小于,为了便于操作和熔丝熔断后熔丝管能顺利地跌落下来,跌落式熔断器的轴线应与垂直线成15%~30%角。低压侧熔断器的底部对地面的垂直距离不低于,各相熔断器的水平距离不小于。
跌落式熔断器开关熔丝的选择按“配电变压器内部或高、低压出线管发生短路时能迅速熔断”的原则来进行选择,熔丝的熔断时间必须小于或等于。配电变压器容量在100kVA以下者,高压侧熔丝额定电流按变压器容量额定电流的2~3倍选择;容量在100kVh以上者,高压熔丝额定电流按变压器容量额定电流的~2倍选择。变压器低压侧熔丝按低压侧额定电流选择。
六、低压JP柜的安装
由于低压JP柜集配电、计量、保护(过载、短路、漏电、防雷)、电容无功补偿于一体,给安全用电提供了保障。所以农网改造以来,大量的JP柜被用于IOKV配电台区中,其选择与安装要求如下:
(一)JP柜的容量必须与变压器的容量相匹配。
(二)安装在杆架变压器下部角钢(2L70*7*3000)支架上的JP柜,必须安装牢固,水平倾斜小于支架长度的1/100。
(三)引线连接良好、并留有防水弯。
(四)绝缘子良好外观整洁干净、无渗漏。
(五)分合闸动作正确可靠无卡涩、指示清晰。
(六)低压电缆进、出线安装可靠。并且能防止小动物进出,造成柜内短路。
(七)低压绝缘引线安装可靠。
(八)JP柜柜门一定要关严,防止雨水进入柜内造成电气短路,或绝缘击穿对地漏电。
七、避雷器的.安装
运行经验证明:影响配电变压器安全运行的外界危险大部分来自雷电事故。因此,变压器应装设防雷装置。选用无间隙合成绝缘外套金属氧化物避雷器代替原有的阀式瓷外套避雷器,其工频电压耐受能力强,密封性好,保护特性稳定。
高压侧避雷器应安装在高压熔断器与变压器之间,并尽量靠近变压器,但必须保持距变压器端盖以上,这样不仅减少雷击时引下线电感对配变的影响,且又可以避免整条线路停电进行避雷器维护检修,还可以防止避雷器爆炸损坏变压器瓷套管等。另外,为了防止低压反变换波和低压侧雷电波侵入,应在低压侧配电箱内装设低压避雷器,从而起到保护配电变压器及其总计量装置的作用。避雷器间应用截面不少于25mm2的多股铜蕊塑料线连接在一起。为避免雷电流在接地电阻上的压降与避雷器的残压叠加在一起,作用在变压器绝缘上,应将避雷器的接地端、变压器的外壳及低压侧中性点用截面不少于25mm2的多股铜蕊塑料线连接在一起,再与接地装置引上线相连接。
八、接地装置
目前农网改造中,农村小容量变压器布点多,雷雨季节10kV配电变压器经常遭受雷击,如果接地电阻过大,达不到规程规定值,雷电流不能迅速泄入大地,造成避雷器自身残压过高,或在接地电阻上产生很高的电压降,引起变压器烧毁事故。因此,接地装置的接地电阻必须符合规程规定值。对10kV配电变压器:容量在及以下,其接地电阻不应大于10Q;容量在100kVh以上,其接地电阻不应大于4Q。接地装置施工完毕应进行接地电阻测试,合格后方可回填土。同时,变压器外套必须良好接地,外壳接地运用螺栓拧紧,不可用焊接直接焊牢,以便检修。
接地装置的地下部分由水平接地体和垂直接地体组成,水平接地体一般采用4根长度为5m的40mm×4mm的扁钢,垂直接地体采用5根长度为的50mm×50mm×5mm的角钢分别与水平接地每隔5m焊接。
水平接地体在土壤中埋设深为~,垂直接地体则是在水平接地体基础上打入地里的。接地引上线采用40mm×4mm扁钢,为了检测方便和用电安全,用于柱上式安装的变压器,引上线连接点应设在变压器底下的槽钢位置。
九、变压器台区引落线
新建和改造配电变压器的引落线均应采用多股绝缘线,其截面应按变压器的额定容量选择,但高压侧引落线铜芯不应小于16mm2,铝芯不应小于25mm2,杜绝使用单股导线及不合格导线。同时应考虑引落线对周围建筑物的安全距离。
高压引落线与抱箍、掌铁、电杆、变压器外壳等距离不应小于200mm,高压引落线间的距离在引线处不小于300mm,低压引落线间的距离及其它物体的距离不小于150mm。
近年来,随着农网改造工程的实施,我市配电网络结构越来越合理,配电网设施得到大大改善,使电网达到了结构合理、供电安全可靠、运行经济。
你看看这个吧!!
骆少明等 面向对象的无网格伽辽金法 机械工程学报(ISSN0577-6686)2000,36(10):23-26骆少明等 数值流形方法的变分原理与应用 应用数学与力学(ISSN1000-0887) 2001, 22(6):587-592骆少明等 数值流形方法中网格重分技术及其在金属成形过程中的应用 重庆大学学报(CN51-1165/N)2001,24(4): 34-37骆少明等 非线性数值流形方法的变分原理与应用 应用数学与力学(ISSN1000-0887) 2000, 21(12): 1265-1270骆少明等 一类基于小波基函数插值的有限元方法 应用数学与力学(ISSN1000-0887) 2000, 21(1): 11-16骆少明(2) 平稳随机过程的小波分析方法 应用数学与力学(ISSN1000-0887)1998, 19(10) : 859-864骆少明等 基于连续小波变换的系统分析 重庆大学学报(CN51-1165/N) 1997,20(3): 20-25骆少明(2)冷轧薄板板形及其优化算法 重庆大学学报(CN51-1165/N)骆少明(3)数值流形方法的对象设计 计算力学学报(CN21-1373/03)8:14骆少明(3)数值流形方法在连续体数值分析中的应用 力学与实践(CN11-2064/03)
变分法的应用多集中于最优化、极值等方面,通过求取极值等条件求得对应的曲线、曲面等。通过基本原理列出泛函式子,再由变分原理求取极值,从而得到所求解答。
最好在网上下载吧
我从初中开始就对初等几何非常感兴趣,后来哪怕是在高考前几个月也一直在看初等几何方面的书 结合我跟一个数学系教授的讨论,基本上初等几何已经不能算是研究了,能够被发现的定理都已经有人提出来了初等几何本身有一种魔力,作为智力的挑战而言的话它的价值是不言而喻的,但是它的价值也就仅此而已了 说到这,不得不提近现代几何学的发展初等几何通常指的是欧几里德的二维平面几何,发展了两千年,经过了笛卡尔的坐标系与代数紧密结合之后一直到了非欧几何的出现,几何才有了全新的活力,从那以后几何开始大放异彩,从黎曼几何到爱因斯坦的广义相对论,从陈省身的纤维丛理论到杨振宁的规范场论,乃至于超弦理论,这里面都有着几何的身影。这里提到的是几何的现代发展,主要是在微分几何领域,这可就跟初等几何有着天壤之别。总之,我的看法是初等几何作为业余爱好而言很有味道,作为研究的话那就乏善可陈了,不过几何是一种十分重要的思想,假如说真的很感兴趣的话不妨去接触一些微分几何的东西,毕竟初等几何的视野还是太窄了仅供参考。。。
现实意义:
1、培养人的逻辑思维能力;
2、逻辑能力的培养不能被数学的其他科目完全取代;
3、学习初等几何可发展人的空间想象能力和识图能力;
4、学习初等几何有助于在生活现实中独立自主,提高动手能力,更是继续学习的基础。
初等几何学是指用几何方法来解决数学问题的学科。几何方法主要是图形以及图形中所产生产生的公理、定理等。
几何方法:
1、基本逻辑方法:贯彻于整个初等几何中的基本方法,主要是指分析法与综合法,是其他几何方法的基础,这是初等几何的本质,所以初等几何也有叫它为综合几何。
2、度量化方法:就几何图形内在性质的表现形式的转化而言的,它是初等几何的常用方法。
3、变换(化)方法:就几何图形内在关系结构的转化而言的,它是初等几何的辅助方法。
4、代数化方法:就空间关系结构表现形式的转化而言的,它是超脱于几何图形性质本身的辅助方法。
5、机械化证明方法:就几何关系结构转化为按程序计算而言的,它是超脱于人们对初等几何问题原有思路的现代化的科学方法。
浅谈初等数学中数形结合的构造法解题的思路及其应用,