3、 [电气工程与自动化]电力变压器的差动保护 论文+答辩ppt摘 要电力变压器是电力系统普遍使用的重要电气设备,它的安全运行直接关系到电力系统供电和稳定运行,特别是大容量变压器。同时差动保护是变压器非常重要的保护,因此,必须根据变压器的容量和参... 类别:毕业论文 大小:650 KB 日期:2008-09-24 4、 [电气工程与自动化]电力变压器电流保护 论文+答辩ppt摘 要电力变压器是电力系统中普遍使用的重要电气设备,他的安全运行直接关系到电力系统供电和稳定运行,因此,必须根据变压器的容量和重要程度装设性能良好的、动作可靠的保护元件。本次毕业设计... 类别:毕业论文 大小:725 KB 日期:2008-09-24 5、 [电气工程与自动化]35KV工厂电源变压器保护设计 论文+答辩ppt摘 要变压器是工厂供配电系统中不可缺少的重要电能转换设备,它的故障给供电可靠性和系统的正常运行带来严重的后果,同时大容量变压器也是非常贵重的元件。所以必须根据变压器的容量和重要程度装... 类别:毕业论文 大小: MB 日期:2008-09-24
农网建设10kV配电变压器的选用及安装分析论文
摘要: 本文从农网改造的重要性和特殊意义出发,重点对农网建设中配电变压器的选用、安装进行了详细的阐述。
关键词: 网改建设;10kV配电变压器;选用及安装
随着我国经济的快速发展,电力网络的建设也上了一个新台阶,作为电网重要组成元件之一的变压器,其数量也在激增。变压器的安装是一个工序相当复杂和重要的过程,安装质量的好坏直接影响到变压器的安全稳定运行,因此,如何合理选择配电变压器和正确安装,也是农网改造设计与施工中需要重点解决的问题。本人根据参加农网改造的实践和参考有关电力技术规程,对变压器的安装提出以下几点看法,以供参考。
一、10kV配电变压器台区的定位
农村配电变压器的台区应按“小容量,密布点,短半径”的原则来建设改造。变压器应尽可能安装在负荷中心或重要负荷附近,同时还应尽量避开车辆、行人较多的场所,且便于更换和检修设备的地方。最佳位置是指能使该台区内低压电网的线损、低压线路的投资和消耗的材料最少的位置。位置选择前应对现有的和未来10年内的负荷情况进行全面深入细致的调查和预测,使配电变压器安装位置居于负荷中心。从而使低压供电线路投资最省,电压降最小,低压线路损耗小。这与供电单位本身的经济效益和减轻农民负担密切相关。改造后的低压台区供电半径一般不大于300m,这样,既减少了线路损耗,又提高了电压质量。
总之,配电变压器安装位置的选择,关系到保证低压电压质量、减少线损、安全运行、降低工程投资、施工方便及不影响市容等。应从实际出发,全面考虑。
二、10kV配电变压器型号的选择
网改前,大部分采用高损耗SJ系列的变压器供电,损耗比重大。近年来,国家新开发的新型节能型变压器有S8和S9及S11三大类。
S9系列配电变压器的设计以增加有效材料用量来实现降低损耗,主要是增加铁心截面积以降低磁通密度,高低压绕组均使用铜导线,并加大导线截面,降低绕组电流密度,从而降低空载损耗和负载损耗。
S9与S7系列变压器相比,空载损耗平均降低10%,负载损耗平均降低25%。而S11系列变压器是在S9系列的基础上改进结构设计,选用超薄型硅钢片,进一步降低空载损耗而开发出来的,目前S11系列变压器的空载损耗比S9系列降低了30%,但投资相对比较高。因此,从性价比来考虑,新建或改造变压器时,一般应选择使用S9型低损耗变压器,原来高损耗配电变压器已全部淘汰,S7型系列配电变压器也被更换。
三、10kV配电变压器容量的选择
过去,在选择配电变压器时,由于缺乏科学分析计算,“大马拉小车”现象普遍存在,只依据用电户数大概来选择变压器容量,没科学依据,没考虑到如果选择容量过大,会出现“大马拉小车”的现象,这不仅会增加一次性投资,并且增加了空载损耗。如果选择容量太小,会引起变压器超负荷运行,过载损耗增加,最终导致烧毁变压器。为此,在选择配电变压器容量时,应按实际负荷及5~10年电力发展计划来选定,一般按变压器容量的45%~70%来选择。另外,考虑到农村有其自身的用电特点,受季节性、时间性强及用电负荷波动大的影响。有条件的村庄可采用母子变压器或调容变压器供电,以满足不同季节、不同时间的需求。
四、10kV配电变压器台架的安装
10KV配电网中杆架变压器的安装,最大容量一般控制在400KVA及以下,两杆的中心间距为,变压器在杆上倾斜不大于20mm,配电变压器台架用两根[12×3000]的槽钢固定于两电杆上,台架距地面不低于3m,台架水平倾斜不应大于台架长度的1/100。变压器脚底与台架用4根螺丝上紧,同时变压器的高、低压柱头要加装防尘罩,变压器要悬挂警告牌。另外安装铁件均需镀锌,并且100KVA以上的变压器要安装一台隔离开关。
五、跌落式熔断器的安装
配电变压器的高、低压侧均应装设熔断器。高压侧熔断器的底部对地面的垂直距离不低于,各相熔断器的水平距离不小于,为了便于操作和熔丝熔断后熔丝管能顺利地跌落下来,跌落式熔断器的轴线应与垂直线成15%~30%角。低压侧熔断器的底部对地面的垂直距离不低于,各相熔断器的水平距离不小于。
跌落式熔断器开关熔丝的选择按“配电变压器内部或高、低压出线管发生短路时能迅速熔断”的原则来进行选择,熔丝的熔断时间必须小于或等于。配电变压器容量在100kVA以下者,高压侧熔丝额定电流按变压器容量额定电流的2~3倍选择;容量在100kVh以上者,高压熔丝额定电流按变压器容量额定电流的~2倍选择。变压器低压侧熔丝按低压侧额定电流选择。
六、低压JP柜的安装
由于低压JP柜集配电、计量、保护(过载、短路、漏电、防雷)、电容无功补偿于一体,给安全用电提供了保障。所以农网改造以来,大量的JP柜被用于IOKV配电台区中,其选择与安装要求如下:
(一)JP柜的容量必须与变压器的容量相匹配。
(二)安装在杆架变压器下部角钢(2L70*7*3000)支架上的JP柜,必须安装牢固,水平倾斜小于支架长度的1/100。
(三)引线连接良好、并留有防水弯。
(四)绝缘子良好外观整洁干净、无渗漏。
(五)分合闸动作正确可靠无卡涩、指示清晰。
(六)低压电缆进、出线安装可靠。并且能防止小动物进出,造成柜内短路。
(七)低压绝缘引线安装可靠。
(八)JP柜柜门一定要关严,防止雨水进入柜内造成电气短路,或绝缘击穿对地漏电。
七、避雷器的.安装
运行经验证明:影响配电变压器安全运行的外界危险大部分来自雷电事故。因此,变压器应装设防雷装置。选用无间隙合成绝缘外套金属氧化物避雷器代替原有的阀式瓷外套避雷器,其工频电压耐受能力强,密封性好,保护特性稳定。
高压侧避雷器应安装在高压熔断器与变压器之间,并尽量靠近变压器,但必须保持距变压器端盖以上,这样不仅减少雷击时引下线电感对配变的影响,且又可以避免整条线路停电进行避雷器维护检修,还可以防止避雷器爆炸损坏变压器瓷套管等。另外,为了防止低压反变换波和低压侧雷电波侵入,应在低压侧配电箱内装设低压避雷器,从而起到保护配电变压器及其总计量装置的作用。避雷器间应用截面不少于25mm2的多股铜蕊塑料线连接在一起。为避免雷电流在接地电阻上的压降与避雷器的残压叠加在一起,作用在变压器绝缘上,应将避雷器的接地端、变压器的外壳及低压侧中性点用截面不少于25mm2的多股铜蕊塑料线连接在一起,再与接地装置引上线相连接。
八、接地装置
目前农网改造中,农村小容量变压器布点多,雷雨季节10kV配电变压器经常遭受雷击,如果接地电阻过大,达不到规程规定值,雷电流不能迅速泄入大地,造成避雷器自身残压过高,或在接地电阻上产生很高的电压降,引起变压器烧毁事故。因此,接地装置的接地电阻必须符合规程规定值。对10kV配电变压器:容量在及以下,其接地电阻不应大于10Q;容量在100kVh以上,其接地电阻不应大于4Q。接地装置施工完毕应进行接地电阻测试,合格后方可回填土。同时,变压器外套必须良好接地,外壳接地运用螺栓拧紧,不可用焊接直接焊牢,以便检修。
接地装置的地下部分由水平接地体和垂直接地体组成,水平接地体一般采用4根长度为5m的40mm×4mm的扁钢,垂直接地体采用5根长度为的50mm×50mm×5mm的角钢分别与水平接地每隔5m焊接。
水平接地体在土壤中埋设深为~,垂直接地体则是在水平接地体基础上打入地里的。接地引上线采用40mm×4mm扁钢,为了检测方便和用电安全,用于柱上式安装的变压器,引上线连接点应设在变压器底下的槽钢位置。
九、变压器台区引落线
新建和改造配电变压器的引落线均应采用多股绝缘线,其截面应按变压器的额定容量选择,但高压侧引落线铜芯不应小于16mm2,铝芯不应小于25mm2,杜绝使用单股导线及不合格导线。同时应考虑引落线对周围建筑物的安全距离。
高压引落线与抱箍、掌铁、电杆、变压器外壳等距离不应小于200mm,高压引落线间的距离在引线处不小于300mm,低压引落线间的距离及其它物体的距离不小于150mm。
近年来,随着农网改造工程的实施,我市配电网络结构越来越合理,配电网设施得到大大改善,使电网达到了结构合理、供电安全可靠、运行经济。
你看看这个吧!!
骆少明等 面向对象的无网格伽辽金法 机械工程学报(ISSN0577-6686)2000,36(10):23-26骆少明等 数值流形方法的变分原理与应用 应用数学与力学(ISSN1000-0887) 2001, 22(6):587-592骆少明等 数值流形方法中网格重分技术及其在金属成形过程中的应用 重庆大学学报(CN51-1165/N)2001,24(4): 34-37骆少明等 非线性数值流形方法的变分原理与应用 应用数学与力学(ISSN1000-0887) 2000, 21(12): 1265-1270骆少明等 一类基于小波基函数插值的有限元方法 应用数学与力学(ISSN1000-0887) 2000, 21(1): 11-16骆少明(2) 平稳随机过程的小波分析方法 应用数学与力学(ISSN1000-0887)1998, 19(10) : 859-864骆少明等 基于连续小波变换的系统分析 重庆大学学报(CN51-1165/N) 1997,20(3): 20-25骆少明(2)冷轧薄板板形及其优化算法 重庆大学学报(CN51-1165/N)骆少明(3)数值流形方法的对象设计 计算力学学报(CN21-1373/03)8:14骆少明(3)数值流形方法在连续体数值分析中的应用 力学与实践(CN11-2064/03)
变分法的应用多集中于最优化、极值等方面,通过求取极值等条件求得对应的曲线、曲面等。通过基本原理列出泛函式子,再由变分原理求取极值,从而得到所求解答。
最好在网上下载吧
论文题目:PLC和变频技术在恒压供水系统中的应用 PLC和变频技术在恒压供水系统中的应用WwWWW 摘要: 本文是针对节能和提高供水质量问题而提出的恒压供水系统设计和应用的研究.文中分析了旧系统存在的问题,介绍了水位自动检测技术及保护措施,阐述了采用变频技术、PLC技术及自动控制技术相结合来实现的恒压供水控制的系统总体设计方案和软件设计。通过实践证明.该系统具有较强的功能.对供水质量、节约能源和运行可靠性具有较好的改善。关键词:变频技术;PLC技术;恒压供水;自启动1 引言随着各住宅小区的宿舍楼等一座座高楼拔地而起,相应的生活用水量也大幅度增加。人们对提高供水质量的要求越来越高,另外人们的节能意识及对运行的可靠性的要求越来越强。采用变频器及PLC技术实现的无塔恒压供水系统,不仅能提高供水质量,而且在节约能源和运行可靠性具有较好的改善。其中,采用变频调速的主要目的是通过调速来恒定用水管道的压力以达到节能的目的,恒压供水则是为了满足用户对流量的要求。应用PLC技术是为了实现系统的软启动,减少手动操作或抚慰操作,同时替代部分继电器减少机械触点的故障,增强可靠性。下面笔者根据这方面的工作经验谈谈在恒压供水系统设计和实践过程中的一些思路和做法。2 变频器的工作原理在恒压供水控制系统中,关键技术主要是变频技术。目前效率最高、性能最好的系统是变压变频调速控制系统。2.1变频器的基本构成变频器的基本构成如图1所示,由主回路(包括整流器、滤波器、逆变器)和控制电路组成。 整流器的作用是把三相交流整流成直流。滤波器是用来缓冲直流环节和负载之间的无功能量。逆变器最常见的结构形式是利用六个半导体器件开关组成的三相桥式逆变电路,有规律地控制逆变器中主开关的通与断,可以得到任意频率的三相交流输出。控制电路主要是完成对逆变器的开关控制、对整流器的电压控制以及完成各种保护功能等。2.2变频器基本原理 变频器的基本原理是利用逆变器中的开关元件,由控制电路按一定的规律控制开关元件的通断,从而在逆变器的输出端获得一系列等幅而不等宽的矩形脉冲波形,来近似等效于正弦电压波。图2所示出正弦波的正半周,并将其分为n等分(n=12)。每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的等幅矩形所代替。这样,由n个等幅而不等宽的矩形脉冲所组成的波形与正弦波的正半周等效。正弦波的负半周也可以用相同的方法来等效。可采用正弦波与三角波相交的方案来确定各分段矩形脉冲的宽度。当逆变器输出端需要升高电压时,只要增大正弦波相对三角波的幅值,这时逆变器的输出的矩形脉冲幅值不变而宽度相应增大,达到了调压的要求。当逆变器的输出端需要变频时,只要改变正弦波的频率就可以了。3 控制系统总体设计过去的供水控制系统投资多,采用的模式为多台小功率水泵供水。在运行实践中暴露出主控电路设计不合理和逻辑控制设计不合理的现象。新系统总体设计方案如图3所示。在该供水系统的控制电路中除采用了变频器(VVVF),还采用一些先进控制装置如数字调节器(PID)、可编程控制器(PLC)等,这些装置都是以电脑芯片为内核完成各自不同的控制功能。为简化控制电路,根据负荷需要,使用一台18.5KW大容量水泵供水。为提高使用的安全系数,选用一台日本富士22.5KW变频器进行水泵调速,该变频器内置PID调节功能,但不具备参数监视功能。为能有效监视调节工况,特选数字显示调节器进行监视和控制,以备实现串级PID控制。鉴于外部I/O可控点数不多,可编程控制器PLC选用20点即可满足控制要求。4 水位检测电路设计4.1水位检测开关考虑到水位检测装置要求故障率少,运行可靠,为简化检测环节,设计中采用结构简单的浮子式水位检测开关,但为防止信号串扰,另外增加了一个隔离转换装置。该装置内选用了干簧继电器用以提高开关接点的可靠性和使用寿命。4.2水位检测逻辑控制水位检测逻辑控制功能如前所述完全由可编程控制器PLc编程实现,减少了硬件配置,提高了运行的可靠性和应用的灵活性。PLC的I/O地址分配见图4(a)所示,简化梯形图如图4(b)所示。其逻辑电路主要完成如下功能,见图4(b)所示。(1)水位信号保持功能水位开关检测分别由PLC的常开接点实现。由于水位由于簧管的常开接点来检测,只有在水面越过该点时闭合,低于该点即断开,因此信号需由PLC保持。(2)水位信号显示、报警、保护功能水位正常时01002动作,使输出绿灯亮。水位低时01003动作,使输出红灯亮,且通过其常闭接点停供水泵。水位高时20000、01000同时启动,使输出黄灯亮(闪光l5秒转平光)且无条件停蓄水泵。 5 操作保护功能设计除了常规保护功能外还增加了人性化操作功能。考虑到泵短时间内的频繁启动对泵运行不利,故设置1分钟内只允许连续启动两次,第三次需延时3分钟后进行,以利泵的散热,延长设备使用寿命,减少功耗。编程时可采用定时器和计数器配合来实现。这项功能在启停调试设备过程中得到检验。6 系统自启动功能设计(1)自启动概述为了方便运行维护人员,有两种情况可以考虑自启动:①系统断电一段时间后恢复供电的自启动,系统在正常运行工况下突然停电时,如果其它检测无异常则来电后可实现自启动,这一点在夜间更为重要,可给维护人员带来方便,此项功能得到了维护人员的认可。②低水位使泵跳闸后水位恢复时的自启动管网用水负荷过大或蓄水水压过低流量减少造成的低水位,会引起供水泵跳闸。在水位恢复正常后可实现自启动。(2)自启功能的实现 如图5所示。图中,“自启动条件”有两个:一是计数器C103接点,二是“水位正常”信号接点。由于计数器C103具有停电记忆特性,所以只要水位恢复正常时01002闭合就可自启动。其过程是:微分继电器20006(13)产生的微分信号由20009继电器保持,再经时间继电器"1"020延时后使其输出的常开接点"1"020(见图4b)接通启动回路,则水泵重新运转。 (3)自启动的预置自启动功能可根据用户需要事先预置,否则,该功能会被屏蔽。设计方案如下:①预置和解除均借用运行状态下的启动按钮。预置时按动启动按钮三下使计数器C103启动,则其常开接点C103闭合。解除自启功能:按住启动按钮1秒,使计数器C103复位或按停止按钮使泵停运的同时也解除了自启动设置。②预置的显示借用水位正常灯(闪光3秒),解除借用高水位报警灯(闪光3秒)。7 结束语上述无塔供水控制系统经投入使用,各项设计功能运行正常,供水质量有了很大提高,单位大功率设备用电量也明显减少。期间,还经历了系统实际异常情况自动处理的考验,如“储水罐满水后的蓄水泵自动跳闸”、“电力网停电来电后的供水泵自启动”、“电源缺相报警”等,这些功能都得到了很好的验证。参考文献[1]张燕宾主编.变频调速应用实践.机械工业出版社,2001.[2]北京四通工控技术有限公司编.FRENIC5000G11S/P11S说明手册.2001.[3]北京鹭岛公司编.OMRON可编程控制器使用手册.2000.[4]高勤主编.电器与PLC控制技术.高等教育出版社,2001. 借鉴一下吧,以前搞了很多,找不到了~不好意思
基于PLC的恒压供水系统设计摘要随着人民生活水平的日趋提高,新技术和先进设备的应用,使给供水设计得到了发展的机遇。于是选择一种符合各方面规范、卫生安全而又经济合理的供水方式,对我们给供水设计带来了新的挑战。本系统采用PLC进行逻辑控制,采用带PID功能的变频器进行压力调节,系统存在工作可靠,使用方便,压力稳定,无冲击等优越性。本设计恒压变频供水设备由PLC、变频器、传感器、低压电气控制柜和水泵等组成。通过PLC、变频器、继电器、接触器控制水泵机组运行状态,实现管网的恒压变流量供水要求。设备运行时,压力传感器不断将管网水压信号变换成电信号送入PLC,经PLC运算处理后,获得最佳控制参数,通过变频器和继电器控制元件自动调整水泵机组高效率地运行。供水系统的监控主要包括水泵的自动启停控制、供水压力的测量与调节、系统主管道水压的;系统水处理设备运转的监视、控制;故障及异常状况的报警等。现场监控站内的控制器按预先编制的软件程序来满足自动控制的要求,即根据供水管的高/低水压位信号来控制水泵的启/停及进水控制阀的开关,并且进行溢水和枯水的预警等。文中详细介绍了所选PLC机、变频器、传感器的特点、各高级单元的使用及设定情况,给出了系统工作流程图、程序设计流程图及设计程序。关键词:可编程控制器;变频器;传感器目录1前言供水系统发展过程及现状供水系统的概述.变频恒压供水系统主要特点:.恒压供水设备的主要应用场合:.恒压供水技术实现:32系统总体设计方案系统设计方案系统控制要求控制方案运行特征系统方案可编程控制器(PLC)的特点及选型特点及应用可编程控制器的选型.PLCCPM2A模拟量输入/输出单元变频器选型及特点产品信息:变频节能理论:.变频恒压供水系统及控制参数选择:.变频恒压供水系统的优点及体现远传压力表主要技术指标结构原理系统控制流程设计系统组成及作用系统运行过程203软件设计系统中检测及控制开关I/O分配地址及标志位分配表流程图程序设计:294.结论43致谢44参考文献45
摘 要 现在流行的异步电动机的调速方法可分为两种:变频调速和变压调速,其中异步电动机的变频调速应用较多,它的调速方法可分为两种:变频变压调速和矢量控制法,前者的控制方法相对简单,有二十多年的发展经验。因此应用的比较多,目前市场上出售的变频器多数都是采用这种控制方法。 关键词: 交流调速系统, 异步电动机, PWM技术.....目录摘 要 1前言 设计的目的和意义 变频器调速运行的节能原理 3第二章 变频器 变频器选型: 变频器控制原理图设计: 变频器控制柜设计 变频器接线规范 变频器的运行和相关参数的设置 常见故障分析 8第三章 交流调速系统概述 交流调速系统的特点 10第四章变频电动机的特点 电磁设计 结构设计 14第五章 变频电机主要特点和变频电机的构造原理 变频专用电动机具有如下特点: 变频电机的构造原理 15第六章 交流异步电动机 交流异步电动机变频调速基本原理 变频变压(VVVF)调速时电动机的机械特性 变压变频运行时机械特性分折 19第七章 PWM技术原理 正弦波脉宽调制(SPWM) 25 单极性SPWM法 ..................................................................................................................26结论 31致 谢 32参 考 文 献 33前言 设计的目的和意义 近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。深入了解交流传动与控制技术的走向,具有十分积极的意义.变频器调速运行的节能原理 实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在逆变器上,利用逆变器功率元件的通断控制,使逆变器输出端获得一定形状的矩形脉冲波形。在这里,通过改变矩形脉冲的宽度控制其电压幅值;通过改变调制周期控制其输出频率,从而在逆变器上同时进行输出电压和频率的控制,而满足变频调速对U/f协调控制的要求。PWM的优点是能消除或抑制低次谐波,使负载电机在近正弦波的交变电压下运行,转矩脉冲小,调速范围宽。 采用PWM控制方式的电机转速受到上限转速的限制。如对压缩机来讲,一般不超过7000r/rain。而采用PAM控制方式的压缩机转速可提高1.5倍左右,这样大大提高了快速增速和减速能力。同时,由于PAM在调整电压时具有对电流波形的整形作用,因而可以获得比PWM更高的效率。此外,在抗干扰方面也有着PWM无法比拟的优越性,可抑制高次谐波的生成,减小对电网的污染。采用该控制方式的变频调速技术后,电机定子电流下降64% ,电源频率降低30% ,出胶压力降低57% 。由电机理论可知,异步电机的转速可表示为:n=60•f 8(1—8)/p第二章 变频器变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。 变频器选型: 变频器选型时要确定以下几点: 1) 采用变频的目的;恒压控制或恒流控制等。 2) 变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。 3) 变频器与负载的匹配问题; I.电压匹配;变频器的额定电压与负载的额定电压相符。 II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。 5) 变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。 6) 对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。 变频器控制原理图设计: 1) 首先确认变频器的安装环境; I.工作温度。变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0~55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。 II. 环境温度。温度太高且温度变化较大时,变频器内部易出现结露现象,其绝缘性能就会大大降低,甚至可能引发短路事故。必要时,必须在箱中增加干燥剂和加热器。在水处理间,一般水汽都比较重,如果温度变化大的话,这个问题会比较突出。 III.腐蚀性气体。使用环境如果腐蚀性气体浓度大,不仅会腐蚀元器件的引线、印刷电路板等,而且还会加速塑料器件的老化,降低绝缘性能。 IV. 振动和冲击。装有变频器的控制柜受到机械振动和冲击时,会引起电气接触不良。淮安热电就出现这样的问题。这时除了提高控制柜的机械强度、远离振动源和冲击源外,还应使用抗震橡皮垫固定控制柜外和内电磁开关之类产生振动的元器件。设备运行一段时间后,应对其进行检查和维护。 V. 电磁波干扰。变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰。因此,柜内仪表和电子系统,应该选用金属外壳,屏蔽变频器对仪表的干扰。所有的元器件均应可靠接地,除此之外,各电气元件、仪器及仪表之间的连线应选用屏蔽控制电缆,且屏蔽层应接地。如果处理不好电磁干扰,往往会使整个系统无法工作,导致控制单元失灵或损坏。 2) 变频器和电机的距离确定电缆和布线方法; I.变频器和电机的距离应该尽量的短。这样减小了电缆的对地电容,减少干扰的发射源。 II. 控制电缆选用屏蔽电缆,动力电缆选用屏蔽电缆或者从变频器到电机全部用穿线管屏蔽。 III.电机电缆应独立于其它电缆走线,其最小距离为500mm。同时应避免电机电缆与其它电缆长距离平行走线,这样才能减少变频器输出电压快速变化而产生的电磁干扰。如果控制电缆和电源电缆交叉,应尽可能使它们按90度角交叉。与变频器有关的模拟量信号线与主回路线分开走线,即使在控制柜中也要如此。 IV. 与变频器有关的模拟信号线最好选用屏蔽双绞线,动力电缆选用屏蔽的三芯电缆(其规格要比普通电机的电缆大档)或遵从变频器的用户手册。 3) 变频器控制原理图; I.主回路:电抗器的作用是防止变频器产生的高次谐波通过电源的输入回路返回到电网从而影响其他的受电设备,需要根据变频器的容量大小来决定是否需要加电抗器;滤波器是安装在变频器的输出端,减少变频器输出的高次谐波,当变频器到电机的距离较远时,应该安装滤波器。虽然变频器本身有各种保护功能,但缺相保护却并不完美,断路器在主回路中起到过载,缺相等保护,选型时可按照变频器的容量进行选择。可以用变频器本身的过载保护代替热继电器。 II. 控制回路:具有工频变频的手动切换,以便在变频出现故障时可以手动切工频运行,因输出端不能加电压,固工频和变频要有互锁。 4) 变频器的接地; 变频器正确接地是提高系统稳定性,抑制噪声能力的重要手段。变频器的接地端子的接地电阻越小越好,接地导线的截面不小于4mm,长度不超过5m。变频器的接地应和动力设备的接地点分开,不能共地。信号线的屏蔽层一端接到变频器的接地端,另一端浮空。变频器与控制柜之间电气相通。 变频器控制柜设计 变频器应该安装在控制柜内部,控制柜在设计时要注意以下问题 1) 散热问题:变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热我们通常采用风扇散热;变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行;大功率的变频器还需要在控制柜上加风扇,控制柜的风道要设计合理,所有进风口要设置防尘网,排风通畅,避免在柜中形成涡流,在固定的位置形成灰尘堆积;根据变频器说明书的通风量来选择匹配的风扇,风扇安装要注意防震问题。 2) 电磁干扰问题: I.变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰,而且会产生高次谐波,这种高次谐波会通过供电回路进入整个供电网络,从而影响其他仪表。如果变频器的功率很大占整个系统25%以上,需要考虑控制电源的抗干扰措施。 II.当系统中有高频冲击负载如电焊机、电镀电源时,变频器本身会因为干扰而出现保护,则考虑整个系统的电源质量问题。 3) 防护问题需要注意以下几点: I.防水防结露:如果变频器放在现场,需要注意变频器柜上方不的有管道法兰或其他漏点,在变频器附近不能有喷溅水流,总之现场柜体防护等级要在IP43以上。 II. 防尘:所有进风口要设置防尘网阻隔絮状杂物进入,防尘网应该设计为可拆卸式,以方便清理,维护。防尘网的网格根据现场的具体情况确定,防尘网四周与控制柜的结合处要处理严密。 III.防腐蚀性气体:在化工行业这种情况比较多见,此时可以将变频柜放在控制室中。 变频器接线规范 信号线与动力线必须分开走线:使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。 信号线与动力线必须分别放置在不同的金属管道或者金属软管内部:连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。 1) 模拟量控制信号线应使用双股绞合屏蔽线,电线规格为。在接线时一定要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。 2) 为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。 变频器的运行和相关参数的设置 变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。 控制方式:即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。 最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。 最高运行频率:一般的变频器最大频率到60Hz,有的甚至到400 Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。 载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。 电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。 跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。 常见故障分析 1) 过流故障:过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。 2) 过载故障:过载故障包括变频过载和电机过载。其可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。 3) 欠压:说明变频器电源输入部分有问题,需检查后才可以运行。第三章 交流调速系统概述 交流调速系统的特点对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类。这主要是根据采用什么电流制型式的电动机来进行电能与机械能的转换而划分的,所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。纵观电力拖动的发展过程,交、直流两大调速系统一直并存于各个工业领域,虽然由于各个时期科学技术的发展使得它们所处的地位有所不同,但它们始终是随着工业技术的发展,特别是随着电力电子元器件的发展而在相互竞争。在过去很长一段时期,由于直流电动机的优良调速性能,在可逆、可调速与高精度、宽调速范围的电力拖动技术领域中,几乎都是采用直流调速系统。然而由于直流电动机其有机械式换向器这一致命的弱点,致使直流电动机制造成本高、价格昂贵、维护麻烦、使用环境受到限制,其自身结构也约束了单台电机的转速,功率上限,从而给直流传动的应用带来了一系列的限制。相对于直流电动机来说,交流电动机特别是鼠笼式异步电动机具有结构简单,制造成本低,坚固耐用,运行可靠,维护方便,惯性小,动态响应好,以及易于向高压、高速和大功率方向发展等优点。因此,近几十年以来,不少国家都在致力于交流调速系统的研究,用没有换向器的交流电动机实现调速来取代直流电动机,突破它的限制。随着电力电子器件,大规模集成电路和计算机控制技术的迅速发展,以及现代控制理论向交流电气传动领域的渗透,为交流调速系统的开发研究进一步创造了有利的条件。诸如交流电动机的串级调速、各种类型的变频调速,特别是矢量控制技术的应用,使得交流调速系统逐步具备了宽的调速范围、较高的稳速精度、快速的动态响应以及在四象限作可逆运行等良好的技术性能。现在从数百瓦的伺服系统到数百千瓦的特大功率高速传动系统,从一般要求的小范围调速传动到高精度、快响应、大范围的调速传动,从单机传动到多机协调运转,已几乎都可采用交流调速传动。交流调速传动的客观发展趋势已表明,它完全可以和直流传动相媲美、相抗衡,并有取代的趋势。 交流调速常用的调速方案及其性能比较由电机学知,交流异步电动机的转速公式如下:n= 60ƒ1 (1-s) pn (1-1)式中 Pn——电动机定子绕阻的磁极对数; f1——电动机定子电压供电频率; s ——电动机的转差率。从式(1-1)中可以看出,调节交流异步电动机的转速有三大类方案。(1)改变电动机的磁极对数由异步电动机的同步转速no= 60ƒ1 pn可知,在供电电源频率f1不变的条件下,通过改接定子绕组的连接方式来改变异步电动机定子绕组的磁极对数Pn,即可改变异步电动机的同步转速n0,从而达到调速的目的。这种控制方式比较简单,只要求电动机定子绕组有多个抽头,然后通过触点的通断来改变电动机的磁极对数。采用这种控制方式,电动机转速的变化是有级的,不是连续的,一般最多只有三档,适用于自动化程度不高,且只须有级调速的场合。(2)变频调速 从式(1—1)中可以看出,当异步电动机的磁极对数Pn一定,转差率s—定时,改变定子绕组的供电频率f1可以达到调速目的,电动机转速n基本上与电源的频率f1成正比,因此,平滑地调节供电电源的频率,就能平滑,无级地调节异步电动机的转速。变频调速调速范围大,低速特性较硬,基频f=50Hz以下,属于恒转矩调速方式,在基频以上,属于恒功率调速方式,与直流电动机的降压和弱磁调速十分相似。且采用变频起动更能显著改善交流电动机的起动性能,大幅度降低电机的起动电流,增加起动转矩。所以变频调速是交流电动机的理想调速方案。(3)变转差率调速改变转差率调速的方法很多,常用的方案有:异步电动机定子调压调速,电磁转差离合器调速和绕线式异步电动机转子回路串电阻调速,串级调速等。定子调压调速系统就是在恒定交流电源与交流电动机之间接入晶闸管作为交流电压控制器,这种调压调速系统仅适用于一些属短时与重复短时作深调速运行的负载。为了能得到好的调速精度与能稳定运行,一般采用带转速负反馈的控制方式。所使用的电动机可以是绕线式异电动机或是有高转差率的鼠笼式异步电动机。电磁转差离台器调速系统,是由鼠笼式异步电动机、电磁转差离合器以及控制装置组合而成。鼠笼式电动机作为原动机以恒速带动电磁离合器的电枢转动,通过对电磁离合器励磁电流的控制实现对其磁极的速度调节。这种系统一般也采用转速闭环控制。绕线式异步电动机转子回路串电阻调速就是通过改变转子回路所串电阻来进行调速,这种调速方法简单,但调速是有级的,串入较大附加电阻后,电动机的机械特性很软,低速运行损耗大,稳定性差。绕线式异步电动机串级调速系统就是在电动机的转子回路中引入与转子电势同频率的反向电势Ef,只要改变这个附加的,同电动机转子电压同频率的反向电势Ef,就可以对绕线式异步电动机进行平滑调速。Ef越大,电动机转速越低。 上述这些调速的共同特点是调速过程中没有改变电动机的同步转速n0,所以低速时,转差率s较大。 在交流异步电动机中,从定子传入转子的电磁功率PM可以分成两部分:一部分P2=(1—s)PM是拖动负载的有效功率,另一部分是转差功率PS=sPM,与转差率s成正比,它的去向是调速系统效率高低的标志。就转差功率的去向而言,交流异步电动机调速系统可以分为三种:1)转差功率消耗型 这种调速系统全部转差功率都被消耗掉,用增加转差功率的消耗来换取转速的降低,转差率s增大,转差功率PS=sPM增大,以发热形式消耗在转子电路里,使得系统效率也随之降低。定子调压调速、电磁转差离合器调速及绕线式异步电动机转子串电阻调速这三种方法属于这一类,这类调速系统存在着调速范围愈宽,转差功率PS愈大,系统效率愈低的问题,故不值得提倡。2)转差功率回馈型 这种调速系统的大部分转差功率通过变流装置回馈给电网或者加以利用,转速越低回馈的功率越多,但是增设的装置也要多消耗一部分功率。绕线式异步电动机转子串级调速即属于这一类,它将转差功率通过整流和逆变作用,经变压器回馈到交流电网,但没有以发热形式消耗能量,即使在低速时,串级调速系统的效率也是很高的。3)转差功率不变型 这种调速系统中,转差功率仍旧消耗在转子里,但不论转速高低,转差功率基本不变。如变极对数调速,变频调速即属于这一类,由于在调速过程中改变同步转速n0,转差率s是一定的,故系统效率不会因调速而降低。在改变n0的两种调速方案中,又因变极对数调速为有极调速,且极数很有限,调速范围窄,所以,目前在交流调速方案中,变频调速是最理想,最有前途的交流调速方案。第四章变频电动机的特点电磁设计 对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下:
十大关键词 回顾变频器辉煌60年 六十,这是最近每个中国人心里默念的一个数字。是啊,六十年,新中国崛起的六十年,一头连着满目疮痍的旧社会,一头连着繁荣兴旺的新中国!六十一甲子,历史长河中的一小簇浪花,在中国五千年的历史中,也不过是短暂的一瞬,新中国却完成了从一片废墟到世界强国过渡,一个看似不可能完成的任务。关键词一:增长根据本刊调查统计,中国变频器市场2008年为120多亿,品牌数量达220多家,装机容量为3000多万kW。在过去的十几年中,国内变频器市场保持着12%~15%的增长率,虽然2008年全球经济遭受了严重的冲击,中国的变频器市场仍然保持了10%左右的增长。 关键词二:国产化进入21世纪,国产变频器得到了前所未有的发展,国产变频企业到现在已超过100多家,并且在技术上也有了很大的进步。关键词三:本土化过去十几年的中国变频器行业,外资企业大面积抢滩中国,在本土化上作了很多卓有成效的努力。国内变频器行业的飞速发展与外资企业的本土化战略密不可分。关键词四: 矢量控制矢量控制是将交流电机空间磁场矢量的方向作为坐标轴的基准方向,通过坐标变换将电机定子电流正交分解为与磁场方向一致的励磁电流分量和与磁场方向垂直的转矩电流分量,然后就可以像直流电机一样控制。矢量控制理论的提出为交流调速开辟了广阔的空间。关键词五:直接转矩控制直接转矩控制结构简单、控制信号处理的物理概念明确、系统的转矩响应迅速且无超调,是一种具有高性能的新型交流调速控制方式。直接转矩控制完成了交流调速的又一次飞跃。关键词六:高压变频器在变频器业界内有这样一种说法,谁拥有高压变频器技术优势,谁就将在变频器行业乃至工控领域占有一席之地。目前,国内已经有十几家企业有能力生产高压变频器,国产品牌约占市场的50%以上。关键词七:矩阵变频器矩阵式交-交变频器能实现功率为1,输入电流为正弦且能四象限运行,系统的功率密度大,并能实现轻量化。然而舆论却认为:尽管矩阵变频器具有非常诱人的前景,但由于成本太大,目前无法进行商业化应用。关键词八:并购与整合国外巨头将目光锁定在一些竞争力较强的国内变频器制造商,通过并购的方式快速进入中国市场或巩固其在亚太地区乃至全球产业链中的地位。国内部分变频器企业也通过构筑联盟等方式,扩大其在产业中的竞争力。关键词九:节能2008年4月1日,新的能源法正式施行,它在法律层面将节约资源确定为中国的基本国策。作为节能的最直接产品,变频器的发展遇到了一个难得的良好机遇。关键词十:国际化随着经济全球化、一体化的深入发展,中国变频器行业在积极“引进来”的同时,一批优秀企业也在积极地“走出去”。2008年的经济危机使全球的经济都受到了重创,用户越来越注重产品性价比,这为中国变频器企业“走出去”创造了前所未有的机会。可能没有三千字哦
分类: 社会民生 >> 军事 解析: 一、初识Windows功能增强“插件”MSI 我们经常可以看到许多软件只有一个扩展名为MSI的文件,双击这个文件运行,就会出现和Windows应用软件安装非常相似的安装过程,MSI文件到底是什么?为什么许多软件开始用MSI格式来发行呢?请听我慢慢说来。 文件的由来 说到MSI文件,不得不先说说Windows Installer,它不只是安装程序,而是可扩展的软件管理系统。Windows Installer的用途包括:管理软件的安装、管理软件组件的添加和删除、监视文件的复原以及使用回滚技术维护基本的灾难恢复。另外,Windows Installer还支持从多个源位置安装和运行软件,而且可以由想要安装自定义程序的开发人员自定义。要想使用这些功能,就必须通过MSI文件。MSI文件是Windows Installer的数据包,它实际上是一个数据库,包含安装一种产品所需要的信息和在很多安装情形下安装(和卸载)程序所需的指令和数据。MSI文件将程序的组成文件与功能关联起来。此外,它还包含有关安装过程本身的信息:如安装序列、目标文件夹路径、系统依赖项、安装选项和控制安装过程的属性。 的优势 Windows Installer技术就是合并在一起发挥作用的两个部分:客户端安装程序服务() 和Microsoft软件安装(MSI)软件包文件。 程序是 Windows Installer 的一个组件。 当 被安装程序调用时,它将用 读取软件包文件 (.msi)、应用转换文件 (.mst) 并合并由安装程序提供的命令行选项。 Windows Installer 执行所有与安装有关的任务:包括将文件复制到硬盘、修改注册表、创建桌面快捷方式、必要时显示提示对话框以便用户输入安装首选项。 当双击MSI文件的时候,与之关联的Windows Installer 的一个文件 被调用,它将用读取软件包文件(.msi)、应用转换文件(.mst)进行进一步处理,然后 Windows Installer 执行所有与安装有关的任务:包括将文件复制到硬盘、修改注册表、创建桌面快捷方式,必要时显示提示对话框以便用户输入安装需要的信息,就这样,一个程序安装到了你的电脑上。 采用MSI安装的优势在于你可以随时彻底删除它们,更改安装选项,即使安装中途出现意想不到的错误,一样可以安全地恢复到以前的状态,正是凭着此强大功能,越来越多的软件开始使用MSI作为发行的方式了。 如果你对MSI文件感兴趣,可以用WinRAR等压缩软件打开,看一下里面的内容,满足一下好奇心。 3、MSI格式文件安装支持程序:WinMe和WinXP对MSI支持得很好,但其他版本的Windows就需要安装一个插件才能使用MSI格式的文件。 点这里下载InstMsiW插件 二、定制自己的MSI文件 前面我们介绍了很多MSI文件的内容,其实MSI并不神秘、复杂,我们自己都能制作,并且制作MSI文件的工具已经在Windows的安装盘上了。 首先,找到Windows2000的安装光盘,双击下边的这个位置的文件:valueadd\3rdparty\Mgmt\, 很快软件就自动安装到了电脑中。在开始菜单的所有程序里边就多了“VERITAS sofare”组,点击运行里边的“VERITAS discover”就可以开始制作MSI文件了。 制作MSI文件的基本原理就是,在我们安装一个软件以前,先给电脑的磁盘拍个“快照”。然后将要安装的软件安装到电脑中,并对注册表等内容做修改,等到确认这个软件能正确运行后,再给电脑的磁盘拍个“快照”。Discover软件会自动找出两次“快照”的不同,并且生成一个MSI文件。最后,如果你愿意,可以使用VERITAS sofare组中的另一个工具:Veritas Sofare Console对这个MSI文件进行进一步的包装、调整,这样一个MSI文件包就生成了。 下面,我们具体通过一个例子来介绍一下如何使用Discover生成一个MSI文件,假定我们的软件my的安装过程是:将文件安装到C:\programmeme files\myprog下,将放到windows\system里,在注册表的HKEY_LOCAL_MACHINE的sofare项中建立一个myprom项,并且在其中添加一个值为OK的value项目。 第一步:运行Discover,弹出程序界面,可以直接点“Next”按钮继续。 第二步:在图3的对话框中,首先在第一文本框为你的程序起个名字,比如这里用的“My programmeme”;第二个对话框是输出MSI文件的存放位置和文件名,这里选择保存为E:\;第三个框为压缩包的语言,可以使用其默认值。填好后点“Next”按钮。 第三步:为Discover存放快照文件选择一个临时的空间,可以选一个磁盘空间比较大的磁盘。 第四步:在接下来如图4的对话框中要选择Discover需要扫描并拍“快照”的磁盘,你的程序要装到哪个盘就选择哪个盘,并且点一下“Add”按钮加到要扫描文件的列表中,你可以选择几个或者所有的磁盘,不过这样会在扫描的过程中浪费更多的时间,所以应该尽量少选择磁盘。这里只选择C盘,因为我们的软件是装到C盘的。然后点“Next”。 第五步:在如图5所示的对话框中为上一步选择的每个磁盘选择需要扫描的文件夹或文件,因为我们上一步只选择了C盘,所以为C盘选择就可以了。另外,Discover自动加入了一些特殊的文件和目录,我们可以根据需要决定是否将它们移出要扫描的文件列表,不过最好保留它们。这里我们把“C:\programmeme files”和Windows文件夹添进去,先在左边的文件框中点中文件或文件夹,然后点Add按钮就可以了。对于注册表的扫描,Discover为了加快扫描速度,只扫描部分注册表,可以扫描到大部分程序对注册表的修改,如果不放心的话,也可以将下边的“Enhanced Registry Scan”点中,这样速度可能会慢很多,临时文件也大大增加,不过能对注册表所有的改动加以记录。由于我们的软件对注册表只是小改动,所以没必要选择扫描所有注册表。然后点“Next”继续。 第六步:接下来Discover将对系统进行扫描生成“快照”,要耐心的等待,可能要几分钟的时间才行。 第七步:在扫描完成后,会弹出一个对话框,大概意思就是告诉你扫描已经完成,问你是否要选择一个程序来运行,从而自动安装你的软件,我们正要制作安装程序,没有程序可运行,所以要点“取消”按钮。 第八步:接下来,我们就要手动安装自己的软件了,先将文件拷贝到C:\programmeme files\myprog下,再把拷贝到windows\system里,然后用注册表编辑器在注册表的HKEY_LOCAL_MACHINE的sofare项中建立一个myprom项,并在其中添加一个值为OK的value键。注意,除了这些改动,应尽量避免其他无关的改动。然后我们试着运行一下刚刚安装的文件,测试一下是否正确安装。 第九步:确认安装没有问题了,要再次运行Discover程序,这次运行Discover时,出现的是如图6所示的一个界面,有两个选项,第一项是生成安装后的快照,用于与前一次的快照比较生成MSI文件,第二个选项是放弃上一次的扫描,当然要选第一项了,然后点“Next”。这时Discover又开始重新对电脑进行扫描,生成“快照”,并自动生成了安装文件。 第十步:如果你愿意,可以启动与Discover程序在一起的VERITAS Sofare console对MSI文件的信息进一步更改,过程比较简单,只要先打开一个MSI文件,然后就可以进行改动了,这里就不介绍了。 就这样,我们就生成了一个自己的MSI文件了。
SSI小规模集成电路可以直接实现组合逻辑函数,并且用的组合逻辑电路元件少,连线简单,省时省力,可靠性也高,是进行组合逻辑电路设计的一种重要方法。MSI电路也可以用的,但是要用的组合电路元件多,所以连线复杂,操作起来麻烦,其稳定性和可靠性不高,主要用来设计较小规模集成电路,应用没有MSI广泛。
微卫星( Microsatellite )序列是遍布于人类基因组上数百万个基因座( loci )中的短串联重复( short tandem repeats , STR )序列。
通常由 1-6 个重复(如单核苷酸、双核苷酸重复等)的碱基串联重复排列 10-50 次。
微卫星不稳定( MSI/MSI-H ),由于在 DNA 复制时错配修复 ( MMR ) 基因的功能缺陷,导致串联序列发生插入和缺失突变,引起 MS 序列长度改变的现象。
这种类型的体细胞突变会导致抑癌基因失活或破坏其他非编码调控序列,从而起到致癌作用。
MSI 作为可作为一种独特的分子表型,存在于多种癌症中,包括结直肠癌,子宫内膜癌,胃癌,前列腺癌,卵巢癌和成胶质细胞瘤等。
并且 MSI 能够预测免疫检查点封锁疗法在实体瘤中的疗效。因此,检测 MSI 状态在肿瘤临床诊断和预后治疗上具有重要意义
目前, MSI 检测方法主要有三种:
IHC 方法使用相应的抗体,通过对 4 种 DNA 错配修复蛋白( MLH1 , PMS2 , MSH2 , MSH6 )在细胞核内的表达情况,来确定细胞内是否存在错配修复功能缺陷。
如果其中任何一个蛋白出现表达缺失,则会被判定为错配修复缺陷( dMMR ),相当于 MSI-H ;如果四个蛋白全部表达,则判断为错配修复功能正常( pMMR ),即 MSI-L 或 MSS 。
其优势在于应用性广泛,并且能确定哪些 MMR 蛋白在肿瘤中细胞中表达缺失。
但是, IHC 本身存在主观性,同时受抗体质量和实验因素等影响,有时无法检出某些定性蛋白的变化,导致 MMR 结果偶有报错。
主要采用多重荧光 PCR 结合毛细管电泳的方法,通过 PCR 扩增特定的微卫星序列,然后通过毛细管电泳比较肿瘤组织与正常组织微卫星序列长度的差异来判断该位点是否存在 MSI 现象。
这种检测方法是公认的 MSI 检测的金标准,也是使用最广泛的方法。
最开始使用的是 National Cancer Institute ( NCI )推荐的 5 个位点:
通过如下方式来判断结直肠癌的 MSI 状态:
有研究表明, MSS 和 MSI-L 之间没有明显的肿瘤生物学特征差异,因此,临床上将 MSI-L 也归类为 MSS 。
后来有研究指出,二核苷酸重复较单核苷酸重复的位点敏感性更低,且存在高度的个体多态性,需要配对的肿瘤和正常样本对照才能得出结果。因此,降低了检测的灵敏度。
因此,有人提出 pentaplex panel ,包含五个单核苷酸重复的位点:
无需配对正常的样本,且性能更高,但是在 MSH6 缺陷型肿瘤中性能不高
目前使用更多的是 Promega 系统,包含:
PCR 检测方法不仅弥补了 IHC 在因非截断式错义突变导致的 MSI 无法检出的漏洞,同时还具备良好的可重复性。
但是,其检测的基因( panel )的位点较少、通量较低、无法提供具体的基因突变信息,而且实验周期较长。
随着高通量测序技术的发展,使用全基因组测序( WGS )、全外显子测序( WES )或靶向基因测序( TGS )进行 MSI 检测的已经越来越普遍了。
与 PCR 相比, NGS 方法通量大,涉及基因范围广、灵敏度和特异性更高,可与靶点的突变检测、肿瘤突变负荷( TMB )等检测共用一份测序数据。
在目前已发表的 NGS 方法中,一般都是以 PCR 检测结果作为金标准,通过比较二者结果一致性作为评价 NGS 检测性能的标准。
NGS 检测方法种类繁多,且大多数需要配对正常样本,我们可以将这些方法分为两大类
在这里,可能需要讲解一下何为 repeat count
在上面的图中,我们假设微卫星位点为 10 个连续的 A ,且该位点比对上了 10 条 reads ,每条 read 比对上的长度长短不一。由此,我们可以计算出 repeat count
repeat 为所有 reads 的长度, count 为各长度对应的 reads 支持数
其分析流程与原理大致可以用如下流程图来描述
包括 MSIsensor 、 mSINGs 、 MANTIS 、 Cortes-Ciriano 、 MSI-ColonCore 等
其分析流程与上面类似
包括 MSIseq Index 、 MSIseq/NGS classifier 、 Nowak 等
MSIsensor 是通过 MS 位点两端各 5bp 的侧翼序列来定位的,算法原理为
mSINGs 方法也是通过计算每个位点的不稳定性,并以不稳定位点的比例作为样本的 score 值,大于阈值的认为是不稳定状态。
MANTIS 也是根据肿瘤及其配对正常样本的 repeat count 的分布计算样本的不稳定状态。
它将每个位点在样本中的 repeat count 分布看成是一个向量,通过对这两个向量计算欧氏距离、余弦相似度等度量分数,并将所有位点的均值作为样本的不稳定分数。
具体计算方式如下:
可以看到,该方法进行了比较严格的质控
该方法是基于 RNA-seq 数据,通过计算两个指标的比值 PI/PD ,如果该比值小于 则认为该样本为 MSI
其中, PI 表示微卫星位点区域发生插入突变占所有插入突变的比例, PD 表示微卫星位点区域发生缺失突变占所有缺失突变的比例。
该方法通过计算样本中单核苷酸替换率和小片段的碱基插入删失率等突变信息构建特征,然后应用机器学习算法构建分类器。
具体的特征包括:
该方法使用的是 WES 数据,且选择了线性回归,决策树,随机森林和朴素贝叶斯四种算法。其中最优的算法是决策树,该方法不需要配对的正常样本。
from: 生信学习手册
目前我们正在与世界各职业联赛赛区合作来形成一个统一的体系,包括持续进行的两个分赛季赛程。我们发现在赛季中期为全球职业赛区组织一个全新的赛事对抗是一个很好的机会,我们称之为季中邀请赛(MSI)。
几何变换是指将一幅图像映射到另一副图像内的操作,根据映射关系的不同,有缩放、翻转、仿射变换、透视、重映射等。 在OpenCV中使用函数()实现对图像的缩放: (src, dsize[,fx[,fy[, interpolation]]]) src :代表要缩放的原始图像; dsize : 代表输出图像大小,第一个值为目标图像的宽度,第二个值为目标图像的高度 fx : 代表水平方向的缩放比 fy : 代表垂直方向的缩放比 interpolation: 代表插值方式。插值是指在对图像进行几何处理时,给无法直接通过映射得到值的像素点赋值。当缩小图像时,使用区域插值方式( INTER_AREA)能够得到最好的效果;当放大图像时,使用三次样条插值(INTER_CUBIC)方式和双线性插值(INTER_LINEAR)方式都能得到较好的效果。三次样条插值方式速度较慢,双线性插值方式速度相对较快且效果并不逊色。 【注】:fx、fy只要当dsize=None时才起作用。 import cv2 import numpyas np img = ('') shape_img = print(shape_img) biger_img = (img,(720,480),interpolation=) smaller_img = (img,None,fx=) ('img',img) ('biger_img',biger_img) ('smaller_img',smaller_img) return_value = (0) () 在OpenCV中,图像的翻转采用函数()实现,该函数能实现水平方向、垂直方向、两个方向同时翻转。 dst = (src, flipCode) src : 表示要处理的图像; flipCode : 表示旋转类型,为0时,表示绕X轴旋转;为正数,表示绕y轴旋转;为负数,表示绕x、y轴同时旋转。 dst: 返回和原图像有相同大小和类型的目标图像。 img = ('') shape_img = print(shape_img) x_img = (img,1) xy_img = (img,-1) ('img',img) ('x_img',x_img) ('xy_img',xy_img) return_value = (0) () 仿射是指图像可以经过一系列的几何变换来实现平移、旋转等多种操作。该变换能够保持图像的平直性(变换前后,直线仍是直线)和平行性(变换前后,平行线仍是平行线)。 OpenCV中的仿射函数是(),其通过一个变换矩阵M实现变换,具体为:dst = (src,M,dsize[,flags[,borderMode[,borderValue]]]) dst: 表示输出图像,它和原始图像有相同的类型,大小由dsize决定; src: 表示原始图像; M: 代表一个2X3的变换矩阵。 dsize: 输出图像的尺寸大小; flags : 代表插值方法,默认为INTER_LINEAR。当该值是WARP_INVERSE_MAP时,意味着M是逆变换矩阵,实现从目标图像dst到原始图像src的逆变换。 borderModer : 代表边类型,默认为BORDER_CONSTANT.当该值为BORDER_TRANSPARENT时,意味着目标图像内的值不做改变,这些值对应原始图像内的异常值。 borderValue : 代表边界值,默认是0. 1)平移 平移的矩阵M: M = [[1,0,x],[0,1,y]] 将图像水平向右移动100像素,垂直向下平移150像素。 import cv2 import numpyas np img = ('') shape_img = print(shape_img) M = ([[1,0,100],[0,1,150]]) warp_img = (img,M,(shape_img[1],shape_img[0])) rut_warp_img = (img,M,(shape_img[1],shape_img[0]),borderMode=) ('img',img) ('warp_img',warp_img) ('rut_warp_img',rut_warp_img) return_value = (0) () 2)旋转 在使用wrapAffine()对图像进行旋转时,可以通过函数(center,angle,scale)获取转换矩阵。其中: center为旋转中心; angle为旋转角度; scale为变换尺度。 例如:以图像中心点为旋转中心,顺时针旋转45°,图像缩小到原来的倍。 img = ('') height,width = [:2] M = ((width/2,height/2),45,) rota_img = (img,M,(width,height)) ('img',img) ('rota_img',rota_img) 3)更复杂的仿射 对于更复杂的仿射变换,Opencv提供了函数()来生成仿射函数所需要的转换矩阵M. (src,dst) src 代表输入图像的三个点坐标 dst 代表输出图像的三个点坐标 该函数定义了两个平行四边形,src和dst中的三个点分别对应平行四边形的左上角、右上角、左下角。它确定了原图像到目标图像的映射关系。 img = ('') height,width = [:2] # 确定两个平行四边形 p1 = ([[0,0],[width-1,0],[0,height-1]]) p2 = ([[0,height*],[width**],[height**]]) M = ((width/2,height/2),45,) retval = (p1,p2) rota_img = (img,M,(width,height)) dst_img = (img,retval,(width,height)) ('img',img) ('rota_img',rota_img) ('dst_img',dst_img) 仿射变换可以将矩形变成任意平行四边形,透视变换可以将矩形映射到任意四边形。 透视变换通过()实现: dst = (src, M, dsize[,flags[,borderMode[,borderValue]]]) dsize :决定输出图像的大小 M :代表一个3X3的变换矩阵 flags: 代表差值方法,默认为INTER_LINEAR。当该值是WARP_INVERSE_MAP时,意味着M是逆变换类型 borderValue :代表边界值,默认是0 与仿射变换一样,同样可以使用一个函数来生成M: (src,dst) src,dst 都是一个包含四个坐标点的数组。 例如: img = ('') height,width = [:2] # 确定两个平行四边形 p1 = ([[0,0],[100,0],[0,50],[100,50]]) p2 = ([[20,20],[50,30],[30,70],[70,60]]) retval = (p1,p2) dst_img = (img, retval, (width,height)) ('img',img) ('dst_img',dst_img) 把一幅图像的像素点放到另一幅图像的指定范围,这个过程称为图映射。OpenCV提供了多种重映射方式,其中dst = (src, map1, map2, interpolation[,borderMode[,borderValue]]) dst 和src有相同的大小和类型。 map1 参数都有两种可能的值: 1)表示(x,y)点的一个映射 2)表示CV_16SC2,CV_32FC1,CV_32FC2类型(x,y)点的x值 map1 参数同样有两种可能的值: 1)当map1表示(x,y)时,该值为空 2)当map1表示(x,y)点的x值时,该值是CV_16UC1,CV_32FC1类型(x,y)点的y值。 Interpolation代表插值方式,这里不支持INTER_AREA方法。 重映射通过修改像素点的位置得到一幅新图像。在构造新图像时,需要确定新图像中每一个像素点在原始图像中的位置,因此映射函数的作用是查找新图像在原始图像中的位置,该过程是将新图像映射到原始图像的过程,因此被称为反向映射。 在函数()中,参数map1和map2用来说明反向映射,map1针对的是坐标x,指代像素所在位置的列号,map2针对的是坐标y,指代像素所在位置的行号。map1和map2的值都是浮点数。因此目标函数可以映射回一个非整数的值,这意味着可以将目标图像“反向映射”到原始图像中两个像素之间的位置(这样的位置是不存在的)。这是采用不同的方法来插值处理。 将map1的值设为对应位置上的x轴坐标值 将map2的值设为对应位置上的y轴坐标值 假如想让图片绕X轴翻转,则图像x坐标不变,y坐标变为总行数-1-当前行号; 如果想让它绕y轴翻转,也同理:总列数-1-当前列号 将x轴的值调整为所在行的行号;将y轴的值调整为所在列的列号 注:如果行数和列数不等,可能出现存在值不能映射的情况。默认情况下,无法完成的值会被处理为0. 将图像缩小为原来的两倍,并居中处理: 结果如下:
摘 要:数学广泛存在于生活中,善于开发和利用学生身边的数学资源与素材进行加工和创造,有利于提高学生的知识视野。关注数学活动的教学,更能激发学生学习数学的兴趣,注重数学模型的作用,有助于学生创造能力的培养。 关键词:三角板;旋转的不变性;创造能力;逻辑思维能力 随着课改的进行及《义务教育数学课程标准》的实施,处处体现生活中存在数学。怎样去发现数学,其实数学就在身边,留心观察,细心思考,你会体会到数学的奇妙与快乐。下面就简单的一副三角板的开发和利用,谈点自己的看法与启示。 首先进入我们视野的是等腰直角三角形,这是一个德才兼备的几何图形,它既具有等腰三角形的性质又具有直角三角形的性质。研究起来会妙笔生花,细心的品读它带给我们的快乐。取一对全等的含45度角的三角板进行简单的探究活动,将△MNK的直角顶点M放在△ABC的斜边中点上。设AC=BC=4, (1)如图1,两三角板重叠部分为△ACM,则重叠部分的面积是多少?周长为多少? 显而易见:△ACM的面积等于△ABC的一半周长等于AB+AC,而AB的长由勾股定理求得。 (2)将图1中的三角板MNK绕顶点M逆时针旋转45度角,得到图2,则重叠部分的面积会发生变化吗?周长为多少?类比图1很快就会发现没有变化周长为8。 (3)将△MNK绕点M旋转到不同于图1和图2的位置,你猜想此时重叠部分面积会发生变化吗?如果不发生变化,请说出理由。于是学生投入到激烈讨论中,这种跳跃性思维跃然于纸上。启发在已有的研究成果基础上去构造,既然△MNK是旋转变化的,能不能转换为图1于图2的图形。观察与研究发现面积不变,那又怎样证明。连接CM会发现△CMG会和△APM全等,可以看成△CMG绕点M旋转90度角得到的,此时图形旋转起到了一个惊人的变化。由特殊到一般揭示了图形变换的本质,一石激起千层浪,让学生自己拼图利用三角板反复进行仔细观察会发现什么?小组讨论、研究。追问:在图3中,AP=1的情况下,怎样求重叠部分的周长?生1:坏了,这下掉进老师设的陷阱里了,出不来了。此时,我静静地等待学生研究成果。生2:AP=1,CP=3,由三角形全等知:CG=AP=1,可PM=MG=?此时,陷入僵局,大部分同学投入积极的思考中,既然是旋转大家能不能转化为图1,图2呢?从中得到哪些启示。图3能转化为图2吗?联想与旋转变化交替进行,是数学思维活动进入了又一个高峰。积极的思考和点拨,让学生在思维的碰撞中产生火花。生3:老师我知道了。生4:我也知道了。我抓住有利时机,问什么在这里起到了重要的作用,勾股定理即可求DM的长。从中看到了旋转的作用,全等变换其形变本质不变,找到恰当的解题方法,达到融会贯通的目的。 思维的发散与变式正是研究问题的恰好时机,此时展示2013年河南省中考试题,实现思维的正向迁移。 将两块全等的含30度的三角板如图4放在一起,△ABC与△DEC重合放置,∠C=90度,∠B=∠E=30度。(1)操作发现:固定△ABC绕点C旋转,点D恰好落在AB边上时,如图5,填空:①线段DE与AC位置关系_______。②设△BCD的面积与△AEC的面积的数量关系是 。③猜想论证:当△DEC绕点C旋转到图6的位置时,小马猜想②中的结论仍然成立,并尝试分别做△BDC和△AEC的BC与CE边上的高,请你证明小马的猜想。 有了前一个习题的铺垫,①②两问学生会顺利地得到解答。③的解答细细的思考会发现,既然是旋转,抓住旋转的不变性及旋转前后的图形全等的特征,可证△ACN≌△DCM即可。 当替换条件时,∠BAC=36度,△ABC为等腰三角形,上述条件不改变,就变为一般情况,这样从一般到特殊的思维方法。拓展学生的知识视野,举一反三,融会贯通使知识达到成片开发,提高学生的想象能力及逻辑思维能力,达到训练目的。 启示:在这节习题课中,旋转的特殊性质,抓住旋转的不变性,利用全等条件,仔细观察图形的变化,启发学生思维开发和利用旋转的内在联系,一题多用,变换条件。螺旋上升,使学生的视野开阔,提升解答问题的能力。教学中只要留心观察,认真研究习题的变化和解题规律就会有所收获。充分利用学生手中的三角板进行演示,拼接通过全方位观察思考,运用工具进行知识重组和解答,无疑对培养学生思维的灵活性和独创性有着十分重要的意义。事实上,充满思考性的练习题即使学生没能完全正确解答出来,也能有效地训练学生的创新思维。这不仅有利于提高学生思考、分析的积极性,也有利于开发学生的创造潜能。创造性思维不仅要求思维的数量,还要求思维的深度和灵活性,即思维的变通性。创造性教学则是培养创造性思维和创新能力的基础。所以教师在教学过程中要从多角度训练学生的思维品质,使学生能独立地、自觉地运用所给问题的条件,并做出新的变换和组合,培养学生灵活应变能力。所以在教学中要关注学生的数学活动,培养动手操作能力,及时转换为数学模型,挖掘数学习题的内在潜质,去发现共性进而研究这类习题的解题规律。 以上三例的演示与启发使我认识到:教师一定要充分收集利用已有的数学资源,进行加工与创造培养学生的探究精神。去追求数学知识的内在联系,加强创新思维训练与培养,有待于我们去研究和利用。 (作者单位 永吉县第七中学) 编辑 鲁翠红
我要是会我问你干嘛~ 几何变换 在几何的解题中,当题目给出的条件显得不够或者不明显时,我们可以将图形作一定的变换,这样将有利于发现问题的隐含条件,抓住问题的关键和实质,使问题得以突破,找到满意的解答.图形变换是一种重要的思想方法,它是一种以变化的、运动的观点来处理孤立的、离散的问题的思想,很好地领会这种解题的思想实质,并能准确合理地使用,在解题中会收到奇效,也将有效地提高思维品质. 初中图形变换包含平移、翻折和旋转,我们要通过实验、操作、观察和想象的方法掌握运动的本质,在图形的运动中找到不变量,然后解决问题.