首页 > 期刊投稿知识库 > 锂离子电池论文题目

锂离子电池论文题目

发布时间:

锂离子电池论文题目

手机锂电池正确使用方法介绍:一、不要进行超过12小时的超长充电。对于锂电池的“激活”问题,众多的说法是:充电时间一定要超过12小时,反复做三次,以便激活电池。这种“前三次充电要充12小时以上”的说法,明显是从镍电池(如镍镉和镍氢)延续下来的说法,所以这种说法,可以说一开始就是误传。充电最好按照标准时间和标准方法充电,特别是不要进行超过12个小时的超长充电。通常,手机说明书上介绍的充电方法,就是适合该手机的标准充电方法。二、将锂电池置于阴凉处。高充电状态和增加的温度会加快电池容量的下降,如果可能的话,尽量将电池充到40%放置于阴凉地方,这样可以在长时间的保存期内使电池自身的保护电路运作。如果充满电后将电池置于高温下,这样会对电池造成极大的损害。(因此当我们使用固定电源的时候,此时电池处于满充状态,温度一般是在25-30°C之间,这样就会损害电池,引起其容量下降)。不要将电池暴露在高温或严寒下,像三伏天时,不应把手机放在太阳底下,经受烈日的曝晒;或拿到空调房中,放在冷气直吹的地方。三、避免电池电量全部用完后再充电。电池的寿命决定于反复充放电次数,锂电池大约可以连续充放电500次左右,之后电池的性能会大大减弱,应尽量避免把电池内余电全部放完再充电,否则随着充电次数的增加,电池性能会慢慢减弱,电池的待机时间也就很难不下降了。四、使用专用充电器。锂离子电池必须选用专用充电器,否则可能会达不到饱和状态,影响其性能发挥。充电完毕后,应避免放置在充电器上超过12小时以上,长期不用时应使电池和手机分离,最好使用原厂或声誉较好的品牌充电器。

成果简介

高容量硅 (Si) 被公认为高性能锂离子电池 (LIB) 的潜在负极材料。但是,放电/充电过程中的大体积膨胀阻碍了其面积容量。 本文,上海交通大学微纳米科学技术研究院张亚非教授课题组在《ACS Appl. Mater. Interfaces》期刊 发表名为“Binder-Free, Flexible, and Self-Standing Non-Woven Fabric Anodes Based on Graphene/Si Hybrid Fibers for High-Performance Li-Ion Batteries”的论文, 研究设计了一个柔性石墨烯纤维织物(GFF)为基础的三维导电网络,形成无粘合剂且自支撑的高性能锂离子电池的硅负极。

Si 颗粒被牢固地包裹在石墨烯纤维。起皱引起的大量空隙石墨烯在纤维中能够有效地适应锂化/脱锂过程中硅的体积变化。GFF/Si-37.5% 电极在 100 次循环后在0.4 mA cm –2的电流密度下表现出优异的循环性能,比容量为 920 mA hg –1。此外,GFF/Si-29.1% 电极在 400 次循环后在0.4 mA cm –2的电流密度下表现出 580 mA hg –1的优异可逆容量。GFF/Si-29.1% 电极的容量保持率高达 96.5%。更重要的是,质量负载为 13.75 mg cm –2的 GFF/Si-37.5% 电极实现了 14.3 mA h cm –2的高面积容量,其性能优于报道的自支撑 Si 阳极。这项工作为实现用于高能 LIB 的无粘合剂、柔性和自立式 Si 阳极提供了机会。

图文导读

图 1. (a) 自立式 GFF/Si - X电极制造过程示意图。(b)醋酸溶剂中的 GOF/Si、(c)GOFF/Si 和(d)GFF/Si- X 的数码照片,揭示了其柔韧性。(e) GFF/Si-37.5% 电极冲压成面积为 1.12 cm 2 的小圆盘。

图 2. (a) GFF/Si-37.5% 低倍率的 SEM 图像和 (b) 部分放大的 SEM 图像,揭示了两个独立的纤维在两者相遇的点合并为一个。(c,d) GFF/Si-37.5% 表面和横截面的 SEM 图像。

图 3. GFF/Si- X电极在 0.4 mA cm –2电流密度下的电化学特性;所有比容量均以自立式电极的总质量为基础计算。(a) 第一次循环充电/放电电压曲线。(b) ICE 的比较分析。(c) 循环性能比较。(d) GFF/Si-37.5% 电极在 0.2 mV s –1扫描速率下的CV 测量值。(e) GFF/Si-37.5% 的倍率性能。(f) 具有不同阳极重量的 GFF/Si-37.5% 电极的面积容量

图 4. GFF/Si-HI、GFF/Si-37.5% 和 GFF/Si-800 C 电极的循环性能比较

图 5. GFF/Si-HI、GFF/Si-37.5% 和 GFF/Si-800 C 的成分分析:(a) XRD 图,(b) 拉曼光谱,(c) GFF/Si-的 TGA 曲线N 2气氛中的HI ,和 (d) FT-IR 光谱。

图 6. (a,b) GFF/Si-37.5% 电极在循环前后的拉曼光谱和 XRD 图案。GFF/Si-37.5% 电极在 100 次放电/充电循环后的形态研究:(c,d) 锂化/脱锂后低倍和高倍率的 SEM 图像;插图是循环后 GFF/Si-37.5% 电极的数码照片;(e,f) TEM 和 HRTEM 图像;插图是低倍放大的 SAED 图像;(g) 元素映射。

小结

在这项研究中,基于 GFF 的 3D 导电网络被设计用于无粘合剂和自立式 Si 阳极。GFF 结构在放电/充电循环期间成功地抑制了 Si 的体积膨胀。提出了一种新策略,用于制造用于高性能 LIB 的无粘合剂、柔性和自立式 Si 阳极。

文献:

锂离子汽车电池技术毕业论文

第一部分摘要:随着电子技术在汽车上的普遍应用,汽车电路图已成为汽车维修人员必备的技术资料。目前,大部分汽车都装备有较多的电子控制装置,其技术含量高,电路复杂,让人难以掌握。正确识读汽车电路图,也需要一定的技巧。电路图是了解汽车上种类电气系统工作时使用的重要资料,了解汽车电路的类型及特点,各车系的电路特点及表达方式,各系统电路图的识读方法、规律与技巧,指导读者如何正确识读、使用电路图有很重要的作用。汽车电路实行单线制的并联电路,这是从总体上看的,在局部电路仍然有串联、并联与混联电路。全车电路其实都是由各种电路叠加而成的,每种电路都可以独立分列出来,化复杂为简单。全车电路按照基本用途可以划分为灯光、信号、仪表、启动、点火、充电、辅助等电路。每条电路有自己的负载导线与控制开关或保险丝盒相连接。关键词:电路 单行线制 系统 导线 各种车灯目录:(1)全车线路的连接原则(2)识读电路图的基本要求(3)以东风EQ1090型载货汽车线路为例全车线路的认读a.电源系统线b.起动系统线路c.点火系统线路d.仪表系统线路e.照明与信号系统线路(4)全车电路的导线(5)识读图注意事项论汽车电路的识读方法在汽车上,往往一条线束包裹着十几支甚至几十支电线,密密麻麻令人难以分清它们的走向,加上电是看不见摸不着,因此汽车电路对于许多人来说,是很复杂的东西。但是任何事物都有它的规律性,汽车电路也不例外。一般家庭用电是用交流电,实行双线制的并联电路,用电器起码有两根外接电源线。从汽车电路上看,从负载(用电器)引出的负极线(返回线路)都要直接连接到蓄电池负极接线柱上,如果都采用这样的接线方法,那么与蓄电池负极接线柱相连的导线会多达上百根。为了避免这种情况,设计者采用了车体的金属构架作为电路的负极,例如大梁等。因此,汽车电路与一般家庭用电则有明显不同:汽车电路全部是直流电,实行单线制的并联电路,用电器只要有一根外接电源线即可。蓄电池负极和负载负极都连接到金属构架上,也就是称为“接地”。这样做就使负载引出的负极线能够就近连接,电流通过金属构架回流到蓄电池负极接线。随着塑料件等非金属材料在汽车上应用越来越多,现在很多汽车都采用公共接地网络线束来保证接地的可靠性,即将负载的负极线接到接地网络线束上,接地网络线束与蓄电池负极相连。汽车电路实行单线制的并联电路,这是从总体上看的,在局部电路仍然有串联、并联与混联电路。全车电路其实都是由各种电路叠加而成的,每种电路都可以独立分列出来,化复杂为简单。全车电路按照基本用途可以划分为灯光、信号、仪表、启动、点火、充电、辅助等电路。每条电路有自己的负载导线与控制开关或保险丝盒相连接。灯光照明电路是指控制组合开关、前大灯和小灯的电路系统;信号电路是指控制组合开关、转弯灯和报警灯的电路系统;仪表电路是指点火开关、仪表板和传感器电路系统;启动电路是指点火开关、继电器、起动机电路系统;充电电路是指调节器、发电机和蓄电池电路系统。以上电路系统是必不可少的,构成全车电路的基本部分。辅助电路是指控制雨刮器、音响等电路系统。随着汽车用电装备的增加,例如电动座椅、电动门窗、电动天窗等,各种辅助电路将越来越多。旧式汽车电路比较简单,一般情况下,它们的正极线(俗称火线)分别与保险丝盒相接,负极线(俗称地线)共用,重要节点有三个,保险丝盒、继电器和组合开关,绝大部分电路系统的一端接保险丝或开关,另一端联接继电器或用电设备。但在现代汽车的用电装置越来越多的情况下,线束将会越来越多,布线将会越来越复杂。随着汽车电子技术的发展,现代汽车电路已经与电子技术相结合,采用共用多路控制装置,而不是象旧式汽车那样通过单独的导线来传送。使用多路控制装置,各用电负载发送的输入信号通过电控单元(ECU)转换成数字信号,数字信号从发送装置传输到接收装置,在接收装置转换成所需信号对有关元件进行控制。这样就需在保险丝、开关和用电设备之间的电路上添加一个多路控制装置(参阅广州雅阁后雾灯线路简图)。采用多路控制线路系统可。第二部分第二部分简要介绍了全车线路识读的原则、要求与方法以及电路用线的规格。主要针对其在东风EQ1090车型 汽车电路与电器系统应用情况作了概括性的阐述。其包括了电源系统、启动系统、点火系统、照明与信号系统、仪表系统以及辅助电器系统等主要部分进行了说明。通过对东风EQ1090车型的系统学习,为以后接触到各类不同车型打下个坚实的基础。一、全车线路的连接原则全车线路按车辆结构形式、电器设备数量、安装位置、接线方法不同而各有不同,但其线路一般都以下几条原则:(1)汽车上各种电器设备的连接大多数都采用单线制;(2)汽车上装备的两个电源(发电机与蓄电池)必须并联连接;(3)各种用电设备采用并联连接,并由各自的开关控制;(4)电流表必须能够检测蓄电池充、放电电流的大小。因此,凡是蓄电池供电时,电流都要经过电流表与蓄电池构成的回路。但是,对于用电量大且工作时间较短的起动机电流则例外,即启动电流不经过电流表;(5)各型汽车均陪装保险装置,用以防止发生短路而烧坏用电设备。了解上面的原则,对分析研究各种车型的电器线路以及正确判断电器故障很有帮助。二、基本要求一般来讲全车电路有三种形式,即:线路图、原理图、线束图。(一)、识读电路图的基本要求了解全车电路,首先要识读该车的线路图,因为线路图上的电器是用图形符号以及外形表示的,容易识别。此外,线路图上的电器设备的位置与实际车上的位置是对应的,容易认清主要设备在车上的实际位置,同时,也可对设备的功能获得感性认识。识读电路图时,应按照用电设备的功用,识别主要用电设备的相对分布位置;识别用电设备的连接关系,初步了解单元回路的构成;了解导线的类型以及电流的走向。(二)、识读原理图的基本要求原理图是一图形符号方式,把全车用电设备、控制器、电源等按照一定顺序连接而成的。它的特点是将各单元回路依次排列,便于从原理上分析和认识汽车电路。识读原理图时,应了解全车电路的组成,找出各单元回路的电流通路,分析回路的工作过程。(三)、识读线束图的基本要求线束图是用来说明导线在车辆上安装的指导图。图上每根导线所注名的颜色与标号就是实际车上导线的颜色和到端子的所印数字。按次数字将导线接在指定的相关电器设备的接线柱上,就完成了连接任务。即使不懂原理,也可以按次接线。总上所述,掌握汽车全车线路(总线路),应按以下步骤进行:(1)对该车所使用的电气设备结构、原理有一定了解,知道他的规格。(2)认真识读电路图,达到了解全车所使用电气设备的名称、数量和实际安排位置;设备所用的接线柱数量、名称等。(3)识读原理图应了解主要电气设备的各接线柱和那些电器设备的接线柱相连;该设备分线走向;分线上开关、熔断器、继电器的作用;控制方式与过程。(4)识读线束图应了解该车有多少线束,各线束名称及在车上的安装位置;每一束的分支同向哪个电器设备,每分支又有几根导线及他们的颜色与标号,连接在那些接线柱上;该车有那些插接器以及他们之间的连接情况。(5)抓住典型电路,触类旁通。汽车电路中有许多部分是类似的,都是性质相同的基本回路,不同的只是个别情形。三、全车线路的认读下面以东风EQ1090型载货汽车线路为例,分析说明各电子系统电路的特点。东风EQ1090型载货汽车全车线路主要由电源系统、启动系统、点火系统、照明与信号系统、仪表系统以及辅助电器系统等组成。(一)电源系统线路电源系统包括蓄电池、交流发电机以及调节器,东风EQ1090汽车配装电子式电压调节器,电源线路如图。其特点如下:(1)发电机与蓄电池并联,蓄电池的充放电电流由电流表指示。接线时应注意电流表的-端接蓄电池正极,电流表的+端与交流发电机‘电枢’接线柱A或B连接,用电设备的电流也由电流表+端引出,这样电流表才能正确指示蓄电池的充、放电电流值。(2)蓄电池的负极经电源总开关控制。当发电机转速很低,输出电压没有达到规定电压时,由蓄电池向发电机供给磁场电流。(二)起动系统线路启动系统由蓄电池、启动机、启动机继电器(部分东风EQ1090型汽车配装复合继电器)组成,系统线路如图。启动发动机时,将点火开关置于“启动”档位,启动继电器(或复合继电器)工作,接通起动机电磁开关电路,从而接通起动机与蓄电池之间得电路,蓄电池便向起动机供给400~600A大电流,起动机产生驱动转矩将发动机起动。发动机起动后,如果驾驶员没有及时松开点火开关,那么由于交流发电机电压升高,其中性点电压达5V时,在复合继电器的作用下,起动机的电磁开关将自动释放,切断蓄电池与起动电动机之间的电路,起动机便会自动停止工作。根据国家标准GB9420--88的规定,汽车用起动电动机电路的电压降(每百安的培的电压差)12V电器系统不得超过0.2V,24V电器系统不的超过0.4V。因此,连接启动电动机与蓄电池之间的电缆必须使用具有足够横截面积的专用电缆并连接牢固,防止出现接触不良现象。(三)点火系统线路点火系统包括点火线圈、分电器、点火开关与电源。系统线路如图,其特点:(1)在低压电路中串有点火开关,用来接通与切断初级绕组电流;(2)点火线圈有两个低压接线端子,其中‘-’或‘1’端子应当连接分电器低压接线端子,“+”或“15”端子上连接有两根导线,其中来自起动机电磁开关的蓝色导线,(注:个别车型因出厂年代不同其导线颜色有可能不同)应当连接电磁开关的附加电阻短路开关端子“15a”;白色导线来自点火开关,该导线为附加电阻(电阻值为1.7欧姆左右)所以不能用普通导线代替。起动发动机时,初级电流并不经过白色导线,而是由蓄电池经起动电磁开关与蓝色导线直接流入点火线圈,使附加电阻线被短路,从而减小低压电路电阻,增大低压电流,保证发动机能顺利起动。(3)在高压电路中,由分电器至各火花塞的导线称为高压导线,连接时必须按照气缸点火顺序依次连接。(四)仪表系统线路仪表系统包括电流表、油压表、水温表、燃油表与之匹配的传感器,系统线路如图所示。其特点如下:(1)电流表串联在电源电路里,用来指示蓄电池充、放电电流的大小。其他几种仪表相互并联,并由点火开关控制。(2)水温表与燃油表共用一只电源稳压器,其目的是当电源电压波动时起到稳压仪表电源的作用,保证水温表与燃油表读数准确。电源稳压器的输出电压为8.64V+/-0.15V。报警装置有油压过低报警灯和气压过低蜂鸣器,分别由各自的报警开关控制。当机油压力低于50~90kpa时,油压过低报警开关触电闭合,油压过低指示灯电路接通而发亮,指示发动机主油道机油压力过低,应及时停车维修。东风EQ1090型汽车采用气压制动系统,当制动系统的气压下降到340~370kpa时,气压过低蜂鸣器鸣叫,以示警告。(五)照明与信号系统线路照明与信号系统包括全车所有照明灯、灯光信号与音响信号,系统线路如图所示。其特点如下:(1)前照灯为两灯制,并采用双丝灯泡;(2)前照灯外侧为前侧灯,采用单灯丝,其光轴与牵照灯光轴成20度夹角,即分别向左右偏斜20度。因此,在夜间行车时,如果前照灯与前侧灯同时点亮,那么汽车正前方与左右两侧的较大范围内都有较好的照明,即使在汽车急转弯时,也能照亮前方的路面,从而大大改善了汽车在弯道多、转弯急的道路上行驶时的照明条件;(3)前照灯、前下灯、前侧灯及尾灯均由手柄式车灯开关控制;(4)设有灯光保护线路;(5)制动信号灯不受车灯总开关控制,直接经熔断丝与电源连接,只要踩下制动踏板,制动邓开关就会接通制动灯电路使制动灯发亮;(6)转向信号灯受转向灯开关控制;(7)电喇叭由喇叭按钮和喇叭继电器控制

一种数字指示式发动机转速表的电路分析【摘要】首先,简要介绍了发动机转速表的分类;其次,对一种数字指示式发动机转速表的电路进行了分析。在简要介绍组成电路各主要元件的基础上对电路的组成部分:显示控制电路、脉冲信号计数电路、显示电路和电源电路的结构和工作原理进行了初步的分析。最后,给出了整个电路的电路图。1前言 发动机转速表的形式多样,其主要分类如表1所示[1]。图1是参考文献[2]中给出的一种数字指示式发动机转速表的电路简图。下面对这种电路的结构和工作原理进行简单的分析。 表1:发动机转速表的分类 图1:一种数字指示式转速表的电路简图2元器件简介MCT MOS控制晶闸管(MOS CONTROLLED THYRISTOR) MCT是一种功率器件由于其输入阻抗高、开关速度快、高电压和大电流的特性主要应用于功率开关[6]。MCT2是TEXAS公司生产,其等效电路由发光二极管和光控三极管组成(参见电路图),输入输出电压差可以达到1.5KV,正向输入电流可以达到恒流60mA和峰值3A[12]。MCT2在数字电路中可以用来将高压脉冲信号转换为低压方波信号。4060 带振荡器的14位异步二进制串行计数器(14-STAGE ASYNCHRONOUS BINARY COUNTERS AND OSCILLATORS)4060由两部分电路构成:T触发器组成的14位二进制串行计数器/分频器,其分频系数为16~16348(Q4~Q14);振荡器部分需外接RC或晶体振荡也可直接接外部时钟。用4060可以为数字电路提供标准时间信号等。[3][5][12]4518 双十进制(BCD码)同步计数器(DUAL DECADE COUTER) 4518是由两个独立的计数器单元构成。4518可以通过简单串接成多位计数器。用4518在数字电路中可以作为二进制至BCD码的转换器。[3][12]4511 BCD-七段锁存译码器/驱动器(BCD TO 7 SEGMENT LATCH/DECODER DRIVER) 4511可直接驱动LED。在数字电路中主要和显示器件一起构成计数器的终端显示。[3][4][12]7414 六反相施密特触发器7414是一种特殊的反向器,具有滞后的特性,所以抗干扰能力强。在数字电路中多用于信号整形、震荡电路中。[4]3电路总体思路分析通过对电路的初步分析可以看出电路的总体设计思路是:显示控制电路:由4060和7414等组成。用于控制4518的计数时间、4511对数据的锁存时间,及两者时间上的配合。脉冲信号计数电路:由MCT2、7414和4518组成。用于对点火脉冲信号进行隔离、整形和计数。数字显示电路:由4511、7414和LED组成。用于显示发动机转速,控制数码管的亮度。电源电路:由7805组成。用于为个各电子器件提供稳定电源。由总体设计思路中看出图1所示电路存在的问题:显示数据必须及时反映发动机转速的变化,其显示数据的刷新应在0.5秒左右;在这段时间内仅仅通过对发动机点火脉冲计数是不能反映发动机的转速的,需要对输入脉冲进行倍频[11]。不同汽缸数的发动机单位时间内的点火脉冲数是不同的,即为正确显示发动机转速,脉冲计数时间、气缸数和倍频数应该有一定的折算关系。通过进一步分析我可以得到: (3-1)ne发动机转速,ne*仪表的读数,nc发动机气缸数,nf倍频数,tc脉冲计数时间因为计数时间为0.5秒左右,所以选倍频数为100,则:4缸计数时间为0.3秒;6缸计数时间为0.2秒;8缸计数时间为0.15秒。当然也可以选择固定计数时间改变倍频的方法[11]。图1电路中并没有给出倍频电路,所以是不完整的,不能正确显示发动机的转速。4 电路分析4 1 显示控制电路根据TEXAS公司4060元件手册给出的经验公式(4-1)[12],和图1给出的电阻和电容参数,用Matlab计算得图2(脉冲计数时间和可调电阻值的关系)。由图2可以看出4缸机需要256分频,8缸机需要128分频,6缸机则两者皆可。由4060的分频系数得4缸应选择第14引脚(QH),8缸应选择第6引脚(QG),6缸则两引脚皆可。 (4-1) 图2:4060分频系数的选择对4518计数和4511数据锁存的协调控制。4511第5引脚(LE)用与数据的锁存,当引脚电位为1时锁存数据,当电位为0时刷新。4518第7、15引脚(RST)用于重新计数。设计思想:在上一周期结束时刻先用4511刷新并锁存4518计数数据,然后4518进行重新计数。锁存和计数的周期由4060脉冲周期决定。电路中由三个74C14反向器、电阻和电容组成的“控制脉冲生成和延时电路”实现了此功能。用Protel对电路的仿真见图3,为清楚表示表示信号之间的关系将脉冲时间缩短为3ms。 图3:数据计数和锁存的控制4 2 脉冲信号计数电路点火信号的隔离与整形:发动机点火次极电压约有200~400V,需要用电力器件MCT2进行隔离。图1中信号引入端管脚号为1,接地端管脚号应为2。隔离后的信号反向,所以用反向器校正并整形。MCT2输入和输出端接有电容和二极管,这主要用于对MCT2的保护。[6]100倍频电路的实现:参考文献[3]直接得100倍频电路如图3。4046是锁相环集成电路,常用于频率调制、频率合成等。 图3:100倍频电路的实现4518的多位级连(BE CASCADED IN THE RIPPLE MODE):首级4518的ENABLE端子接高电平;上一级4518的Q4输出接下一级的ENABLE端子;下一级的CLOCK端子接地。[12]4 3 数字显示电路限流电阻的选择:LED为非线性器件其段电压约为2V,工作电流约为200mA。4511输出电压为电源电压(5V),所以限流电阻选150是合适的。数字显示亮度的控制:4511的/BI端电位为0时7段输出都是0(LED熄灭)。本电路采用7414构成多谐振荡器[9],通过改变电阻和电容值获得不同频率的脉冲信号控制LED发光时间进而控制数字显示的亮度。4 4 电源电路电容的选择:三端稳压器的标准接法可以参考相关文献[10],由于电源电路的输入取自发动机蓄电池,所以无需1000u的滤波电容(电解电容)。5 电路总图6 结束语 上面简要分析了电路的结构和工作原理。若要进一步分析和实现该电路,主要的工作有(初步设想):对电路误差进行估算,最终确定元器件的选用和电路形式;局部电路的搭接试验;布线、制版、制作;电路的静态调试、动态调试、标定等。参考文献1. 汽车工程手册 设计篇 北京:人民交通出版社 20012. 李东江 宋良玉 现代汽车电子控制技术 北京:科学技术文献出版社 1998 3. 魏立群 韩华琦 CMOS 4000系列60种常用集成电路的应用 北京:人民邮电出版社 1993 4. 中国集成电路大全 高速CMOS集成电路 北京:国防工业出版社 1995 5. 标准集成电路数据手册 CMOS 4000系列电路 北京:电子工业出版社 1995 6. 中国集成电路大全 电力电子技术与运动控制系统 北京:国防工业出版社 1995 7. 梁延贵 现代集成电路实用手册 数字单元电路转换电路分册 北京:科学技术文献出版社 20028. 夏路易 石宗义 电路原理图与电路板设计教程 北京:北京希望电子出版社 20029. 康华光 邹寿彬 电子技术基础 数字部分(第四版) 北京:高等教育出版社 200010. 康华光 陈大钦 电子技术基础 模拟部分(第四版) 北京:高等教育出版社 199911. 金长星 汽油机专用转速表 测控技术 2000年19卷7期12. 各电子元器件手册 中国电子网 附录1.Matlab计算程序(4060分频系数的选择)C=0.047*10^-6;R=4.7*10^3;Rj=0:10:20*10^3;R2=10*10^3;t=(2*(R+Rj)*C).*(((0.405*R2)./((R+Rj)+R2))+0.693);t1=t.*64;t2=t.*128;t3=t.*256;t4=0.3;t6=0.2;t8=0.15;plot(Rj,t1,':k',Rj,t2,'--k',Rj,t3,'-k',Rj,t4,Rj,t6,Rj,t8);2.Protel仿真电路(控制脉冲生成和延时电路)我没到2级发不了图片,嘿嘿,要图就给个邮箱!!

有没有汽车毕业论文的题目,内容好找的 电动汽车电池既是发展电动汽车的核心,更是电力工业与汽车行业的关键结合点。结合电动汽车的发展历史概述了车用动力电池的发展情况,重点介绍了3种主要电动汽车电池:铅酸电池、镍氢电池和锂离子电池的研究现状及当前的应用情况,并从电池化学性能和商业化的电动汽车电池组性能2个角度在技术和经济层面进行了详细的比较分析,最后对当前电动汽车电池的应用前景、未来发展趋势和研发中的新电池技术进行了展望,指出中国电力行业应关注电动汽车电池技术的发展,分析电动汽车充电负荷对电网的影响并及时采取应对措施。

新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力操控和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。主要区别于现在我们常见的汽油和柴油为燃料的内燃机汽车。新能源汽车包括纯电动汽车、增程式电动汽车、混合动力汽车、燃料电池电动汽车、氢动力汽车、其他新能源汽车等。下面介绍几个市场主流的新能源汽车类型:1、新能源包括混合动力汽车:采用燃油和电作为驱动原料的混合动力。目前各大品牌基本都有此类车型,比如:奔驰S400、宝马5系等,这些混动车辆都会标有Hybrid字样。2、纯电动汽车:此款车完全脱离了燃油,完全靠电作为驱动原料的混合动力。3、燃料电池汽车:这款车也是电池车,是一种氢氧混合燃料电池,您可以快速将电池燃料灌满,无需充电等待。4、氢能源动力汽车:此款车也完全脱离了燃油,利用氢能源替代了燃料。5、太阳能汽车:这款车大家比较容易理解,通过太阳能电池板,转化成电能来驱动车辆。还有其他新能源汽车,如:双燃料汽车、天然气汽车等

锂离子电池的研究与分析论文

现在新型的磷酸铁锂电池,安全性更好,而且成本更低。

1990年以来发表的论文(Eng.):新世纪1. Surface-modified Graphite as an improved intercalating Anode for Lithium ion Batteries,Y.Cao, L.Xiao, e t.a l,Electrochem. & Solid State Lett. , 6 (2003).A30-A332. Possible use of ferrocyanide as a redox additive for prevention of electrolyte decomposition in overcharged nickel batteries, Electrochem. Acta, (2003)3. Temperature Effects on the Electrodeposition of Zinc,J.X.Y u, L.Wang e t.a l ,J. Electrochem. Soc., 150 (2003) 1.4. Hydrogen production from catalyzed hydrolysis of sodium borohydride solution using nickel boride catalyst,H.Dong, H.Yang e t.a l,Int. J. Hydrogen Energy 28 (2003)10955. A Mechanistic Study of Electrocatalytic Reduction of Oxygen on Manganese Dioxides in Alkaline Aqueous Solution, Y. L. Cao, H. X. Yang*, X. P. Ai, and L .F .Xiao, J. Electroanal. Chem.,(2003) ,6. Structural and electrochemical characterization of calcium zincate mechanochemically synthesized as rechargeable anodic materials,X.Zhu, H. Yang, X. Ai, J. Yu and Y. Cao, J. Appl. Electrochem., 33(2003)6077. A study of calcium zincate as negative electrode materials for secondary batteries, J.Y u, H.Yang et.a l, J. Power Sources, 103 (2001) 938. Effects of Anions on the Zinc Electrodeposition onto Glassy-Carbon Electrode, J.Y u, H.Yang e t.a l,, Russ. J. Electrochemistry, 38 (2002) 321.9. Modeling and prediction for discharge lifetime of battery systems using hybrid evolutionary algorithms, H.Cao, J. Yu et al., Computer and Chem., 25(2001)251上世纪10. The influences of organic additives on Zinc electrocrystallization from KCl solution, J.X.Y u, Y.Y.Chen, H.X.Yang, et.a l, J. Electrochem. Soc., 146 (1999)178911. A new approach to the estimation of electrocrystallization parameters, J. Electroanal. Chem., 474 (1999)6912. Preparation and characterization of LiNiO2 synthesized from Ni(OH)2 and LiOH.H2O, H.X.Yang, Q.F.Dong, X.H.H u, X.P.A i, J. Power Souces, 79(1999)25613. A study of LiMn2O4 synthesized from LiCO3 and MnCO3, X.H.H u, X.P.A i, H.X.Yang, S.X.L i, J. Power Sources, 74(1998)24014. The kinetic study on the electrolytic hydrogenation of nitrobenzene on the hydrogen-storage alloy electrode, S. Lu, Q.L i, C.L u, Q.L iu, H.Yang, J. Electroanal. Chem., 457(1998)14915. Initial activation of hydrogen storage alloy electrode by chemical modification, J. Rare earth metals, S. Lu, Q.L i, C.L u, Q.L iu, R.H u, H.Yang,J. Rare Earths,16( 4), 307(1998)16. Effects of lanthanum and neodymium hydroxides on secondary alkaline zinc electrode, J. L. Zhou, Y. H. Zhou , H. X. Yang , J. Power sources, 69,(1997)16917. Polypyridine complexes of iron used as redox shuttles for overcharge protection of secondary lithium batteries. C. S. Cha , X. P. Ai, and H. X. Yang , J. Power Sources , 54, (1995)25518. In-situ ESR study on electrochemical lithium intercalation into petrulum coke , L. Zhuang, J. Lu, X. Ai, H. Yang , J. Electroanal. Chem. , 397, (1995)31519. Powder Microelectrodes, C. S. Cha, C. M. Li , H. X. Yang , P. F. Liu , J. Electroanal. Chem. , 368, (1994)4720. Electrochemical and structural studies of the composite MnO2 cathode doped with metal oxides , H. X. Yang, X. P. Ai , M .Lei ,S. X. Li , J. Power sources , 43-44, (1993)53321. Recent advances in experimental methods applied to lithium battery researches , J. Power Sources , C. S. Cha , H. X. Yang, J. Power sources , 43-44, (1993)145.22. Fractal structure structure of colloidal silver and its effects on SERS intensities of crystal violet , Chinese Chem. Letters, 3, (1992)91923. The observation of enhanced RAMAN scattering of gaseous molecules by Hg microdroplets, Chinese Chem. Letters, 2, (1991)54924. A novel optically transparent thin layer electrode for in situ IR spectroelectrochemistry , Chinese Chem. Letters, 2, (1991)25. Fiber optic thin-layer electrode cell for in situ transmission spectro- electrochemistry , Chinese Chem. Letters, 2, (1991)329 1990年以来发表的论文(中文):21世纪1. 联苯用作锂离子电池过充保护剂的研究, 肖利芬, 艾新平, 曹余良, 杨汉西, 电化学, 9(1), 23(2003)2. 塑料化聚合物电解质的导电性质, 艾新平,董全峰,杨汉西, 电池,32(S1), 48(2002)3. 尖晶石型ZnMn_2O_4的合成及其电化学行为, 李升宪,李保旗,杨汉西,艾新平, 电池,32, 3( 2002)4. 锌酸钙的制备与电化学性能研究, 喻敬贤,杨汉西,朱晓明,艾新平, 电池, 31(2) 65(2001)5. 圆柱型锌空气电池研究, 李升宪,周贵茂,艾新平,杨汉西, 电化学,6(3), 341(2000).6. 塑料化薄膜锂离子电池的制造技术, 艾新平,洪昕林,董全峰,李升宪,杨汉西, 电化学, 6(2), 193(2000)上世纪90年代7. LiMn2O4正极在高温下性能衰退现象的研究, 胡晓宏,杨汉西,艾新平,李升宪,洪昕林, 电化学, 5(2), 224(1999)8. 纳米光亮镀锌层的结构研究, 喻敬贤,陈永言,黄清安,杨汉西, 高等学校化学学报,20(1),107 (1999)9. 添加剂对锌结晶行为的影响及参数的演化优化, 化学学报, 57,953(1999)10. 锡基非晶态材料的化学合成及其嵌锂性能的初步研究, 刘立,杨汉西,孙聚堂,艾新平, 电化学,4(4), 362 (1998)11. 石墨负极锂嵌碳机理的研究, 周震涛,黄静,汪国杰,艾新平,杨汉西,, 华南理工大学学报(自然科学版) 1998年07期12. 贮氢合金用作有机加氢反应新型催化剂研究进展, 卢世刚,杨汉西,杨聪智, 化学通报 12, 1(1998)13. 电阻应变法用于密封电池内压变化的动态检测, 杨汉西, 胡容辉,艾新平,杨聪智,李升宪, 电化学, 4(3), 318(1998)14. 薄膜塑料锂离子电池的初步研究, 董全峰, 杨汉西, 艾新平, 胡晓宏,李升宪, 电化学, 4(1), 9(1998)15. 电化学制备Ni-Cu/Cu超晶格多层膜, 喻敬贤,陈永言,黄清安,杨汉西, 武汉大学学报(自然科学版) 1998年06期16. 氢气在贮氢合金电极上析出反应机理的研究, 卢世刚,李群,刘庆国,路春,党兵,杨汉西, 电化学,4(3),265 (1998)17. 非水介质中Zn-MnO_2的可充性研究, 李保旗,杨汉西,李升宪,杜米芳,艾新平, 电化学,3(3), 277 (1997)18. 泡沫镍的电沉积制备技术, 何细华,胡蓉晖,杨汉西,左正忠, 电化学,2(1), 66 (1996)19. 微电极定量方法评价贮氢合金的电化学性质, 胡蓉晖,杨汉西,刘金成,李升宪,查全性, 电化学,2(4), 391(1996)20. 贮氢合金电极的活化方法和作用机理研究, 胡蓉晖,杨汉西,卢世刚,李升宪,刘金城,杨聪智, 电化学,2(2), 170 (1996)21. 电沉积泡沫铜, 何细华,左正忠,杨汉西, 材料保护 1996年11期22. 无氟微酸性体系镀铅研究, 何细华,左正忠,杨汉西, 电镀与环保 1995年05期23. 贮氢合金用作硝基苯电解加氢的催化电极研究, 卢世刚,杨汉西,王长发, 电化学, 1(1), 15(1995)24. 金属氢化物-镍电池充电过程消气反应研究, 刘金城, 杨汉西, 胡蓉辉, 吴锋, 电源技术, 19(4), 1(1995)25. 超薄层红外光透电解池的设计和应用, 肖以金,杨汉西,查全性,, 分析化学 1994年02期26. 电化学石英晶体微天平对银电极氧化还原过程的研究, 陈胜利, 吴秉亮, 杨汉西, 高等学校化学学报, 15(1), 103(1994)27. 炭材料作为储锂负极的研究, 杨汉西, 雷鸣,李升宪,艾新平, 应用化学, 10(1), 113(1993)28. Li/SOCl2 电池的拉曼光谱电化学研究, 钟发平, 杨汉西, 查全性等, 高等化学学报, 14, 265(1993)29. 简易多功能光谱电化学池的设计, 肖以金, 杨汉西, 冯之刚, 伏亚萍, 光谱学与光谱分析, 13(6), 103(1993)30. 激光拉曼光谱的光纤采样技术, 钟发平, 吴国帧, 杨汉西等, 光谱学与光谱分析, 13(6), 29(1993)31. 甲基吡啶电氧化过程的表面增强RAMAN光谱研究, 钟发平, 杨汉西, 查全性, 化学学报, 51, 273(1993)32. 阴极限制型Li/SOCl2电池过放电产物的热分析, 肖以金, 杨汉西, 查全性, 应用化学, 10(3), 54(1993)33. C60 电化学还原的稳态性质研究,杨汉西, 肖以金, 朱凌等, 物理化学学报, 8, 580(1992)34. 微型拉曼电解池现场研究硫酰氯的电化学还原, 钟发平, 杨汉西, 徐知三, 查全性, 物理化学学报, 8, 266(1992)35. 锌离子在λ-MnO2中的电化学嵌入, 吴智远, 杜米芳, 杨汉西等, 应用化学, 9(2), 99(1992)36. 锂电化学嵌入尖晶石二氧化锰研究, 吴智远, 杨汉西, 石中等, 电池, 22(1), 13(1992)37. 锂离子电池炭负极研究, 杨汉西, 艾新平, 雷鸣, 李升宪, 电源技术, 5, 2(1992)38. MnO2作为二次锂电池阴极材料研究, 李升宪, 杨汉西, 吴智远, 汪振道, 电源技术, 4, 7(1991)39. AA-型Li/λ-MnO2 二次电池研究, 李升宪, 杨汉西, 吴智远等, 电池,21(5), 10(1991)40. 锂/硫酰氯电池体系的初步研究, 杨汉西,钟发平, 汪振道等, 电源技术, 2, 5(1990)41. 大功率锂/亚硫酰氯电池高效炭阴极研究, 汪振道, 杨汉西, 范玉章, 雷鸣, 电源技术, 1, 3(1990)

没分,你在说什么呀,笨蛋

一.锂金属电池:锂金属电池一般是使用二氧化锰为正极材料、金属锂或其合金金属为负极材料、使用非水电解质溶液的电池。二.锂离子电池:锂离子电池一般是使用锂合金金属氧化物为正极材料、石墨为负极材料、使用非水电解质的电池。

中国关于锂离子电池研究论文选题

成果简介

高容量硅 (Si) 被公认为高性能锂离子电池 (LIB) 的潜在负极材料。但是,放电/充电过程中的大体积膨胀阻碍了其面积容量。 本文,上海交通大学微纳米科学技术研究院张亚非教授课题组在《ACS Appl. Mater. Interfaces》期刊 发表名为“Binder-Free, Flexible, and Self-Standing Non-Woven Fabric Anodes Based on Graphene/Si Hybrid Fibers for High-Performance Li-Ion Batteries”的论文, 研究设计了一个柔性石墨烯纤维织物(GFF)为基础的三维导电网络,形成无粘合剂且自支撑的高性能锂离子电池的硅负极。

Si 颗粒被牢固地包裹在石墨烯纤维。起皱引起的大量空隙石墨烯在纤维中能够有效地适应锂化/脱锂过程中硅的体积变化。GFF/Si-37.5% 电极在 100 次循环后在0.4 mA cm –2的电流密度下表现出优异的循环性能,比容量为 920 mA hg –1。此外,GFF/Si-29.1% 电极在 400 次循环后在0.4 mA cm –2的电流密度下表现出 580 mA hg –1的优异可逆容量。GFF/Si-29.1% 电极的容量保持率高达 96.5%。更重要的是,质量负载为 13.75 mg cm –2的 GFF/Si-37.5% 电极实现了 14.3 mA h cm –2的高面积容量,其性能优于报道的自支撑 Si 阳极。这项工作为实现用于高能 LIB 的无粘合剂、柔性和自立式 Si 阳极提供了机会。

图文导读

图 1. (a) 自立式 GFF/Si - X电极制造过程示意图。(b)醋酸溶剂中的 GOF/Si、(c)GOFF/Si 和(d)GFF/Si- X 的数码照片,揭示了其柔韧性。(e) GFF/Si-37.5% 电极冲压成面积为 1.12 cm 2 的小圆盘。

图 2. (a) GFF/Si-37.5% 低倍率的 SEM 图像和 (b) 部分放大的 SEM 图像,揭示了两个独立的纤维在两者相遇的点合并为一个。(c,d) GFF/Si-37.5% 表面和横截面的 SEM 图像。

图 3. GFF/Si- X电极在 0.4 mA cm –2电流密度下的电化学特性;所有比容量均以自立式电极的总质量为基础计算。(a) 第一次循环充电/放电电压曲线。(b) ICE 的比较分析。(c) 循环性能比较。(d) GFF/Si-37.5% 电极在 0.2 mV s –1扫描速率下的CV 测量值。(e) GFF/Si-37.5% 的倍率性能。(f) 具有不同阳极重量的 GFF/Si-37.5% 电极的面积容量

图 4. GFF/Si-HI、GFF/Si-37.5% 和 GFF/Si-800 C 电极的循环性能比较

图 5. GFF/Si-HI、GFF/Si-37.5% 和 GFF/Si-800 C 的成分分析:(a) XRD 图,(b) 拉曼光谱,(c) GFF/Si-的 TGA 曲线N 2气氛中的HI ,和 (d) FT-IR 光谱。

图 6. (a,b) GFF/Si-37.5% 电极在循环前后的拉曼光谱和 XRD 图案。GFF/Si-37.5% 电极在 100 次放电/充电循环后的形态研究:(c,d) 锂化/脱锂后低倍和高倍率的 SEM 图像;插图是循环后 GFF/Si-37.5% 电极的数码照片;(e,f) TEM 和 HRTEM 图像;插图是低倍放大的 SAED 图像;(g) 元素映射。

小结

在这项研究中,基于 GFF 的 3D 导电网络被设计用于无粘合剂和自立式 Si 阳极。GFF 结构在放电/充电循环期间成功地抑制了 Si 的体积膨胀。提出了一种新策略,用于制造用于高性能 LIB 的无粘合剂、柔性和自立式 Si 阳极。

文献:

喜欢就 关注我们吧,订阅更多最新消息

全文速览

针对锂金属不均匀沉积造成的锂枝晶生长以及死锂疯狂聚集等问题,本工作利用平行排列的具有多孔结构的轻质碳骨架,在电镀过程中为锂沉积提供足够的空间和连续的导电网络,从而来均匀化锂离子分布,使电极/电解液的界面处的电流密度分布均匀,达到抑制锂枝晶生长以及缓解金属锂循环过程中的体积膨胀的目的。作者对其复合金属负极进行了一系列电化学性能的测试,所测结果表明该复合锂金属负极所组成的对称电池在4.0 mAh cc,2.0 mAh cm -2 的条件下可稳定循环4800 h而没有明显的电压滞后现象。此外,以该复合锂电极为负极,NCM811为正极所组装的全电池也展现出了优异的循环稳定性以及高的倍率性能。更重要的是,低温性能测试结果表明,该复合金属锂负极在低温下依然具有优异的可逆性以及循环稳定性。在此基础上,作者还通过理论计算很好地验证了实验结果,进一步证明了该平行排列的多孔结构有利于促进锂离子的均匀沉积,实现锂金属负极的稳定循环

背景介绍

金属锂表现出的高理论比容量(3860 mAh g -1 )和超低电化学电势(-3.04 V),一直是二次电池领域人们为之神往的圣杯。然而,锂金属负极中的枝晶生长以及固态电解质界面的不稳定性成为它趋向完美的严重阻碍。锂枝晶的生长以及界面的不稳定会造成金属锂的可持续利用率降低,甚至会刺穿隔膜造成电池爆炸等安全性问题。因此,控制金属锂的均匀沉积是实现锂电池实际应用的重要途径之一。目前,已经有许多策略致力于稳定锂金属负极,其中一个重要的方向就是通过构建合适的功能性的3D集流体框架,促进锂离子的均匀沉积,实现无枝晶的锂金属负极。相比3D的金属集流体,碳集流体以其优异的的化学稳定性、柔韧性及可延展性而被广泛研究,但是其本身的疏锂性以及有限的比表面积阻止了其进一步的发展。因此,本工作从这两个方面出发设计了平行排列且具有多孔结构的碳骨架(PAPCFs)来稳定锂金属负极。

图文解析

图1展示了PAPCFs和CCFs上的结构和初始锂沉积的特性。(a-b) SEM 图像和 (c) 通过使用 PAPCFs 的 DFT 模型计算的 N2 吸附-解吸等温线和累积孔体积 (0.5-50 nm); (d-e) 在 PAPCFs 和 CCFs 电极上镀有 0.5 mA h cm -2 锂时的SEM 图,PAPCFs在镀锂后仍然显现出平整光滑的表面,而普通的CCFs则出现了疏松的锂枝晶,表明了PAPCFs对调控锂沉积有重要的意义。 PAPCFs 和 CCFs 电极界面信息的有限元模拟。(g) 分别用于 PAPCFs 和 CCFs 电极的 18 24 µm 2 半电池电沉积系统下具有恒定反应电流和电极表面的电流密度矢量分布,轮廓中的箭头代表锂离子的运动。 (h) 分别具有多孔结构和不具有多孔结构的 PAPCFs 电极在 18 24 µm 2 半电池电沉积系统下的平衡的锂离子浓度分布。在相同几何尺寸下,高比表面积将降低电极表面上的局部电流密度。因此,多孔电极上的电流密度设置为无孔电极上的一半。 (f) 多孔和非多孔电极中沿 Y 方向的一维横截面的锂离子浓度分布。 Y 方向表示垂直于电极。 (i) PAPCFs 在初始状态调节低浓度梯度和均匀的 Li + 通量分布,实现均匀的锂沉积的示意图。

Fig. 1 The structure and initial Li deposition characteristic on PAPCFs and contrastive CCFs. (a-b) SEM images and (c) N2 adsorption-desorption isotherm and cumulative pore volume (0.5-50 nm) calculated by the use of DFT-model of PAPCFs. (d, e) SEM images for Li deposition morphology with 0.5 mA h cm-2 of Li plated on PAPCFs and CCFs electrode. Finite element simulation for the interface information of PAPCFs and CCFs electrodes. (g) Current density vector profiles with constant-reaction-current electrode surfaces at 18 24 µm2 half cell electrodeposition system for PAPCFs and CCFs electrode, respectively. The arrows in the profiles stand for the movement of Li-ion. (h) Equilibrium Li-ion concentration profiles at 18 24 µm2 half cell electrodeposition system for PAPCFs electrode with and without porous structure, respectively. The high surface area will reduce the local current density on the electrode surface under the same geometry dimensions. Therefore, the current density on the porous electrode is set as a half of that on the non-porous electrode. (f) 1D cross-sectional Li-ion concentration profiles along Y direction in porous and non-porous electrodes. The Y direction is perpendicular to the electrode. (i) Schematic diagrams of PAPCFs to regulate low concentration gradient and even Li+ flux distribution for uniform Li deposition at initial state.

图2 展示了Li@PAPCFs复合负极的镀锂/脱锂稳定性与循环过程中的形貌演变。(a) 三种对称电池(Li@PAPCFs、Li@CCFs 和 Li 箔)在 1 mA cm -2 和 2 mA h cm -2 下的时间-电压曲线。(b-d) Li@PAPCFs 和 (e-g) Li@CCFs 在 200 次循环后的 SEM 图以及截面图(状态 A)。Li@PAPCFs 对称电池 (h) 在 4 mA cm -2 的电流密度下和 2 mA h cm -2 的容量下和 (i) 在 2 mA cm -2 的电流密度下和 4 mA h cm -2 的容量下的时间-电压图。 从所有的时间-电压曲线可知,该PAPCFs在不同的电流密度以及不同的容量下始终表现出最小的极化,说明具有平行排列且具有丰富孔结构的PAPCFs在重复的镀锂/脱锂循环过程中保持了优异的结构稳定性并始终维持着稳定的固体电解质膜。此外,其高的表面积很好地均匀了锂离子流,抑制了枝晶的生长。

Fig. 2 The Li plating/stripping stability and morphology evolution of Li@PAPCFs. (a) Voltage profiles in three types of symmetrical cells (Li@PAPCFs, Li@CCFs, and Li foil) at 1 mA cm-2 and 2 mA h cm-2. Insert: Magnified voltage profiles at the 100th, 200th, and 500th cycle, respectively. Top view and cross section of SEM images of (b-d) Li@PAPCFs and (e-g) Li@CCFs after 200 cycles (state A). Voltage profiles of Li@PAPCFs symmetrical cell (h) at 4 mA cm-2 and 2 mA h cm-2 and (i) at 2 mA cm-2 and 4 mA h cm-2. Insert: Magnified voltage profiles at specific a certain cycles.

图3展示了NMC111-Li@PAPCFs、NMC111-Li@CCFs和NMC111-Li全电池的电化学性能。(a) 在电流密度为 1 C时,第 1 次和第 10 次循环的比容量-电压曲线。(b)GITT测试,从图中可以明显地看出NMC111-Li@PAPCFs的平均 D app, Li在相同的测试环境下最高,表明Li@PAPCFs具有更好的Li + /电子传导性以及更好的界面稳定性;(c)不同倍率下的电化学性能。 (d) 1 C下的长循环稳定性。

Fig. 3 The electrochemical performance of NMC111-Li@PAPCFs, NMC111-Li@CCFs, and NMC111-Li full cells. (a) Voltage profiles at 1 C for the 1st and 10th cycle. (b) GITT tests of the D app, Li along with the galvanostatic charge-discharge process of 4th cycle at 0.5 C. (c) Rate performance at the different rates. (d) Long-term cycle stability at 1 C.

图4是 Li@PAPCFs 和其对应的全电池的低温性能。 Li@PAPCFs 对称电池在(a)1 mA cm -2 和 2 mA h cm -2 下0 的时间-电压曲线,(b)0.25 mA cm -2 和 1 mA h cm -2 下-15 的时间-电压曲线。 PAPCFs 在预先镀有10 mA h cm -2 后(Li@PAPCFs)(c-e) 和在 0 电镀/剥离循环后的SEM图和截面图(f-h)。NMC111-Li@PAPCFs 在(i)不同倍率和温度下的容量保持率,(j) 0.5 C不同温度下的充放电曲线。(k) NMC111-Li@CCFs 与 NMC111-Li@PAPCFs 在不同倍率和温度下的容量保持率。 NMC111-Li@PAPCFs 在电流密度为1 C时,温度为 (l) 0 和 (m) -15 时的长循环稳定性。

Fig. 4 LT tolerance of Li@PAPCFs and the corresponding full cell. Voltage profiles of Li@PAPCFs symmetrical cell (a) for 0 at 1 mA cm-2 and 2 mA h cm-2 and (b) for -15 at 0.25 mA cm-2 and 1 mA h cm-2. Insert: Magnified voltage profiles at specific a certain cycles. Top view and cross section of SEM images of Li@PAPCFs (c-e) after the initial Li plating of 10 mA h cm-2 and (f-h) after the plating/stripping cycles at 0 . (i) Capacity retention ( C r) of NMC111-Li@PAPCFs at different rates and temperatures vs. 25 . (j) Charge-discharge profiles at 0.5 C for different temperatures. (k) C r of NMC111-Li@CCFs vs. NMC111-Li@PAPCFs at different rates and temperatures. Long-term cycle stability of NMC111-Li@PAPCFs at (l) 0 for 1 C and (m) -15 for 0.1 C.

总结与展望

从商业无纺布中提取的可再生、可伸缩的3D轻质碳骨架可以很好地实现Li的均匀成核和沉积,使HLCA在长期循环甚至低温条件下依然能够实现保持完整的结构,同时也能维持稳定的电极/电解液界面。其中,碳骨架的平行排列可以均匀化Li + 分布;其大的比表面积可以大大降低有效电流密度,缓解电极界面的浓度梯度,从而形成稳定的富含LiF的 SEI 层。其对称电池和全电池的循环稳定性优于目前所报道的亲碳或亲锂修饰的碳宿主,表明HLCA的内在排列模式和微观结构对实现具有高稳定性以及高安全性的锂金属负极的重要性。本工作从实用角度出发,为一系列可充电金属电池提供了一种很有前途的碳主体材料。

作者介绍

吴兴隆 ,东北师范大学教授,教育部“青年长江学者”,课题组的研究领域包括纳米能源材料(用于锂离子电池、钠离子电池和电化学电容器等)、新型电化学储能器件、锂离子电池回收与再利用。已在《Adv. Mater.》(5篇)、《Energy Environ. Sci.》、《Sci. Bull.》、《Adv. Energy Mater.》(5篇)、《Adv. Funct. Mater.》、《Energy Storage Mater.》(2篇)、《Nano Energy》、《Small》(3篇)和《J. Mater. Chem. A》(12篇)等学术期刊发表通讯/第一作者论文110余篇。14篇论文被评选为ESI高引论文,文章被引用超过11000次,H指数为57;已获授权发明专利17项;负责了锂离子电池正极材料从实验室到中试,再到小规模工业化生产定型,开发了多款高性能锂离子电池产品。主持了国家自然科学基金委重大研究计划和吉林省省 科技 厅等十余项研究课题。曾获得教育部自然科学研究成果一等奖和中国科学院 科技 成果转化二等奖等 科技 奖励。

参考文献

Chao-Ying Fan, Dan Xie, Xiao-Hua Zhang, Wan-Yue Diao, Ru Jiang, Xing-Long Wu, Homogeneous Li + Flux Distribution Enables Highly Stable and Temperature-Tolerant Lithium Anode. Adv. Funct. Mater. 2021, 2102158.

锂离子电池优化充电策略研究论文

如今电动 汽车 愈发受到市场青睐,但漫长的充电时间也让人望而却步。传统燃油 汽车 仅需5分钟即可满油增程500公里,而目前市售最先进的电动 汽车 则需要“坐等”充电一小时才能达到同样的增程效果。发展具有快速充电能力的大容量锂离子电池一直是电动 汽车 行业的重要目标。中国科学技术大学的这项最新研究突破使人类距离该目标更近了一步。 论文第一作者金洪昌博士介绍:“在锂离子电池中,能量通过锂离子与电极材料的化学反应进出电池,因此电极材料对锂离子的传导能力是决定充电速度的关键;另一方面,单位质量或体积的电极材料容纳锂离子的多少也是一个重要因素。” 黑磷是白磷的同素异形体,特殊的层状结构赋予了它很强的离子传导能力和高理论容量,是极具潜力的满足快充要求的电极材料。然而黑磷容易从层状结构的边缘开始发生结构破坏,实测性能远低于理论预期。 为此,季恒星团队采用“界面工程”策略将黑磷和石墨通过磷碳共价键连接在一起,在稳定材料结构的同时提升了黑磷石墨复合材料内部对锂离子的传导能力。针对电极材料在工作过程中会被电解液逐渐分解的化学物质所包裹,部分物质会阻碍锂离子进入电极材料,就像玻璃表面的灰尘阻碍光线穿透一样。研究团队用轻薄的聚合物凝胶做成防尘外衣“穿”在黑磷石墨复合材料表面,使锂离子得以顺利进入。 “我们采用常规的工艺路线和技术参数将黑磷复合材料做成电极片。实验室的测量结果表明,电极片充电9分钟即可恢复约80%的电量,2000次循环后仍可保持90%的容量。”论文共同第一作者、中国科学院化学研究所研究员辛森介绍说,“如果能够实现这款材料的大规模生产,找到匹配的正极材料及其他辅助材料,并针对电芯结构、热管理和析锂防护等进行优化设计,将有望获得能量密度达350瓦时/千克并具备快充能力的锂离子电池。” 这样的锂离子电池能够使电动 汽车 的行驶里程接近1000公里,而特斯拉Model S满电后的行驶里程为650公里。快速充电能力将使电动 汽车 的用户体验上升一个台阶。

稿源:cnBeta 美国能源部旗下 SLAC 国家加速器实验室和斯坦福大学的研究人员们,刚刚介绍了一种能够极大地恢复可充电锂电池效能的方法。对于电动 汽车 和下一代电子设备来说,这意味着相关产品的电池寿命可进一步延长。据悉,在经历了多次充放电循环之后,锂电池会在电极间形成不那么活跃的锂孤岛,从而降低电池的储能效果。 (图自:Greg Stewart / SLAC National Accelerator Laboratory) 好消息是,研究人员们发现,他们能够让“濒死”的锂岛向蠕虫一样前往其中一个电极、直至实现重新连接,从而部分逆转了不良衰减的过程。 由 2021 年 12 月 22 日发表于《自然》杂志上的这项研究可知 —— 通过引入这个额外的步骤,该团队得以将锂电池寿命延长近 30% 。 论文一作、斯坦福大学博士后研究员 Fang Liu 表示:“我们现正 探索 使用极快的放电步骤,来回复锂离子电池容量损失的可能性”。 如上图所示,但过一个失活的锂金属岛移动到电池的阳极(或负极)并实现重新连接时,它就能够恢复生机、用于电荷储存和为电子流动提供支撑。 下方动画展示了实验装置的原理,解释了“濒死”的锂岛是如何在电池充放电循环过程中,在阴阳(红蓝)两极之间来回蠕动的。 考虑到当前锂电池已被广泛运用于手机、笔记本电脑和电动 汽车 ,大量研究团队都在寻找重量更轻、寿命更长、安全性更高、充电速度更快的可充电电池方案。 其中一个发展方向是锂金属电池,在相同的单位体积重量下,它能够储存更大的容量、充电效率也更高。若得到普及,下一代电动 汽车 的重量和空间占用都可更少、或在同等电池体积下实现更长的续航里程。 不过无论固态或锂离子电池,它们都要用到带正电的锂离子在两极之间来回穿梭。随着时间的推移,一些金属锂会出现电化学惰性、形成不再与电极连接的锂孤岛,从而造成容量的损失。 有关这项研究的详情,还请移步至 2021 年 12 月 22 日正式出版的《自然》(Nature)期刊查看。 原标题为《Dynamic spatial progression of isolated lithium during battery operations》。

  • 索引序列
  • 锂离子电池论文题目
  • 锂离子汽车电池技术毕业论文
  • 锂离子电池的研究与分析论文
  • 中国关于锂离子电池研究论文选题
  • 锂离子电池优化充电策略研究论文
  • 返回顶部