突触传递机制研究新进展 摘要:最近的几年里,科研人员一直致力于突触传递机制的研究,他们对有关的各种生物现象中寻找突触传递在其中的机制。本文将从对突出传递机制的新进展做一个小小的综述。 关键词:突触可塑性;视网膜;调控机制;tau蛋白;伏隔核谷氨酸能;可卡因;大鼠VTA区DA神经元;脑胶质瘤致癫病;长时程增强(LTP);膜片钳;GluR2 缺失的AMPARs 视网膜突触可塑性调控机制研究进展#突触可塑性的变化影响着中枢神经系统的发育,损伤和修复等多种功能。研究发现,在视网膜发育、损伤修复过程中可出现突触可塑性改变,而自发性眼波、光线刺激、视觉经验、神经营养因子和胶质细胞等因素均参与了视网膜突触可塑性的调节。突触连接的改变是经验依赖性脑神经回路重排的基础,突触可塑性的变化影响着神经系统的发育,神经的损伤和修复等多种脑功能,目前突触可塑性的调节机制还未完全阐明。近30 多年来,对于视觉系统发育和可塑性的研究取得了很大的发展,尤其是对于视神经突触水平的变化有了较清晰的认识,但还有很多问题尚待深入研究:各种神经生长因子参与视觉发育可塑性的确切机制;在基因水平上还需进一步通过对多种相关基因的反应时程和强度进行分析, 研究其对视网膜突触可塑性的影响;视网膜突触可塑性中胶质细胞增殖、分裂、分泌生物活性物质等功能的调控。随着脑科学、发育生物学及神经生物学等边缘学科的迅猛发展,相信不远的将来,人类一定会在该领域取得突破性进展,并给治疗相关视网膜疾病及视网膜损伤后的修复治疗研究提供新思路和理论依据。兴奋性突触传递对tau蛋白表达和省略响及其在阿尔茨海默病发病中的作用兴奋性突触传递是神经元最基本的功能,NMDA受体(N-Methyl-D-aspartate receptor, NMDAR)是神经系统中最主要的兴奋性离子型受体之一,其在学习记忆,突触可塑性,神经发育等方面具有重要作用,但NMDA受体过度激活导致谷氨酸聚集于突触间隙所诱导的神经毒性作用也是许多神经退行性疾病的共同发病机制。阿尔茨海默病(Alzheimer’s disease, AD)是成人痴呆症最主要的病因,其中tau蛋白过度磷酸化和聚集是AD脑内的主要病理特征之一。兴奋性突触传递与tau病变之间的联系目前少见报道。本研究探讨了谷氨酸能兴奋性突触传递增强对tau蛋白表达和磷酸化的影响及其在AD样神经退行性变中的作用。本文第一部分探讨了短时间突触传递增强对tau蛋白磷酸化的影响和内在机制。成人脑内约有一半的谷氨酸能神经元是谷氨酸-锌能神经元,即突触兴奋时锌离子与谷氨酸一起释放至突触间隙。本研究阐明了谷氨酸-锌能神经元兴奋时突触释放的锌离子通过抑制蛋白磷酸酯酶2A (Proteinphosphatase2A, PP2A)的活性导致tau蛋白过度磷酸化。 慢性吗啡处理对伏隔核谷氨酸能突触传递的影响药物成瘾和自然的奖赏效应(食物、性等)共享同样的神经基础——中脑边缘多巴胺系统,该系统主要涉及杏仁核、弓状核、蓝斑、中脑导水管周围灰质、腹侧被盖区(ventraltegmental area, VTA)、伏隔核(nucleus accumbens,NAc)等脑区,其外延包括额叶皮层、海马等与情绪、学习和记忆密切相关的结构。目前的观点认为奖赏性刺激是通过对脑内奖赏系统发挥作用,最终引起NAc区多巴胺(dopamine,DA)释放量增多,从而产生奖赏效应。NAc在成瘾中起着至关重要的作用。NAc中神经元因在吗啡成瘾及戒断的过程中产生适应性变化而备受关注。前额叶皮质(prelimbicprefrontal cortex,PFC)的功能之一是对有利刺激的重要性进行评估,并抑制在当前环境中不适当的行为,该脑区在成瘾药物的精神依赖中发挥着对觅药动机进行评估和抑制的重要作用。Mark EJackson等研究发现,利用接近生理条件下的刺激频率来刺激PFC后抑制了NAc中多巴胺的释放,提示了前额叶中存在着对NAc中的多巴胺的释放的抑制性调节 单次可卡因注射对大鼠VTA区DA神经元兴奋性突触传递和内在兴奋性的影响中脑皮质边缘多巴胺系统(mesocorticolimbicdopamine system)与奖赏和药物成瘾有十分密切的关系。该系统包括腹侧被盖区(ventraltegmental area, VTA)多巴胺能神经元的两条主要投射通路:一条由腹侧被盖区投射到伏隔核(nucleusaccumbens, NAc)和纹状体,称为中脑边缘多巴胺系统(mesolimbicdopamine system);另外一条由腹侧被盖区投射到前额叶皮质(prefrontal cortex),称为中脑皮质多巴胺系统(mesocortical dopamine system)。这两条通路合称为中脑皮质边缘多巴胺系统。药物成瘾的解剖基础是奖赏系统,中脑边缘多巴胺系统是其关键,中脑腹侧被盖区(VTA)及其投射区伏隔核(NAc)是主要的神经基础,多巴胺(DA)是非常重要的神经递质。除了参与天然和成瘾性药物的奖赏刺激,当今更多的研究发现中脑边缘多巴胺系统还与成瘾的渴求和复发有关。在VTA区域微量注射吗啡、可卡因等都能诱导产生条件性位置偏爱(CPP)。VTA区注射吗啡还可点燃海洛因、可卡因等的自给药行为。 LTP 的分子机制研究进展LTP机制的研究热点由单一兴奋性递质机制过渡到兴奋性递质与抑制性递质联160 合机制。目前,已证明突触可塑性的改变与多种疾病相关,如阿尔茨海默病、癫痫、慢性痛、药物成瘾性和精神分裂症等。常用在体LTP技术和膜片钳脑片LTP技术两种检测方法。在体海马LTP的优势在于能较真实地反映生理状态下神经突触活动的情况,在整体条件下观察神经突触活动的变化,利于从宏观角度研究和探讨相关机理。其进展体现在:CaM-CaMKII,Ca2+作为胞浆第二信使,与钙调蛋白(Calmodulin, CaM)结合形成Ca2+-CaM复合物,进一步激活CaMKⅡ。CaMKⅡ被认为是一个分子开关,在静息状态时,自身抑制区封闭催化部位而处于非活化状态。但当神经元受刺激时,Ca2+-CaM复合物与CaMKⅡ的自身抑制区结合,改变此酶的构象,从而具有活性。MEK-ERK,细胞外信号调节激酶(extracellularsignal-regulated kinase,ERK)是丝裂原活化蛋白激酶(micogen activated procein kinases,MAPKs)家族中的重要成员,和细胞的生长、发育、分化有关。最近研究表明,ERK通过影响相关核转录因子在LTP和学习记忆过程发挥着调节作用。PKA-CREB,长时记忆(Long term memory,LTM)需要新蛋白质的合成,PKA-CREB信号通路被认为在新蛋白质的合成过程中起重要作用。PKA的激活可以引发CREB的转录,并促使ERK向细胞核发生移位,表达参与到晚期LTP(Late-LTP, L-LTP)和LTM的发生机制。BDNF(脑源性神经营养因子),FanM等发现,BDNF与蛋白激酶Mδ(PKMδ)相关,两者相互影响。在蛋白质合成及强直性刺激的参与下,BDNF能够在一定程度上提高PKMδ的水平,从而影响 L-LTP的维持过程。但是在抑制神经元及突触活性后,BDNF则对PKMδ的稳态水平没有影响。PKMδ对BDNF介导的L-LTP是必不可少的。TrkB作为BDNF的受体,需要通过新蛋白质的合成被激活,从而参与到L-LTP的表达过程中。Munc13Munc13系列蛋白是一种基因调控蛋白,在突触囊泡胞吐和神经递质释放中发挥重要作用,对于目前Munc13与LTP相关性的研究成为热点。 脑胶质瘤致癫病的化学突触机制研究进展脑胶质瘤致病是由于胶质瘤对瘤周组织产生的一系列影响所引起的。然而这其中的病理生理学机制还有待于进步研究和探讨,主要涉及继发于胶质瘤后的结构学、生物化学及组织病理学方面的改变。而胶质瘤致病在临床治疗过程中属于难治型癫病,主要是由于抗癫病药物对胶质瘤致病的病理生理过程干预较少甚至是不干预,因此,揭示胶质瘤致病的病理生理过程可能为临床上肿瘤致桶的药物干预和治疗提供分子靶点和治疗依据。 GluR2 缺失的AMPARs在突触可塑性机制中的研究进展与活性依赖的突触的AMPARs 数目改变不同,活性依赖的AMPARs 亚基的修饰引起Ca2+信号转导的改变,通道传导和动力学的改变,使突触产生了不仅量而且是质的改变。这些重要的问题仍然需要进一步研究,如为何抑制性中间神经元和元棘突神经元中AMPARs 的GluR2 亚基低表达;GluR2亚基在活性依赖的细胞特异的改变的是什么机制;除了受体受到调节运输外,另→个重要的未解决的问题是AMPARs 介导的Ca2+内流有什么特殊功能,有力的证据的表明Ca2+内流可以激发LTP ,然而关于Ca竹在突触后的靶向目标却很少了解。因此关于GluR2 缺失的AMPARs 与突触可塑性的相关特异机制仍有待进一步研究。 [参考文献][1] Wahlin KJ, Moreira EF, Huang H, et al. Molecular dynamicsof photoreceptor synapse formation in thedeveloping chick retina. J CompNeurol[J]. 2008, 506(5): 822-837[2] Justin Elstrott, Anastasia Anishchenko, MartinGreschneretal.Direction selectivity in the retina is establishedindependentofvisual experience and early cholinergic retinal waves. Neuron[J]. 2008,58(4): 499-506[3] 罗佳,王慧,黄菊芳,陈旦;《视网膜突触可塑性调控机制研究进展#》;Q422[4] Bliss TV, Lomo T. Long-lasting potentiation of synaptictransmission in the dentate area of the anaesthetized rabbit followingstimulation of the perforant path. J Physiol[J]. 1973,232;331-356 [5] Whitlock JR, HeynenAJ, Shuler MG, Bear MF. Learning induces long-term potentiation in thehippocampus. Science[J]. 2006,313:1093-1097.[6]魏显招,王雪琪,《GluR2 缺失的AMPARs 在突触可塑性机制中的研究进展》,DOI: 10. 3724/SP. J. 1008. 2009. 00437
浅谈新时代背景下教与学关系新论
论文关键词教学变革脑科学教与学
论文摘要 新时代的背景下,我们需要重新来审视教与学之间的关系,以求教与学更趋于合理化,更符合时代以及人类发展的需要。本文在传统教与学定义的基础上,结合最新的相关科学的发展及言论,理清相关脉络,试图探讨出一种新的教与学关系,为提高中小学课堂的有效性提供参考。 我国实施素质教育以来,学校的教学正经历着一场深刻的变革。在新时代的背景下,我们更需要重新审视教与学的关系,以求两者更趋于合理化,更符合时代以及人类发展的需要。教与学的关系,一直为人所探讨,人们一直试图寻求两者之间最佳的配比。然而,理论和实践都证明,它永远都在与时俱进,没有真正的盖棺定论一说。21世纪,脑科学的迅猛发展为我们揭开脑的神秘面纱又迈进了一步。多位科学家都证实,脑科学的发展为教学的科学化提供了证据。在新世纪,教与学的关系将更加科学化,我们的课堂也将向科学化、有效化迈进。 1教与学的历史渊源 教育随着人类的产生而产生,并随着社会的发展而发展。最初,“教”和“学”以独立的单字出现,“教”有“教授、教诲、教化、告诫,令使等含义”,①“学”有学习、模仿、说、讲学等含义。后来才将两字合起来使用,但那时这个词并没有专有的解释意义。随着“教学”一词的沿用,广泛定义为教师传授给学生知识、技能,同时引申义为教师对学生正面的引导,将学生教导成对社会有用的人。 对于我们一般教育工作者来说,“教学”就是指教师指导学生进行学习的活动,这是一种教和学相结合或相统一的活动。只有单方面的活动或者只是这两项活动的简单相加而没有结合或统一起来,都不是我们所说的严格意义上的教学活动。② 2教与学的传统关系 教与学的关系与时代的发展息息相关。在传统意义上,教与学的最基本的关系是相互依存的知识授受关系。③概括地说,“教”的功能是向学生传授系统的科学知识,训练学生形成基本技能、技巧,发展学生的智力和能力,同时培养学生的世界观和道德品质。使学生能够身体正常发育,健康成长。而学的主要活动是掌握教材内容,并将其内化为自己的经验系统。在这些关系中,学生是受体,确切地说是被动接受的客体。随着对这种观点种种弊端的批判,教与学是相互作用的双向关系的观点逐渐出现。一方面,教师的教影响学生的学,另一方面学生的学也影响教师的教。教师不仅在用教材内容对学生进行影响,而且也通过自己的言谈、举止、情感等人格特征对学生进行影响,它们整体上对学生的学习产生积极的或消极的作用,并因此而潜移默化地影响学生的个性的形成。同时,学生在教学活动中的`行为特点以及需要、兴趣、态度和抱负水平等也在影响教师的教。所以两者之间是密切的相互关系,也是隐含意义上的双向关系。 随着时代的不断进步,我们对教和学的关系有了更深刻的转变,因为我们逐渐认识到,教学关系的本质是主导与主动的关系,这是在确定学生在教学过程中的主体地位上发展而来的。对学生作为“一个人”的认识、对学生身心发展的认识、对学生社会角色的认识,构成了整个的学生观的改变。可以说,对学生观认识上的改变,扭转了传统意义上的教与学关系,逐渐将教学过程看作是一个由教到学、由依靠教师的教到学生独立的学的过程。这成为了教与学关系的最深刻的变革! 3新时代下的教与学变革 教师的教主要是为学生的学服务的,而教师的教要在教学过程中起主导作用,就必须真正使学生的学主动起来。我们一直致力于让学生能主动学起来,进而爱上学习,学会学习,独立学习。但普遍存在的厌学现象可能使每位教育者都为之头疼。实践清晰地告诉我们,教与学还有需要改进的地方。或许在有关教本能与学本能的争论中可以为我们找到一丝头绪。
突触传递机制研究新进展 摘要:最近的几年里,科研人员一直致力于突触传递机制的研究,他们对有关的各种生物现象中寻找突触传递在其中的机制。本文将从对突出传递机制的新进展做一个小小的综述。 关键词:突触可塑性;视网膜;调控机制;tau蛋白;伏隔核谷氨酸能;可卡因;大鼠VTA区DA神经元;脑胶质瘤致癫病;长时程增强(LTP);膜片钳;GluR2 缺失的AMPARs 视网膜突触可塑性调控机制研究进展#突触可塑性的变化影响着中枢神经系统的发育,损伤和修复等多种功能。研究发现,在视网膜发育、损伤修复过程中可出现突触可塑性改变,而自发性眼波、光线刺激、视觉经验、神经营养因子和胶质细胞等因素均参与了视网膜突触可塑性的调节。突触连接的改变是经验依赖性脑神经回路重排的基础,突触可塑性的变化影响着神经系统的发育,神经的损伤和修复等多种脑功能,目前突触可塑性的调节机制还未完全阐明。近30 多年来,对于视觉系统发育和可塑性的研究取得了很大的发展,尤其是对于视神经突触水平的变化有了较清晰的认识,但还有很多问题尚待深入研究:各种神经生长因子参与视觉发育可塑性的确切机制;在基因水平上还需进一步通过对多种相关基因的反应时程和强度进行分析, 研究其对视网膜突触可塑性的影响;视网膜突触可塑性中胶质细胞增殖、分裂、分泌生物活性物质等功能的调控。随着脑科学、发育生物学及神经生物学等边缘学科的迅猛发展,相信不远的将来,人类一定会在该领域取得突破性进展,并给治疗相关视网膜疾病及视网膜损伤后的修复治疗研究提供新思路和理论依据。兴奋性突触传递对tau蛋白表达和省略响及其在阿尔茨海默病发病中的作用兴奋性突触传递是神经元最基本的功能,NMDA受体(N-Methyl-D-aspartate receptor, NMDAR)是神经系统中最主要的兴奋性离子型受体之一,其在学习记忆,突触可塑性,神经发育等方面具有重要作用,但NMDA受体过度激活导致谷氨酸聚集于突触间隙所诱导的神经毒性作用也是许多神经退行性疾病的共同发病机制。阿尔茨海默病(Alzheimer’s disease, AD)是成人痴呆症最主要的病因,其中tau蛋白过度磷酸化和聚集是AD脑内的主要病理特征之一。兴奋性突触传递与tau病变之间的联系目前少见报道。本研究探讨了谷氨酸能兴奋性突触传递增强对tau蛋白表达和磷酸化的影响及其在AD样神经退行性变中的作用。本文第一部分探讨了短时间突触传递增强对tau蛋白磷酸化的影响和内在机制。成人脑内约有一半的谷氨酸能神经元是谷氨酸-锌能神经元,即突触兴奋时锌离子与谷氨酸一起释放至突触间隙。本研究阐明了谷氨酸-锌能神经元兴奋时突触释放的锌离子通过抑制蛋白磷酸酯酶2A (Proteinphosphatase2A, PP2A)的活性导致tau蛋白过度磷酸化。 慢性吗啡处理对伏隔核谷氨酸能突触传递的影响药物成瘾和自然的奖赏效应(食物、性等)共享同样的神经基础——中脑边缘多巴胺系统,该系统主要涉及杏仁核、弓状核、蓝斑、中脑导水管周围灰质、腹侧被盖区(ventraltegmental area, VTA)、伏隔核(nucleus accumbens,NAc)等脑区,其外延包括额叶皮层、海马等与情绪、学习和记忆密切相关的结构。目前的观点认为奖赏性刺激是通过对脑内奖赏系统发挥作用,最终引起NAc区多巴胺(dopamine,DA)释放量增多,从而产生奖赏效应。NAc在成瘾中起着至关重要的作用。NAc中神经元因在吗啡成瘾及戒断的过程中产生适应性变化而备受关注。前额叶皮质(prelimbicprefrontal cortex,PFC)的功能之一是对有利刺激的重要性进行评估,并抑制在当前环境中不适当的行为,该脑区在成瘾药物的精神依赖中发挥着对觅药动机进行评估和抑制的重要作用。Mark EJackson等研究发现,利用接近生理条件下的刺激频率来刺激PFC后抑制了NAc中多巴胺的释放,提示了前额叶中存在着对NAc中的多巴胺的释放的抑制性调节 单次可卡因注射对大鼠VTA区DA神经元兴奋性突触传递和内在兴奋性的影响中脑皮质边缘多巴胺系统(mesocorticolimbicdopamine system)与奖赏和药物成瘾有十分密切的关系。该系统包括腹侧被盖区(ventraltegmental area, VTA)多巴胺能神经元的两条主要投射通路:一条由腹侧被盖区投射到伏隔核(nucleusaccumbens, NAc)和纹状体,称为中脑边缘多巴胺系统(mesolimbicdopamine system);另外一条由腹侧被盖区投射到前额叶皮质(prefrontal cortex),称为中脑皮质多巴胺系统(mesocortical dopamine system)。这两条通路合称为中脑皮质边缘多巴胺系统。药物成瘾的解剖基础是奖赏系统,中脑边缘多巴胺系统是其关键,中脑腹侧被盖区(VTA)及其投射区伏隔核(NAc)是主要的神经基础,多巴胺(DA)是非常重要的神经递质。除了参与天然和成瘾性药物的奖赏刺激,当今更多的研究发现中脑边缘多巴胺系统还与成瘾的渴求和复发有关。在VTA区域微量注射吗啡、可卡因等都能诱导产生条件性位置偏爱(CPP)。VTA区注射吗啡还可点燃海洛因、可卡因等的自给药行为。 LTP 的分子机制研究进展LTP机制的研究热点由单一兴奋性递质机制过渡到兴奋性递质与抑制性递质联160 合机制。目前,已证明突触可塑性的改变与多种疾病相关,如阿尔茨海默病、癫痫、慢性痛、药物成瘾性和精神分裂症等。常用在体LTP技术和膜片钳脑片LTP技术两种检测方法。在体海马LTP的优势在于能较真实地反映生理状态下神经突触活动的情况,在整体条件下观察神经突触活动的变化,利于从宏观角度研究和探讨相关机理。其进展体现在:CaM-CaMKII,Ca2+作为胞浆第二信使,与钙调蛋白(Calmodulin, CaM)结合形成Ca2+-CaM复合物,进一步激活CaMKⅡ。CaMKⅡ被认为是一个分子开关,在静息状态时,自身抑制区封闭催化部位而处于非活化状态。但当神经元受刺激时,Ca2+-CaM复合物与CaMKⅡ的自身抑制区结合,改变此酶的构象,从而具有活性。MEK-ERK,细胞外信号调节激酶(extracellularsignal-regulated kinase,ERK)是丝裂原活化蛋白激酶(micogen activated procein kinases,MAPKs)家族中的重要成员,和细胞的生长、发育、分化有关。最近研究表明,ERK通过影响相关核转录因子在LTP和学习记忆过程发挥着调节作用。PKA-CREB,长时记忆(Long term memory,LTM)需要新蛋白质的合成,PKA-CREB信号通路被认为在新蛋白质的合成过程中起重要作用。PKA的激活可以引发CREB的转录,并促使ERK向细胞核发生移位,表达参与到晚期LTP(Late-LTP, L-LTP)和LTM的发生机制。BDNF(脑源性神经营养因子),FanM等发现,BDNF与蛋白激酶Mδ(PKMδ)相关,两者相互影响。在蛋白质合成及强直性刺激的参与下,BDNF能够在一定程度上提高PKMδ的水平,从而影响 L-LTP的维持过程。但是在抑制神经元及突触活性后,BDNF则对PKMδ的稳态水平没有影响。PKMδ对BDNF介导的L-LTP是必不可少的。TrkB作为BDNF的受体,需要通过新蛋白质的合成被激活,从而参与到L-LTP的表达过程中。Munc13Munc13系列蛋白是一种基因调控蛋白,在突触囊泡胞吐和神经递质释放中发挥重要作用,对于目前Munc13与LTP相关性的研究成为热点。 脑胶质瘤致癫病的化学突触机制研究进展脑胶质瘤致病是由于胶质瘤对瘤周组织产生的一系列影响所引起的。然而这其中的病理生理学机制还有待于进步研究和探讨,主要涉及继发于胶质瘤后的结构学、生物化学及组织病理学方面的改变。而胶质瘤致病在临床治疗过程中属于难治型癫病,主要是由于抗癫病药物对胶质瘤致病的病理生理过程干预较少甚至是不干预,因此,揭示胶质瘤致病的病理生理过程可能为临床上肿瘤致桶的药物干预和治疗提供分子靶点和治疗依据。 GluR2 缺失的AMPARs在突触可塑性机制中的研究进展与活性依赖的突触的AMPARs 数目改变不同,活性依赖的AMPARs 亚基的修饰引起Ca2+信号转导的改变,通道传导和动力学的改变,使突触产生了不仅量而且是质的改变。这些重要的问题仍然需要进一步研究,如为何抑制性中间神经元和元棘突神经元中AMPARs 的GluR2 亚基低表达;GluR2亚基在活性依赖的细胞特异的改变的是什么机制;除了受体受到调节运输外,另→个重要的未解决的问题是AMPARs 介导的Ca2+内流有什么特殊功能,有力的证据的表明Ca2+内流可以激发LTP ,然而关于Ca竹在突触后的靶向目标却很少了解。因此关于GluR2 缺失的AMPARs 与突触可塑性的相关特异机制仍有待进一步研究。 [参考文献][1] Wahlin KJ, Moreira EF, Huang H, et al. Molecular dynamicsof photoreceptor synapse formation in thedeveloping chick retina. J CompNeurol[J]. 2008, 506(5): 822-837[2] Justin Elstrott, Anastasia Anishchenko, MartinGreschneretal.Direction selectivity in the retina is establishedindependentofvisual experience and early cholinergic retinal waves. Neuron[J]. 2008,58(4): 499-506[3] 罗佳,王慧,黄菊芳,陈旦;《视网膜突触可塑性调控机制研究进展#》;Q422[4] Bliss TV, Lomo T. Long-lasting potentiation of synaptictransmission in the dentate area of the anaesthetized rabbit followingstimulation of the perforant path. J Physiol[J]. 1973,232;331-356 [5] Whitlock JR, HeynenAJ, Shuler MG, Bear MF. Learning induces long-term potentiation in thehippocampus. Science[J]. 2006,313:1093-1097.[6]魏显招,王雪琪,《GluR2 缺失的AMPARs 在突触可塑性机制中的研究进展》,DOI: 10. 3724/SP. J. 1008. 2009. 00437
有很多,主要有:1、脑科学临床应用方向:脑神经病理学、脑影像学、脑认知神经病学、脑脊液学、脑神经外科、多中心神经临床诊断学等。2、神经发育和更新方向:发育和更新调控机理研究、神经回路功能研究、轴索编程建立、神经系统发育、神经系统重构等。3、神经功能研究方向:认知神经科学、认知射频领域、行为研究、神经定量影像学、神经粒子生物学、神经生物信息学等。4、量子神经科学方向:量子神经信息编码、量子神经回路及其同步、量子认知计算机系统研究、量子神经计算与人工智能等。5、脑机接口方向:工作记忆障碍和行为疾病的脑机接口技术、群体编程及多路脑机接口、脑活动映射解读及实时脑机接口、神经技术的继续教育等。
人的大脑壳能够自我修复吗?嗯,如果没有什么嗯,特殊的疾病的话,大脑自我修复也是可以的,休息好好休息
你的大脑能够自我修复吗?
大脑为神经系统最高级部分,是最为发达的思维器官,主导机体内一切活动过程,并调节机体与周围环境的平衡,是高级神经活动的物质基础。豆腐般的大脑既相当脆弱又极为精细。当一个成年大脑受损后会否自我修复?如何修复?这是科学家们历来想搞明白的基本问题。加州大学圣地亚哥分校医学院脑科学系的科学家们,在前天出版的《自然》杂志上发表的新发现表明,当成年脑细胞受伤时,它们会恢复为胚胎状态。科学家报告说,受损后后的大脑在从新适应的未成熟状态下,细胞能够重新生长出新的连接,在适当的条件下,这些连接可以帮助恢复失去的功能。
下面没有了?
美国、英国、德国、法国、瑞典、挪威、瑞士、澳大利亚、日本、中国 确定的奥地利、比利时、 加拿大、 捷克、 丹麦、 芬兰、 希腊、 匈牙利、 爱尔兰、 意大利、 卢森堡、 墨西哥、 荷兰、 新西兰、 波兰、 葡萄牙、 斯洛伐克、 西班牙、 韩国、 土耳其 是这几个国家中的,但是不确定是哪几个
人类脑计划包括神经科学和信息科学这当今自然科学两大热点的相互结合研究,其目标是利用现代化信息工具,将大量、不同层次的有关脑的研究数据分析、处理、整合与建模,建立神经信息学数据库和有关神经系统所有数据的全球知识管理系统,以便从分子水平到整体系统水平研究、认识、保护、开发大脑。美国在这方面处于领先地位。 人类脑计划是继人类基因组计划之后又一国际性的科研计划。近年来, N ature、Science、Trends in Neuroscience等著名学术期刊对人类脑计划与神经信息学纷纷进行了报道。他们认为人类脑计划比基因组计划更大,囊括了更加广泛的内容,是一项更加伟大的工程。 1996年,以美国为首的神经信息学工作组建立,其目的是组织和协调全世界神经科学和信息学家共同研究脑、开发脑、保护脑和创造脑。根据规定,成员国之间可利用电子网络寻求研究协作伙伴,进行数据交换和科研协作,可以免费使用通用神经信息学数据库和信息工具,承担科研任务,同享科研成果和脑研究资源。 2001年7月,唐一源教授应美国国立卫生研究院神经信息学部主任、全球人类脑计划负责人考斯陆博士的邀请,访问美国 N IH人类脑计划与神经信息学总部,并做专题报告“中华人类脑计划与神经信息学的进展”,使考斯陆博士及美国其他科学家认识到中国的实力和决心。于是考斯陆博士发出专函:“同意中国唐一源、唐孝威和尹岭博士参加始建于2000年的经济合作与发展全球科学论坛神经信息学工作组”。考斯陆博士认为中国专家参加这一活动具有极其重要的意义,这将有助于中国在这一领域的研究与国际发展保持同步,中国的参与将会对全球神经信息学的形成和发展产生重大影响。 2001年10月4—5日,我国科学家赴瑞典参加了人类脑计划的第四次工作会议,成为参加此计划的第20个成员国。中国科学家表示,要积极配合国际神经信息网络及数据库,建立中国独特的神经信息平台、电子网络和信息数据库,才能在合作中不受制于人,更好地和国外科学家协作,共享科研成果和国际资源。 揭示大脑的奥秘是新世纪人类面临的最大挑战 生命是什么?“人活着”是怎么一回事?大脑如何思维?数不清的疑问浮现在人类的脑海中。人之所以成为万物之灵,有别于其它物种,是因为人类有极其复杂的大脑,它是千百万年进化的结晶。在过去的六亿年中,生物体通过进化产生出由大量神经元相互联结而形成的神经网络,解决了在不断变化的复杂环境中人脑如何处理各种复杂信息的问题。尤其是人的高级认知功能的高度发展,使得人类成为万物之首,具备了主宰世界的能力。科学研究发现,一个成人大脑重约3.3磅,体积1.5公升,脑内有上千亿个神经细胞,还有超过10(上角14,即10的14次方)个神经突触。大脑是生物体内结构和功能最复杂的组织,是接受外界信号、产生感觉、形成意识、进行逻辑思维、发出指令产生行为的指挥部,它掌管着人类每天的语言、思维、感觉、情绪、运动等高级活动。人脑也是极为精巧和完善的信息处理系统,是人体内外环境信息获得、存储、处理、加工和整合的中枢。 由于人脑的结构和功能极其复杂,需要从分子、细胞、系统、全脑和行为等不同层次进行研究和整合,才有可能揭示其奥秘。为此,世界各国投入了大量的人力和财力进行专门研究,美国把九十年代最后十年定为“脑的十年”,欧洲确定了“脑的二十年研究计划”,日本将21世纪视为“脑科学世纪”,脑科学的研究热潮遍布全球。科学家们提出了“认识脑、保护脑、创造脑”三大目标,人们相信脑科学的研究成果将为人类更好地了解自己、保护自己、防治脑疾病和开发大脑潜能等方面做出重要的贡献,“了解大脑、认识自身”是21世纪的科学面临的最大挑战。 海量脑研究的数据呼唤新的学科 1970年至2000年的30年间,美国神经科学学会的会员人数增长了近30倍,2000年达到28,000人左右,每年年会的论文摘要增长了近100倍,2000年已达到15,000篇左右,遍布神经科学研究的各个领域。以往有关脑的研究包括神经解剖、神经生理、神经病理、神经生化、神经免疫、神经电生理、神经心理等,已经获得了大量有关动物脑和人脑的实验数据和研究结果。近年来分子神经生物学研究从基因水平来揭示人脑的奥秘,先进的基因芯片技术在每秒钟就可以得到大量的实验数据。脑功能成像( f MRI、PET等)的应用使我们能够从活体和整体水平来研究脑,好比窥探脑的窗口,可以在无创伤条件下了解到人的思维、行为活动时脑的功能活动。这些新方法、新技术极大增强了我们从微观与宏观两个水平上进行脑研究的能力,同时也产生了海量的实验数据。没有哪个科学家、实验室能够掌握所有的信息并独立地进行脑的全面研究。 面对这样的信息爆炸,我们应该怎么办?我们以往的科研模式是否需要变革?答案只有一个:新的需要产生新的学科,新的模式产生新的突破。神经科学家面临的重要问题之一,就是能否灵活有效地管理数据,最大限度地利用实验数据,减少不必要的重复性研究和人力、物力的浪费。 计算机和信息技术的飞速发展为我们提供了解决方案,信息工具的应用为我们解决这一问题创造了条件。所以,建立全球神经信息数据库和神经信息电子网络,已经迫在眉睫。神经科学家和信息学家都在呼吁,应加强神经科学和信息学的合作和相互渗透,采用一种新的研究模式,即实验数据→数学理论→计算机模拟和预测→生物学实验验证→数学模型与验证后的理论,往往可以达到事半功倍的作用,大大加快脑的研究进程。 人类脑计划与神经信息学的缘起 曼哈顿计划、阿波罗登月计划和人类基因组计划是划时代的三大科学工程,它们给整个人类社会带来了深远的影响。人类基因组计划是生物实验结果和信息学的完美结合,人类基因库将为人类健康、疾病诊断、药物开发、生态平衡和生物学研究作出不可估量的贡献。许多科学家认为,在人类基因组计划之后应该是人类蛋白质组计划和人类脑计划。 人类脑计划包括神经科学和信息学相互结合的研究,其核心内容是神经信息学。脑科学和信息学是当今国际科学研究的两大热点,神经信息学是这两大学科相结合的新兴的边缘学科。其目标是利用现代化信息工具,使神经科学家和信息学家能够将脑的结构和功能研究结果联系起来,建立神经信息学数据库和有关神经系统所有数据的全球知识管理系统,将不同层次有关脑的研究数据进行检索、比较、分析、整合、建模和仿真,绘制出脑功能、结构和神经网络图谱,从而解决目前神经科学所面临的海量数据问题,从基因到行为各个水平加深人类对大脑的理解,达到“认识脑、保护脑和创造脑”的目标。 人脑的复杂性远远超出了我们目前的认识能力,传统的细胞生物学等的实验室研究对于解决人脑对复杂信息的获取、处理与加工及高级认知功能的机制,犹如只见树木不见森林。神经信息学工具和数据库的应用,使得我们可能从有限的实验数据中找出神经信息获取、处理和整合的规律和法则,提出在各种刺激条件下,脑内信息加工的数学模型的实验假设和用计算机模拟脑内神经信息网络。可以说,人类脑计划近20年的发展历程处处与神经信息学紧密相连。 1997年人类脑计划在美国正式启动,美国20多家著名的大学和研究所参加了这个研究计划。50多位神经信息学的课题负责人得到该项目的基金资助。他们充分利用神经科学和信息科学的优势条件进行研究,相互间建立合作关系,利用电子网络互通信息,运用数据库进行资源共享。 1996年在巴黎的政府间实体———经济合作发展组织(OECD)的科学论坛批准建立以美国为领头国家的神经信息学工作组,参与国包括美国、英国、德国、法国、瑞典、挪威、瑞士、澳大利亚、日本等19个国家,欧洲委员会也作为正式成员参加。其目的是组织和协调全世界神经科学和信息学家共同研究脑、开发脑、保护脑和创造脑。根据规定,成员国之间可利用电子网络寻求研究协作伙伴,进行数据交换和科研协作,可以免费使用通用神经信息学数据库和信息工具,承担科研任务,同享科研成果和脑研究资源。 美国国立精神卫生研究院副主任,美国国立卫生研究院神经信息学部主任——考斯陆博士是全球人类脑计划的负责人。考斯陆博士是一名神经药理学家,他在神经科学、心理学和药理学等领域出版了多本著作,发表了100多篇科研论文,还得到了十几个不同的荣誉和奖章。考斯陆博士创建 N IH第一个神经科学项目,并出任 N IMH基础与临床神经科学部主任。几年前他又创建了著名的人类脑计划并出任 N IH该机构主任,该机构目前已资助数千万美元专项科研经费用于人类脑计划和神经信息学的研究。美国的几个著名大学,如哈佛大学、耶鲁大学、加州大学、康乃尔大学等都承担了人类脑计划的研究课题。 没有一个国家能独立完成“人类脑计划”这项巨大的工程,它需要像人类基因组计划那样开展国际间的大规模协作。目前,国际性的神经信息合作组织已在全球召开了4次工作会议,共同策划“全球性人类脑计划和神经信息学”。具体已提出几项重大建议:创建全球性的神经信息学电子网络,开发先进的神经信息学工具、方法和数据库,通过数据资源共享和建模仿真来了解神经系统的结构和功能,推动科学进步。 加入人类脑计划共享神经信息资源 许多科学家认为,我国的神经信息学的总体研究水平落后于发达国家,今后10年是神经信息学快速发展的阶段,也是竞争性最强的阶段。我们加入越晚,失去的机会就越多,造成的损失就越大。由于我们没有足够的时间和财力去开发研制自己的数据库和信息工具,即使研制出来,也得不到国际上的承认,难以与国际接轨。如果购买或租用国外的信息工具,不但造成经济损失,而且中国在这方面的研究会永远处于被动状态。 同时,神经科学研究日益深入和专业化,几乎没有哪一个科研人员能够精通脑科学的全部领域。显然,以往通过发表论文或参加会议来进行学术交流的形式已严重制约了科研思路和成果的产生。而国际人类脑计划中的神经信息电子网络可以为研究人员提供信息交流的快速工具,成员国的科学家可以利用神经信息电子网络进行数据交换、分析、整合、建模等工作。参加国际的合作会极大促进国内有关工作的进行。不过,所有这一切都必须有一个大前提———加入国际性神经信息合作组织,参加国际人类脑计划的研究工作。 在人类基因组计划这个宏伟的全球性科研大计划中,我国科学家经过艰苦卓绝的努力,克服了重重困难,争取到1%的测序任务。然而,就是这1%产生了巨大的政治和经济效益,再一次向世界宣告,中国科学家具有做出世界一流科研成果的能力,使中国跻身于人类基因组计划的行列,站到了这一研究领域的前沿,并理所当然地分享人类基因组计划的研究成果。 唐一源教授与美国 N IH神经信息学部主任、国际人类脑计划与神经信息学工作组织总负责人考斯陆博士一直保持着紧密的联系。经过持续不懈的努力,考斯陆博士终于同意唐一源教授作为特邀代表,首次参加在日本理化研究所举行的“全球科学论坛神经信息学工作组”第三次会议。唐一源教授在这次会议上,首次向全世界19个国家的代表介绍了中国在本领域的工作,引起强烈反响。同时应邀访问美国几个重要的“人类脑计划与神经信息学”研究基地,与负责人广泛交流探讨,探索国际合作研究项目,参与人类脑计划。此举使考斯陆博士及美国其他科学家认识到中国的实力和决心,于是考斯陆博士发出专函:“同意中国唐一源、唐孝威和尹岭博士参加始建于2000年的经济合作与发展全球科学论坛神经信息学工作组”。考斯陆博士认为中国专家参加这一活动具有极其重要的意义,这将有助于中国在这一领域的研究与国际发展保持同步,中国的参与将会对全球神经信息学的形成和发展产生重大影响。 考斯陆博士应唐一源教授邀请访问中国,在大连理工大学、解放军301医院、168次香山科学会议分别做了“人类脑计划及其资助机会”的科学报告,引起强烈反响。同时国家自然基金委、科技部等有关部门的领导非常重视和关注人类脑计划与神经信息在国内的发展,分别会见了考斯陆博士并进行了友好协商,支持中国参与全球人类脑计划。在国家科技部、自然基金委、301医院、大连理工大学、浙江大学、中国科学院等单位领导的支持下,经国内本领域科学家的共同努力,2001年9月,中国正式成为参与人类脑计划与神经信息学研究的第20个国家,意味着中国在这一研究领域已经和国际接轨。 凭中国特色加入国际人类脑计划 在国家自然科学基金委和科技部的大力支持下,我国脑科学在基础和临床研究方面取得了不少科研成果,在某些领域达到了国际先进水平。解放军301医院、大连理工大学、浙江大学、中科院等单位积极参与并组织关于中华人类脑计划和神经信息学的工作,在近一年中,先后召开了两次“中华人类脑计划和神经信息学”的专家研讨会,专家们就许多关键的问题进行了深入探讨。今年9月,由国内40余位神经、化学、数学、信息等方面的专家会聚香山,召开了题为“人类脑计划与神经信息学”的第168次香山科学会议,专家们认真讨论了国内外脑研究的状况、我们如何应对国际形势等问题,一个关键性的问题已逐渐明朗———凭中国特色加入国际人类脑计划。 在美国人类脑计划的资助下,美国各相关科研机构已初步汇集和建立了各种神经信息数据库和信息处理工具,并正与超级计算机中心、欧洲联盟等联网合作,建立全球神经信息工作平台,该系统有数据质量控制的标准和规定,也有一系列数据检索、分析、整合、建模等工具。目前人类脑计划开展的国际大合作,使用通用数据库,统一格式、统一标准,将脑的结构和功能、微观和宏观的研究结果联系起来,绘制出健康和疾病状态下脑的功能、结构、神经网络、细胞和分子生物学的“图谱”。成员国的科学家们可以在数据库中进行搜索、比较、分析和整合,并进行数学模拟和仿真计算,这将十分有利于理论假设的形成和研究者之间的电子合作,也可以避免不必要的重复性研究。 我国专家在深入探讨、反复论证后,大家普遍认为,在浩大的人类脑计划中,中国不可能处处涉足,必须发挥自己的长处,利用我们人类脑资源丰富和计算机信息学研究方面的一定优势,在具有中国特色的传统医学(如针刺等)、汉语认知与特殊感知觉的神经信息学研究等领域深入开展工作。将具有中国特色的人类脑计划和神经信息学研究项目加入全球人类脑计划之中,建立中国独特的神经信息平台、电子网络和信息数据库,才能在合作中不受制于人,更好地和国外科学家协作,共享科研成果和国际资源。 开展中国特色的人类脑计划与神经信息学研究,无疑将大大加深人类对大脑的认识和自身的认识。可以预料,像人类基因组计划一样,在国家的支持下,引进新的科研协作和风险投资运行模式,通过国内本领域的专家齐心协力、联合攻关,以开放的新模式吸纳社会资源,从研究、产业等几个方面同时启动,必将会极大推动人类对自身的认识,造福全人类。
目前,脑机接口技术还算是新兴的科研技术,并不完全成熟,发展空间比较大。中国在脑科学领域已经形成了三大类研究主体:一是以上海脑科学与类脑研究中心、北京脑科学与类脑研究中心为代表的中国脑计划南北两个中心;二是以复旦大学脑科学前沿科学中心、浙江大学脑与脑机融合前沿科学中心为代 表的教育部前沿科学中心11;三是国内高校和科研院所成立的各类研究机构,如 清华大学、北京大学、北烹师范大学、中科院深圳先进技术研究院与IDG共建 的麦戈文脑科学研究院。这些研究单位每年吸引大批海外脑科学人才回国,促进了中国脑科学研究的大发展。中国脑科学研究机构分布参见下图。
2016~2020年,中国在脑科学领域的主要论文发表机构以医学院为主,高校和科研院所的论文发表量偏少。2016~2020年,中国在脑科学领域的专利申请量总体偏少,与美欧发达国家相比尚有很大差距。在前15名(Top15)专利申请机构或个人中,科研机构为中国贡献了71.8%的专利量,企业贡献了21.4%的专利量,个人贡献了6.8%的专利量,这充分说明中国在脑科学领域的研究仍以基础研究为主,且部分领域已进入产业化应用阶段。
除了高校等科研领域,许多企业也在脑机接口方面有所成就。国内公司BrainCo强脑科技专注于这方面产品的研发,目前已经有产品实现批量生产和使用。比如BrainRobotics智能仿生手,是一款融合脑机接口技术与人工智能算法的高科技医疗辅具,能让残障人士体会到肢体“重新生长”的本体感。我之前有在电视上看到过视频,佩戴智能仿生手可以实现弹钢琴、写字,甚至攀岩等高强度运动,还是很厉害的。
最近,著名学术期刊《Neuron》以题为“Global Neuroscience”的专刊形式讨论全球脑科学发展情况。中科院神经科学研究所所长蒲慕明等人回顾了中国脑科学计划的整体构架,从十三·五规划开始,中国脑科学以“脑科学以及类脑智能”为发展目标,历时15年。在他看来,中国神经科学将以此为契机,得到全面发展。
事实上,对脑科学的重视不仅仅只有中国,如同这本专刊描述的那样,这是一个全球关注的科学前沿问题。2016年10月中旬,美国国立卫生研究院(NIH)提高对脑计划(BRAIN Initiative)项目的资助,费用高达1.5亿美元,这是2015年全年费用的近两倍。人类的大脑是地球上最复杂、最有趣的生物器官之一。它也越来越受到各国科学家的重视。
20多年前,英国生物学家、DNA双螺旋结构发现者之一弗朗西斯·克里克抱怨到,“我们无法忍受人类仍旧对大脑如何工作知之甚少”。时至今日,虽然各国纷纷启动脑科学计划,但大脑仍是人类认知的“黑洞”。
(脑科学研究,不仅有助于我们对大脑机理以及疾病的认识,同时也对人工智能产业发展带来深刻启示。图片来自网络)
上海脑计划先于中国脑计划
自2014年以来,欧盟、美国以及日本等国再次启动脑科学计划,人们重新将目光聚焦在大脑的探索上。2015年3月27日,由上海科委主导,由复旦大学牵头,联合浙江大学、华中科技大学、同济大学、上海交通大学等十几所高校及中科院研究所共同启动“上海脑科学与类脑智能发展愿景”项目,并成立“脑科学协同创新中心”,助力中国脑科学计划。业内专家纷纷表示,上海脑计划已先于中国脑计划成立。目前,上海市政府已将脑科学与人工智能列为市重大科技项目。
根据复旦大学类脑人工智能科学与技术研究院院长冯建峰2015年在浦江创新论坛上表示,“上海脑计划未来主要目标在如下几个方面:解析复杂数据、模拟脑工作,探究记忆、学习、决策等原理,模拟智能交互,大数据挖掘,智能医疗诊断等方面”。
自项目启动之后,一年有余。2016年8月5日,上海公布了《上海市科技创新“十三五”规划》,再次强调了对脑科学领域的重视,该规划指出将“围绕认识脑、保护脑、模拟脑的主线,聚焦脑认知神经基础的核心科学问题,开展大脑工作机理、重大脑疾病智能诊断、类脑智能算法及硬件等研究”,开展脑科学研究,从而将上海打造成为“国际脑科学与类脑人工智能研究中心”。
(大脑是这个星球上最神奇的器官之一,它与我们的生活密切相关。图片来自网络)
中国实施脑计划拥有诸多优势
中国脑科学计划前前后后经过近3年的论证,目前已列入十三·五发展规划纲要。2016年年初,国内神经科学领域十多名脑研究专家、院士在《中国科学: 生命科学》杂志以“中国脑科学和智能科技的发展战略专题”,饱蘸感情地为中国脑科学计划“呐喊”。未来中国脑计划将聚焦于脑科学研究以及类脑研究上。
中国科学院外籍院士、美国国家科学院院士蒲慕明表示,中国实施脑科学计划,拥有诸多优势,例如中国拥有非常丰富的灵长类动物资源,它们对我们理解人类的大脑作用很大。而其他国家,由于受到社会舆论的压力,正逐渐取消对灵长类动物的研究,在面对人类重大脑基础研究问题时,这种局面无疑会让研究者束手无措。
(中国脑科学的总体方针“一体两翼”,即脑科学以及类脑研究。图片来自网络)
这种优势有时是立竿见影的。2016年年初,中国科学院神经科学研究所仇子龙研究员,通过对猴子的基因进行修饰,从而使其“患上”自闭症,再来研究这些自闭症猴子的大脑,从而让我们更好地了解人类的自闭症,相关研究发表在英国顶级学术期刊《自然》上。试想一下,这项研究如果在欧洲以及美国等地进行,不仅受限于灵长类资源的限制,同时可能也会因社会舆论,而压力重重。
上海欲打造成国际脑科学与类脑人工智能研究中心。2007年,由复旦大学、泰州市政府牵头成立的泰州队列研究,以泰州人群为主要研究对象进行慢性病研究,阐明若干环境和遗传因素与重大疾病发生、发展、治疗和转归的关系。为慢病预防和控制,开发新的治疗,干预手段提供科学依据。该大型队列研究为研究者从事脑科学研究也具有十分重要的意义。
另外,中科院神经生物研究所也是上海实施脑计划、引领脑科学研究前沿的又一重地。2014年1月20日,中国科学院脑科学与智能技术卓越创新中心成立,中科院神经生物研究所联合国内其他6所顶尖学术机构和高校,在脑科学与智能技术领域设立的卓越创新中心。该中心将脑科学和类脑智能研究领域的重大科学问题进行联合攻关,既培养优秀人才,又产出具有国际影响力的科学成果。
《上海市科技创新“十三五”规划》提出,到2020年,基础研究经费支出占全社会研发(R&D)经费支出比例达到10%左右,这为脑科学的基础研究提供了重要的保障。因为目前脑科学研究仍处于基础研究阶段,需要大量的基础研究经费投入。加上上海正在打造为全球具有影响力的城市,能为脑科学领域的科研团队创新、基础研究与临床试验的相互融合、药物研发以及人工智能产业的发展,都带来了新的契机。
脑科学和类脑科学都是拥有无限可能的领域,人类可以期待从脑科学领域获得令人惊奇的启迪,从而拉开人类历史上的智能革命的大幕。从今年谷歌的AlphaGo打败韩国围棋高手李世石来看,这种可能不久的将来将变得越发真实。无论是政府投入,还是民间投资,这股新的脑科学以及类脑研究热潮,会让我们对人类大脑的本质将会有更深的理解。
(作者:纪十,科普作者,生命健康领域观察者,原创作品,转载请注明出自知识就是力量微信公众号)
编辑:姚迪
本文系原创作品,商业合作及转载请联系 投稿请联系
在百度上查拉
小学科学问题探究论文
在学习、工作生活中,大家或多或少都会接触过论文吧,论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。你写论文时总是无从下笔?以下是我整理的小学科学问题探究论文,欢迎阅读,希望大家能够喜欢。
小学科学是以培养学生科学素养为宗旨的科学启蒙课程 。
它是一门综合性极强、信息量极大、知识面极宽的基础性课程。开放性的学习环境、探究性的学习方式、自主性的学习活动更有利于培养学生的科学探究的意识、合作探究的能力和勇于创新的精神。
小学科学课本是以单元编排为特征的教材,系统性、针对性较强,那么如何运用网络资源的优势,为学生的自主学习创设有利于营造自主学习的环境;如何提供网络资源的平台,为学生的自主学习拓展有利于提高自主学习的空间,进一步激活课堂,使科学教学更具有生命力呢?
一、依据教学内容,丰富网站材料,营造学习环境
通常的专题站一般由“教材知识”、“拓展资源”、“讨论协作”和“评价检测”四个模块组成。在实践中,我们从学科“学”的实际出发,以科学教材为基础线条,以建构主义理论为指导思想,在网站建设中突出内容的丰富性和有序性,以达到资源、平台、工具的优化合理组合。为学生开展探究性学习活动营造良好的自主学习环境和搭建自主互动学习的平台。
1、选择材料,丰富内容,创设环境。
在网络环境下,使科学教材信息与学生之间产生作用,达到科学教学的目标,很重要的一点就是所提供的教材信息更适合学生探究性学习的展开,更有利于激发学生学习的兴趣。因此,教者依据学生的年龄特点和教材要求有针对性地寻找选择丰富网站内容的资源。例如小学科学五年级下册第三单元《它们是怎样延续后代的》。
在网站中除了提供动植物繁殖后代过程性资料之外还针对学生平时能接近菊花培植的特点,单独增加了繁殖后代具体的操作过程,使学生有机会进一步学习并指导其实践操作。同时,人类是如何繁衍后代的一直是教学的难点,教者在网站中增加了一位医生的介说并配上图片,使学生在自主学习过程中既有兴趣又比较形象直观,从而使学生“我是怎样出生的”有了一个初步的了解,懂得生命来之不易,应珍惜生命,回报父母的养育之恩。
2、优化结构,丰富内容,营造环境。
在网络环境下开展自主学习,如果将搜集到的信息和科学教材上的所有内容堆砌在文本上,自主学习时随时点击,那么学生的学习就比较乱,其认知过程就缺少一个有序的进程。那么,就会影响在有限时间内的学习效率。因此,教者认为必须对其内容依据问题进行排序,突出资源的主题性、序列性。例如小学科学五年级下册第四单元《岩石与矿物》,教者设计了“导读台”提供学习问题序列,以激发学生保护资源的意识。将与教材有关的内容制作成导航图,指点学生阅读信息与解决问题的途径,有助于学生在整体浏览中围绕中心问题自主学习,在部分品读中围绕重点问题自主探究,在独立思考中围绕解答问题阅读信息,在自主学习中围绕解决问题处理信息提高发展。
二、依据学生需求,丰富网站形式,细化学习流程
科学教材编排单元性比较强,因而就为网络环境下开展问题探究自主学习提供了主题性明显的特点,教者如何依据学生心理特点和年龄特征,再根据教材特点,编排呈现网站形式非常重要。总体上其网站内容形式的呈现上可归纳为三种形式:学前浏览、学中导航和学后延伸。
1、学前浏览,拓展概念,激发兴趣。
科学课导入新课时,由于学生学前概念比较肤浅,对新的学习内容存在着不确定性和好奇心,因此,教者充分利用这一特点,设计整体学前浏览内容,以拓展学生的已有概念,进一步激发学生的学习兴趣。例如小学科学六年级上册《我们的地球》这一单元,教者提供了的主题的内容,以丰富的地球信息与呈现形式提供给学生,让学生快速浏览,然后再让学生提出更进一步探究学习的问题,为本单元或本节课的学习打下良好的基础。
2、学中导航,提供信息,培养能力。
科学课堂教学中教者结合具体的教学内容和具体的学习形态,适当提供有助于开展问题探究自主学习的`主题内容,让学生围绕中心问题探索学习信息,解答学习问题。例如《我们的地球》就设计了这样三个中心问题,这实际上为本单元的教学建构了一个知识体系,形成了知识网络,也为学生的自主学习导航,为学生的自主探究引路。
3、学后延伸,丰富概念,陶冶情操。
学生通过学前浏览和学中导航两个阶段的自主学习,其知识更加丰富、兴趣更加浓厚,但脑海中所产生的问题可能也更多,这就更需教者在此时提供更多的知识信息,让学生进一步去搜寻,以满足学生渴求知识的欲望和探索未来的精神。例如《我们的地球》这一单元学习后,教者认为,可依据学生的所提出的问题再次提供一些网站信息让学生再去浏览学习,也可编排一些主题让学生自己去搜集相关信息,让学生永远做学习的主人,研究的主人。
三、依据学科特点,丰富网站途径,优化教学方法
网络环境下的学习,教师作为引导者,进行着问题设置、资源提供、内容设计、任务提出以及组织协调等学习导航的工作,而学生作为探究者,则进行着明确任务、围绕问题、探索实践、自主学习等实践的任务。这就需要大量的时间与空间,途径与方法。教者认为,网络环境下课堂教学的方法有别于常规性的课堂,特别是科学课也有别于其它学科。因而通过实践与研究,笔者依据科学学科的特点将网络环境下问题探究教学模式的操作归纳为“问题探究”教学方式及“主题探究”教学方式两种。
1、问题探究,获取知识,形成技能。
根据科学教学内容,相当一部分教材的教学需要组织学生开展小组合作实验活动,那么这样的课型就可运用“问题探究“教学方式进行课堂教学。
例如小学科学五年级下册第二单元“形状与结构”中的《折形状》一课的教学,教者在网站中提供了关于形状方面的模型、建筑以动植物的外形等,让学生点击浏览,提出问题导入新课。然后组织学生围绕问题进行小组合作探究,体会各种形状与承受力的关系。最后组织讨论,再次点击进入网络,说一说,网络中的物体为什么这样设计。整个学习过程,学生始终围绕本节课的学习中心,展开自主学习、自主探究、互相交流、共同探讨,而教师则是课前作好准备,组织学生开展学习活动,并参与到学生的探究活动之中,适时进行个别指导,及时捕捉动态信息,调控教学进程。师生真正成为一个学习的共同体,共同分享集体的智慧和探究的成果。
2、主题探究,拓展知识,增强意识。
科学教学中有相当一部分内容不需要进行小组合作实验,而只要进行主题式学习与讨论,就能达到学习目标。因此,教者建议这一类型的课堂教学可选用“主题探究”的方式展开教学活动。
例如:小学科学五年级下册第四单元“岩石与矿物”中《日益减少的矿物资源》一课。首先让学生说一说矿物资源对人类有何作用,你对地球上的矿物资源有何思考,并出示开采、提炼、运用的相关图片,确定本节的学习主题是:矿物资源日益减少,人类怎么办?围绕这一主题组织的探究活动。接着组织小组讨论。在整个课堂教学结束前还可以上学生对资源开发与保护,新能源研发等进行创造性的设计,课后进一步打开网站,搜集相关信息。这样的教学活动自然而有效地拉近了学生与社会、个人与国家的距离,进一步增强了学生的社会责任感。
通过实践,我们深深体会到,网络环境下小学科学问题探究教学模式的有效运用,丰富了科学教学内容,拓展了课堂教学时空,激活了课堂教学活动。同时,也进一步转变了教师的教学观念,更新了教学方法,促进学生自主学习方式的尝试以及自主学习能力的培养,为学生将来投身信息化时代进行终身学习实现可持续发展打下了良好的基础。
刚刚上大学的时候,加入的社团、学校组织、老师等都会让写小论文,但是小论文你会写吗?小编精心为你整理了五年级科学小论文,希望对你有所借鉴作用哟。篇一:树干为什么是圆的在观察大自然的过程中我偶然发现,树干的形态都近似圆的——空圆锥状。树干为什么是圆锥状的?圆锥状树干有哪些好处?为了探索这些问题,我进行了更深入的观察、分析研究。在辅导老师的帮助下,我查阅了有关资料,了解到植物的茎有支持植物体、运输水分和其他养分的作用。树木的茎主要由维管束构成。茎的支持作用主要由木质部木纤维承担,虽然木本植物的茎会逐年加粗,然而在一定时间范围内,茎的木纤维数量是一定的,也就是树木茎的横截面面积一定。接着,咱们围绕树干横截面面积一定,假设树干横截面长成不同形状,设计试验,探索树干呈圆锥状的原因和优点。经过实验,咱们发现:(1)横截面积和长度一定时,三棱柱状物体纵向支持力最大,横向承受力最小;圆柱状物体纵向支持力不如三棱柱状物体,但横向承受力最大;(2)等质量不同形状的树干,矮个圆锥体形树干承受风力最大;(3)风是一种自然现象,影响着树木横截面的形状和树木生长的高矮。近似圆锥状的树干,重心低,加上庞大根系和大地连在一起,重心降得更低,稳度更大;(4)树干横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,树干各处的弯曲程度相似,不管风力来自哪个方向,树干承受的阻力大小相似,树干不易受到破坏。以上的实验反映了自然规律、自然界给咱们启示:(1)横截面呈三角形的柱状物体,具有最大纵向支持力,其形态可用于建筑方面,例如角钢等;(2)横截面是圆形的圆状物体,具有最大的横向承受力,类似形态的建筑材料随处可见,如电视塔、电线杆等。在我的观察、试验和分析过程中,逐渐解释、揭示了树干呈圆锥状的奥秘,增长了知识,把学到的知识联系实际加以应用,既巩固了学到的知识,又提高了学习的兴趣,还初步学会了科学观察和分析方法。篇二:神奇的墨水一天,我在一本科学书上看到糖水可以制作隐形的墨水,于是,我在好奇心的驱使下,做起了实验。我先把糖水调好,用毛笔蘸糖水在纸上写了“开门大吉”几个大字,然后把纸门晾干,什么都没有,我开始怀疑书了,最后,我用打火机稍微烧了一下,看见了一个“开”字呈现浅褐色的,我一见,欣喜若狂马上对正看电视的婆婆说:“婆婆,快来,我给你表演魔术!”于是,我又重新拿了一张白纸,写上“婆婆”两个大字,用吹风器把它吹干,就什么也没了,我赶忙问婆婆:“你信不信,我可以不用笔,用火能写出‘婆婆’两个字来。”婆婆,摇了摇头,显然是不信。我找来打火机,烤了一会儿,可是烤得有点儿久,把纸不小心给烧了,婆婆笑了笑,我有点急了说:“别得意,你等一等。”我又在一张白纸在写了那两个字,然后晾干,这次我只是稍微烤了一会儿,字便显现了出来,我得意地笑着,婆婆赶快从我手中夺去纸翻来覆去地看着,就是不明白。小伙伴们,你们明白吗,不明白,就让我给你讲一讲吧!因为用糖水在纸上写了字后,晾干了,字形,图案,就会消失,火烤之后,字形图案会因糖分脱水,而呈现浅褐色。动动脑筋,想一想除了糖水,还有哪些液体可以做隐形墨水呢?科学神奇吧!
草,神经,昂古