洛林小叮当
证明数列单调有界即可,有界证明用极限存在定理。
如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a| 证明数列收敛通常是落实到定义上或者证明数列的极限是固定值。比如数列an=a0+1/n,随着n增大,lim(an)=a0,因此可证明数列{an}是收敛的。 扩展资料: 设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn| 若数列某项起Xn>0(或Xn<0)且{Xn}收敛于a,则a>0(或a<0) 推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。 参考资料来源:百度百科-收敛数列
suejasmine
我给个初稿吧假设{xn}、{yn}两数列在某变化过程中同时趋于A,记un=│xn-A│,vn=│yn-A│,B=limun/vn则un和vn都是无穷小量若B=0,则说xn比yn高阶,xn比yn的收敛速度快若B=常数b(b>0),则说xn的收敛速度是yn的1/b倍若B=∞,则说xn比yn低阶,xn比yn的收敛速度慢
结论就是结合前言、背景和论文里的论点做的一个总结,还可以根据论文中的现状分析和现有对策分析 、发展趋势分析,展望一下未来你的论文准备往什么方向写,选题老师审核通
判断反常积分的收敛有比较判别法和Cauchy判别法。定积分的积分区间都是有限的,被积函数都是有界的。但在实际应用和理论研究中,还会遇到一些在无限区间上定义的函数
数学中,数列的教学思想是一座桥梁,能够将复杂的问题巧妙地转化成简单的解题方法,让教师在教学中和学生学习的过程中更清晰、更简洁。下面是我为你整理的高中数学数列论文
论文写作中存在的问题 导语:在论文写作中,相信很多的同学会遇到一些论文方面的疑惑。下面是我分享的论文写作中存在的问题,希望能够帮助大家。如果这些问题不是各位同学
不可能通项极限不是0,但是级数收敛的。 一个是数列{an}是否收敛的问题。 关于数列收敛,指的是数列是否有极限。如果有极限,不管极限是多少(不能是无穷大),那么