似曾相识SaMa
设实对称矩阵A,如果对于任意的实非零向量x≠0有x^TAx>0,则矩阵A称为正定的。正定矩阵的性质与判别方法1. 对称矩阵A正定的充分必要条件是A的n个特征值全是正数。2.对称矩阵A正定的充分必要条件是A合同于单位矩阵E。3.对称矩阵A正定(半正定)的充分必要条件是存在n阶可逆矩阵U使A=U^TU 4.对称矩阵A正定,则A的主对角线元素均为正数。5.对称矩阵A正定的充分必要条件是:A的n个顺序主子式全大于零。
让子弹飞888
矩阵正定的判定条件如下:
1、对称矩阵A正定的充分必要条件是A的n个特征值全是正数。
2、对称矩阵A正定的充分必要条件是A合同于单位矩阵E。
3、对称矩阵A正定(半正定)的充分必要条件是存在n阶可逆矩阵U使A=U^TU
4、对称矩阵A正定,则A的主对角线元素均为正数。
5、对称矩阵A正定的充分必要条件是:A的n个顺序主子式全大于零。
判断一个矩阵A是否为正定矩阵方法:
1、求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。
2、计算A的各阶顺序主子式。若A的各阶顺序主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。
3、正定矩阵的特征值都是正数。正定矩阵的所有子行列式都是正数。若A为n阶正定矩阵,则A为n阶可逆矩阵。
天道酬勤1212
正定矩阵判断的方法有:求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。计算A的各阶主子式。
若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的等两种方法。
半正定矩阵的特点:
1、半正定矩阵的行列式是非负的;两个半正定矩阵的和是半正定的;非负实数与半正定矩阵的数乘矩阵是半正定的。
2、设A是实对称矩阵。如果对任意的实非零列向量x有xTAx≥0x有xTAx≥0,就称A为半正定矩阵。
特征及性质
判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。
判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。
判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。
正定矩阵的性质:
正定矩阵的任一主子矩阵也是正定矩阵。
若A为n阶对称正定矩阵,则存在唯一的主对角线元素都是正数的下三角阵L,使得A=L*L′,此分解式称为正定矩阵的楚列斯基(Cholesky)分解。
若A为n阶正定矩阵,则A为n阶可逆矩阵。
音为爱899
一、正定矩阵有以下性质:
1、正定矩阵的行列式恒为正;
2、实对称矩阵A正定当且仅当A与单位矩阵合同;
3、若A是正定矩阵,则A的逆矩阵也是正定矩阵;
4、两个正定矩阵的和是正定矩阵;
5、正实数与正定矩阵的乘积是正定矩阵。
二、判定的方法:
根据正定矩阵的定义及性质,判别对称矩阵A的正定性有两种方法:
1、求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。
2、计算A的各阶主子式。若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。
等价条件
正定矩阵在相合变换下可化为规范型, 即单位矩阵。所有特征值大于零的对称矩阵(或厄米特矩阵)是正定矩阵,其等价条件是:
1、AA是半正定的;
2、AA的所有主子式均为非负的;
3、AA的特征值均为非负的;
4、存在n阶实矩阵C,使A=C'CC,使A=C′C;
5、存在秩为r的r×n实矩阵BB,使A=B'BA=B′B。
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!
据我所知,矩阵可以解高次方程,在线性代数中也有运用。
1、矩阵在经济生活中的应用 矩阵就是在行列式的基础上演变而来的,可活用行列式求花费总和最少等类似的问题;可借用特征值和特征向量预测若干年后的污水水平等问题;也可
[1]毛纲源. 一类特殊分块矩阵为循环矩阵的循环分块矩阵的几个性质[J]. 应用数学,1995,(3). [2]游兆永,姜宗乾,. 分块矩阵的对角占优性[J].
定义如下设M是n阶实系数对称矩阵, 如果对任何非零向量 X=(x_1,...x_n) 都有 X′MX>0,就称M正定(Positive Definite)。