• 回答数

    2

  • 浏览数

    267

重庆周林频谱仪
首页 > 期刊论文 > 凸函数的定义及其应用毕业论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

阿满思密达

已采纳

是的。向上凸就是向下凹。向下凸就是向上凹。一般地,曲线向上凸叫凸函数(二阶导数小于0),向上凹叫凹函数(二阶导数大于0)。

判定方法可利用定义法、已知结论法以及函数的二阶导数,对于实数集上的凸函数,一般的判别方法是求它的二阶导数,如果其二阶导数在区间上非负,就称为凸函数。如果其二阶导数在区间上恒大于0,就称为严格凸函数。

一元可微函数在某个区间上是凸的,当且仅当它的导数在该区间上单调不减。

一元连续可微函数在区间上是凸的,当且仅当函数位于所有它的切线的上方:对于区间内的所有x和y,都有f(y) > f(x) + f '(x) (y − x)。特别地,如果f '(c) = 0,那么c是f(x)的最小值。

凸函数的主要性质有:

1.若f为定义在凸集S上的凸函数,则对任意实数β≥0,函数βf也是定义在S上的凸函数;

2.若f1和f2为定义在凸集S上的两个凸函数,则其和f=f1+f2仍为定义在S上的凸函数;

3.若fi(i=1,2,…,m)为定义在凸集S上的凸函数,则对任意实数βi≥0,函数βifi也是定义在S上的凸函数;

4.若f为定义在凸集S上的凸函数,则对每一实数c,水平集Sc={x|x∈S,f(x)≤c}是凸集。

205 评论

心泊-李伟

凸函数的定义如下:

对于一元函数f(xf(x),如果对于任意tϵ[0,1]均满足:f(tx1+(1−t)x2)≤tf(x1)+(1−t)f(x2)f(tx1+(1−t)x2)≤tf(x1)+(1−t)f(x2),则称f(x)f(x)为凸函数。

同时如果对于任意tϵ(0,1))均满足:f(tx1+(1−t)x2)

凸函数的性质:

定义在某个开区间C内的凸函数f在C内连续,且在除可数个点之外的所有点可微。如果C是闭区间,那么f有可能在C的端点不连续。

一元可微函数在某个区间上是凸的,当且仅当它的导数在该区间上单调不减。一元连续可微函数在区间上是凸的,当且仅当函数位于所有它的切线的上方:对于区间内的所有x和y,都有f(y)>f(x)+f '(x)(y−x)。特别地,如果f '(c)= 0,那么c是f(x)的最小值。

352 评论

相关问答

  • 数学建模及其应用期刊官网

    正在参赛中,嘿嘿

    哇小妹夫 3人参与回答 2023-12-10
  • 幂级数及其应用毕业论文

    数学领域中的一些著名悖论及其产生背景

    神話0814 4人参与回答 2023-12-06
  • 同余及其应用毕业论文

    数论中除了整除以外,还有一个很重要也很难的知识点,就是余数,理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目

    幸福航海家 2人参与回答 2023-12-07
  • 凸函数本科毕业论文

    基于FPGA的信号发生器按键LCD模块设计 廖超平激光清洗技术的初步研究和应用 苏春洲,栾晓雨,王海军,袁晓东,叶亚云,Su Chunzhou,Luan Xia

    飛天彩绘 6人参与回答 2023-12-05
  • 函数的应用毕业论文

    哥们是二中的吧~你去找一个高二的借一下就行了,因为高一和高二的作业是完全相同的!

    华美新建材 4人参与回答 2023-12-09