• 回答数

    3

  • 浏览数

    328

越来越有感觉
首页 > 期刊论文 > 计算机视觉景物识别论文检测

3个回答 默认排序
  • 默认排序
  • 按时间排序

糖果屋de芒果

已采纳

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

154 评论

dp73732849

姓名:宋子璇学号: 【嵌牛导读】:分析RNN做目标识别 【嵌牛鼻子】:RNN 【嵌牛提问】:计算机视觉中RNN怎么应用于目标检测? 【嵌牛正文】 深度学习在计算机视觉领域取得的巨大的发展,最近几年CNN一直是目前主流模型所采取的架构。最近半年RNN/LSTM应用在识别领域逐渐成为一种潮流,RNN在获取目标的上下文中较CNN有独特的优势。以下我们分析最近有关RNN做目标识别的相关文章。1、Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks CVPR2016(论文笔记) 本文的主要贡献是用skip pooling和 RNNlayer。在多尺度的feature map 上做roi pooling,最后一个feature map是通过rnn得到的。 识别精度在VOC2012上达到,原因主要是利用多尺度的feature map和rnn layer。文章中用到了很多trick: 1) rnn 用的是修改后的IRNN,速度快,精度与LSTM相似。 2)由于是在多尺度feature map上做roi pooling,每个尺度上feature map的响应幅度不一样,所以需要先做L2-norm,然后再将这些尺度得到roi 特征concate到一起。然后统一在scale到一个尺度上(scale由网络学习得到)。 3)加入的lstm单元现用segmentation的数据集做预训练,让权重预学习。(很重要,有两个百分点提升) 4)如果把最后一层IRNN换成级联的3*3的卷积层,精度下降,所以IRNN对于提升不是那么明显。 思考: 1)此方法对于小尺度的物体,如bottle、plant等识别效果不好,是否可以利用最早的feature map做识别,最早的feature 尺度信息保存的较好。 2)rnn只是用来提特征用,并没有考虑到物体的上下文信息。 3)是否可以在第一轮识别到物体后,利用attention的机制,现将这些物体在feature map上去除,重点识别小的物体。 2、End-to-end people detection in crowded scenes 在Lentet得到特征的基础用,用LSTM做控制器,按序列输出得到的框。细节方面需要注意的是没有用NMS,用的hungarian loss(匈牙利算法)。本文最大的贡献出了源码,方便做detection的理解LSTM在目标识别中的应用。 Github仓库地址: 3、CNN-RNN: A Unified Framework for Multi-label Image Classification 本文的主要目的是做图像的多label识别。 文中有一句话很重要:"when using the same image features to predict multiple labels, objects that are small in the images are easily get ignored or hard torecognize independently". 用同一个feature map预测多label时,往往会忽略小物体。 所以作者利用两个并行的网络,第二个网络输入时当前输出的label,先得到label embeding,然后通过rnn得到一向量,融合图像的feature map得到image embeding,最终输出当前图像下一个label。 思考: 1)利用Deconvolution 将feature 扩到原图一样大小,做小物体的目标识别。 2)用不同尺寸的卷积核。 小思考-----为什么原来多级的级联的卷积,最后的卷积的感受野很大了,为什么还能识别一些较小的物体,比如行人,想象一下最后一层的类别热度图,原因是: a 此类有较强的文理信息b 尺度还是比较大. faster RCNN最后一层卷积层只有14*14,最后也有很好的识别效果,究竟是为什么? 4、Attentive contexts for object detection 文章利用local(多尺度的cnn特征)和global(LSTM生成)来做目标识别。用global的原因是:图像中的其他信息有利于当前box的识别,比如图像中出现其他的汽车对当前框识别为汽车的提升很大,但在文章中global的提升不是很明显,只有的提升。作者所用的global信息感觉很一般,并没有真正用到lstm的作用。 思考一下,lstm到底怎么用才能提取global信息:之前不容易识别到的椅子或者瓶子,不能用cnn最后得到的特征,应为太稀疏了,一是瓶子之类的没有纹理信息,而是像椅子之类的纹理太乱,与其他的物体太冲突。可以利用本文lstm的思路,将隐层的输出当做test时候的隐层输入,怎么将这20类的所有隐层信息集合起来是个难点。 5. Recurrent Convolutional Neural Network for Object Recognition CVPR2015 清华大学 链接二 每一层卷积后用RNN(类似一种cnn,只不过权重共享),在参数较少的情况下,让网络的层数更深,每层获取的context信息更丰富,用cuda-convenet实现,文章借鉴意义不大,从引用量上就可以看出。 6. Image caption相关论文 show and tell: a neural image caption generator CVPR2015 image captioning with deep bidirectional LSTMs 此类文章的主要思想是将图像的cnn特征当做传统LSTM的输入,最终生成一句句子描述,对目标识别的借鉴意义不大. the best of convolutional layers and recurrent layers: a hybrid network for semantic segmentation 本文的主要思想也是用了3层的lstm去提特征,最后用1*1的卷积层降维到K(类别数)层的feature map,本身没有什么创意,只是效果很好. 而且文中作者又设计了一个FCN+LSTM的级联网络,效果做到了state-of-the-art. 借鉴的地方不多。 8. semantic object parsing with graph LSTM 本文主要思想是抛弃原来逐点做序列的思想,转而利用超像素做为序列,而且超像素的输入顺序是根据前一步FCN得到的confidence map决定。 Graph LSTM是用来做语义分割,是否可以借鉴用来做目标识别. 9. pixel recurrent nerual networks 本文利用pixel rnn来做图像的补全,将各种门的计算用cnn来实现,加快计算速度(仅限于门的计算,cell state的更新还是传统方式),最大的贡献是用了多中网络,pixel CNN pixel RNN multiscale RNN---先生成低分辨率的图像,然后用这些低分变率的pixel作为先验知识最终生成一幅完整的图。

238 评论

七色缤纷彩虹

【嵌牛导读】目标检测在现实中的应用很广泛,我们需要检测数字图像中的物体位置以及类别,它需要我们构建一个模型,模型的输入一张图片,模型的输出需要圈出图片中所有物体的位置以及物体所属的类别。在深度学习浪潮到来之前,目标检测精度的进步十分缓慢,靠传统依靠手工特征的方法来提高精度已是相当困难的事。而ImageNet分类大赛出现的卷积神经网络(CNN)——AlexNet所展现的强大性能,吸引着学者们将CNN迁移到了其他的任务,这也包括着目标检测任务,近年来,出现了很多目标检测算法。 【嵌牛鼻子】计算机视觉 【嵌牛提问】如何理解目标检测算法——OverFeat 【嵌牛正文】 一、深度学习的典型目标检测算法 深度学习目标检测算法主要分为 双阶段检测算法 和 单阶段检测算法 ,如图1所示。双阶段目标检测算法先对图像提取候选框,然后基于候选区域做二次修正得到检测结果,检测精度较高,但检测速度较慢;单阶段目标验测算法直接对图像进行计算生成检测结果,检测速度快,但检测精度低。 1、双阶段目标检测算法 双阶段目标检测方法主要通过选择性搜索(Selective Search)或者Edge Boxes等算法对输入图像选取可能包含检测目标的候选区域(Region Proposal),再对候选区域进行分类和位置回归以得到检测结果。 OverFeat 算法 《OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks》 Sermanet 等改进AlexNet 提出 OverFeat 算法。该算法结合AlexNet通过多尺度滑动窗口实现特征提取功能,并且共享特征提取层,应用于图像分类、定位和目标检测等任务。 关键技术: 1、FCN( 全卷积神经网络 ) 对于一个各层参数结构都设计好的网络模型,要求输入图片的尺寸是固定的(例如,Alexnet要求输入图片的尺寸为227px*227px)。如果输入一张500*500的图片,希望模型仍然可以一直前向传导,即一个已经设计完毕的网络,可以输入任意大小的图片,这就是FCN。 FCN的思想在于: 1、从卷积层到全连接层,看成是对一整张图片的卷积层运算。 2、从全连接层到全连接层,看成是采用1*1大小的卷积核,进行卷积层运算。如上图所示,绿色部分代表卷积核大小。假设一个CNN模型,其输入图片大小是14*14,通过第一层卷积后得到10*10大小的图片,然后接着通过池化得到了5*5大小的图片。像但是对于像素值为5*5的图片到像素值为1*1的图片的过程中: (1)传统的CNN:如果从以前的角度进行理解的话,那么这个过程就是全连接层,我们会把这个5*5大小的图片,展平成为一维向量进行计算。 (2)FCN:FCN并不是把5*5的图片展平成一维向量再进行计算,而是直接采用5*5的卷积核,对一整张图片进行卷积运算。 二者本质上是相同的,只是角度不同,FCN把这个过程当成了对一整张特征图进行卷积,同样,后面的全连接层也是把它当做是以1*1大小的卷积核进行卷积运算。 当输入一张任意大小的图片,就需要利用以上所述的网络,例如输入一张像素为16*16的图片:根据上图,该网络最后的输出是一张2*2的图片。可见采用FCN网络可以输入任意大小的图片。同时需要注意的是网络最后输出的图片大小不在是一个1*1大小的图片,而是一个与输入图片大小息息相关的一张图片。 Overfeat就是把采用FCN的思想把全连接层看成了卷积层,在网络测试阶段可以输入任意大小的图片。 2、offset max-pooling 简单起见,不用二维的图像作为例子,而是采用一维作为示例: 如上图所示,在X轴上有20个神经元,并且选择池化size=3的非重叠池化,那么根据之前所学的方法应该是:对上面的20个神经元,从1位置开始进行分组,每3个连续的神经元为一组,然后计算每组的最大值(最大池化),19、20号神经元将被丢弃,如下图所示: 或者可以在20号神经元后面,添加一个数值为0的神经元编号21,与19、20成为一组,这样可以分成7组:[1,2,3],[4,5,6]……, [16,17,18],[19,20,21],最后计算每组的最大值。 如果只分6组,除了以1作为初始位置进行连续组合之外,也可以从位置2或者3开始进行组合。也就是说其实有3种池化组合方法: A、△=0分组:[1,2,3],[4,5,6]……,[16,17,18]; B、△=1分组:[2,3,4],[5,6,7]……,[17,18,19]; C、△=2分组:[3,4,5],[6,7,8]……,[18,19,20]; 对应图片如下: 以往的CNN中,一般只用△=0的情况,得到池化结果后,就送入了下一层。但是该文献的方法是,把上面的△=0、△=1、△=2的三种组合方式的池化结果,分别送入网络的下一层。这样的话,网络在最后输出的时候,就会出现3种预测结果了。 前面所述是一维的情况,如果是2维图片的话,那么(△x,△y)就会有9种取值情况(3*3);如果我们在做图片分类的时候,在网络的某一个池化层加入了这种offset 池化方法,然后把这9种池化结果,分别送入后面的网络层,最后的图片分类输出结果就可以得到9个预测结果(每个类别都可以得到9种概率值,然后我们对每个类别的9种概率,取其最大值,做为此类别的预测概率值)。 算法原理: 文献中的算法,就是把这两种思想结合起来,形成了文献最后测试阶段的算法。 1、论文的网络架构与训练阶段 (1)网络架构 对于网络的结构,文献给出了两个版本——快速版、精确版,一个精度比较高但速度慢;另外一个精度虽然低但是速度快。下面是高精度版本的网络结构表相关参数: 表格参数说明: 网络输入:图片大小为221px*221px; 网络结构方面基本上和AlexNet相同,使用了ReLU激活,最大池化。不同之处在于:(a)作者没有使用局部响应归一化层;(b)然后也没有采用重叠池化的方法;(c)在第一层卷积层,stride作者是选择了2,这个与AlexNet不同(AlexNet选择的跨步是4,在网络中,如果stride选择比较大得话,虽然可以减少网络层数,提高速度,但是却会降低精度)。 需要注意的是把f7这一层,看成是卷积核大小为5*5的卷积层,总之就是需要把网络看成前面所述的FCN模型,去除了全连接层的概念,因为在测试阶段可不是仅仅输入221*221这样大小的图片,在测试阶段要输入各种大小的图片,具体请看后面测试阶段的讲解。 (2)网络训练 训练输入:对于每张原图片为256*256,然后进行随机裁剪为221*221的大小作为CNN输入,进行训练。 优化求解参数设置:训练的min-batchs选择128,权重初始化选择高斯分布的随机初始化: 然后采用随机梯度下降法,进行优化更新,动量项参数大小选择,L2权重衰减系数大小选择10-5次方。学习率初始化值为,根据迭代次数的增加,每隔几十次的迭代后,就把学习率的大小减小一半。 然后就是DropOut,这个只有在最后的两个全连接层,才采用dropout,dropout比率选择。 2、网络测试阶段 在Alexnet的文献中,预测方法是输入一张图片256*256,然后进行multi-view裁剪,也就是从图片的四个角进行裁剪,还有就是一图片的中心进行裁剪,这样可以裁剪到5张224*224的图片。然后把原图片水平翻转一下,再用同样的方式进行裁剪,又可以裁剪到5张图片。把这10张图片作为输入,分别进行预测分类,在后在softmax的最后一层,求取个各类的总概率,求取平均值。 然而Alexnet这种预测方法存在两个问题: 一方面这样的裁剪方式,把图片的很多区域都给忽略了,这样的裁剪方式,刚好把图片物体的一部分给裁剪掉了; 另一方面,裁剪窗口重叠存在很多冗余的计算,像上面要分别把10张图片送入网络,可见测试阶段的计算量还是较大的。 Overfeat算法: 训练完上面所说的网络之后,在测试阶段不再是用一张221*221大小的图片了作为网络的输入,而是用了6张大小都不相同的图片,也就是所谓的多尺度输入预测,如下表格所示: 当网络前向传导到layer 5的时候,就利用了前面所述的FCN、offset pooling这两种思想的相结合。现以输入一张图片为例(6张图片的计算方法都相同),讲解layer 5后面的整体过程,具体流程示意图如下: 步骤一: 对于某个尺度的图片,经过前五层的卷积后得到特征图。上图中特征图的分辨率是20x23,256个通道。 步骤二: 对于该特征图,重复多次使用非重叠的池化,每次池化的偏置不同,有行偏置和列偏置。上图中偏置池化3次,偏置分别为为(0,1,2)。这就是offset pooling,也被称为fine stride。offset pooling得到的特征图的维度为6x7x3x3xD,其中6x7是特征图的分辨率,3x3是偏置池化的次数,D是通道数。上图中是以1维显示的。 步骤三: 池化后得到的特征图将被送入分类器。 步骤四: 分类器的输入是的5x5xD,输出是C(类别数)维向量。但是offset pooling后得到的特征图并不是5x5xD,比如上图中的特征图大小为6x7xD,因此分类器以滑动窗口的方式应用在特征图上,每个滑动窗口经过分类器输出一个C维向量。比如上图中输入的6x7xD的特征图最终得到2x3xC的输出,其中2x3是滑动窗口的个数。 步骤五: 而2x3xC只是一组偏置池化的输出,总的输出为2x3x3x3xC,将输出的张量reshape,得到6x9xC输出张量。最终输出分类张量为3d张量,即两个分辨率维度 x C维。 然后需要在后面把它们拉成一维向量,这样在一个尺度上,可以得到一个C*N个预测值矩阵,每一列就表示图片属于某一类别的概率值,并且求取每一列的最大值,作为本尺度的每个类别的概率值。 最后一共用了6种不同尺度(文献使用了12张,另外6张是水平翻转的图片)进行做预测,然后把这六种尺度结果再做一个平均,作为最最后的结果。 从上面过程可以看到整个网络分成两部分:layer 1~5这五层称之为特征提取层;layer 6~output称之为分类层。 六、定位任务 用于定位任务的时候,就把分类层(上面的layer 6~output)给重新设计一下,把分类改成回归问题,然后在各种不同尺度上训练预测物体的bounding box。

344 评论

相关问答

  • 苹果的机器视觉检测论文

    创智链2021-03-08 11:06关注不知道你是否遇到过说不出来名字的水果,或者是两两相似,确实不知道具体水果的品种的情况?随着人工智能技术的发展,智能图像

    壹秒钟变rabbiT 6人参与回答 2023-12-08
  • 视觉检测的好论文

    1. 程控直流电压源设计 简介:(论文字数:15253,页数:40) 2. 电梯程序的FPGA控制 简介:(论文字数:12537,页数:22) 3. 高频窄

    Q吃吃吃买买买 2人参与回答 2023-12-05
  • 机器人视觉检测技术研究论文

    机器视觉系统就是利用机器代替人眼来作各种测量和判断。它是计算科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识

    右耳钉的豆豆 4人参与回答 2023-12-06
  • 计算机视觉论文网站知乎

    当然是中国知网了。

    乖囡好好 4人参与回答 2023-12-06
  • 机械视觉检测论文

    CCD视觉系统就是用工业相机代替人眼睛去完成识别,测量,定位等功能。CCD视觉检测系统广泛应用于电子连接器生产制造行业,连接器平整度和正位度检测。随着电子产品市

    qiuchi0808 4人参与回答 2023-12-10