钟玉婷是好孩纸
1、国有企业人力资源激励机制的建立与实施2、大学生就业难的问题及其解决措施——基于劳动力市场分割的角度3、大型企业管理层员工激励机制研究4、企业文化建设对提升企业核心竞争力的促进作用研究5、西部地区农村人力资源开发策略研究6、危机管理在企业发展中的作用探讨7、大学生职业生涯规划缺乏主动性的原因分析与对策研究8、民营企业科技创新路径分析9、农民在新农村建设中的主体地位作用研究10、我国“民工荒”问题成因及对策分析11、新农村建设吸引人才的制约因素分析及对策研究12、中国城镇居民消费信贷市场发展问题及对策13、当前我国企业新员工培训存在的问题及其对策14、中国医疗保险业发展存在的问题及其解决措施15、我国城镇失业成因与对策研究(经济学论文题目由学术堂整理提供)
shally9073
1、几个带参数的二阶边界值问题的正解的存在性研究2、关于丢番图方程1+x+y=z的一类特殊情况的研究3、变限积分函数的性质及应用4、有限集上函数的迭代及其应用希望以上回答对你有帮助!————————————————————世界上没有任何东西是完美的,文章也是一样,我不敢保证我们团写出来的文章一定会让你捧上奖杯,获得名次。但这里面承载的心血和汗水不比任何写作团来的少,因为责任就是肩膀上的大山。不是我们写不出华丽清晰的文章,而是不可预定的因素太多,轻易地给您承诺说我是最好的恰恰说明了我的不成熟和轻浮。我想我简单的介绍并不能让你感觉眼前一亮,但你细细的品读定会感觉我们团靠谱务实的作风。
lijieqin不想长大
一 、引子 北京市中学生数学竞赛有着悠久的历史。近十几年来,北京市中学生数学竞赛是在初二和高一两个年级进行。1990年起分为初试和复试,初试以普及为主,复试则适度提高。命题紧密结合中学数学教学实际,活而不难,趣而不怪,巧而不偏,力求体现出科学性、知识性、应用性、启发性、趣味性的综合统一。数学竞赛活动是备受青少年喜爱的一种数学课外活动。通过有趣味、有新意、有水平的题目,开发智力,引导学生提高数学素质。数学竞赛活动是落实数学素质的一种好形式。北京市十几年的数学竞赛积累了一批闪耀着数学思想和智慧的好题目,引导学生研究赏析它,是一件赏心阅目、幸福愉快的事情。下面,笔者尝试通过一道北京市高一年级数学竞赛的初试题的一题多解,与读者共同享受数学智慧的灿烂阳光 二、题目 北京市1992年数学竞赛高中一年级初试“二、填空题”第4题如下: 4、若 sin2x+cosx+a=0 有实根,试确定实数a的取值范围是什么? 题目短小干炼,满分8分。 三、试解 方程中的求知数是x,出现了x的两种三角函数Sinx,Cosx.。而Sin2x=1-cos2x,好了,变一变,原方程就化成了cos2x-cosx-1-a=0 ①如果原方程中 x有实根,则cosx就会有对应的实数,令t= cosx,这样方程①就化成了t2-t-1-a=0 ②因此,方程②就应该有实数根,因此它的判别式△=(-1)2-4(-1-a)=4a+5≥0,所以 a≥-(5/4) 故实数a的取值范围是a≥-(5/4) 这个答案对吗? 当a≥-(5/4)时,一定有△≥0,方程②一定有实数根,问题是cosx=t有实根x就一定有实数根吗?注意到余弦函数的值域是cosx∈[-1,1],故②有实根并不能保证cosx=t一定在[-1,1]内,可见上面的解答是不严密的,思维不缜密的同学可能就会在这里出错。这是试题设置的一个隐蔽的陷阱。 四、反思 怎么办呢? 如果能保证方程②的实数解t在区间[-1,1]内,则最简三角方程cosx=t就必有实数解x=2kπ±arccost, 好,这样一来,问题就转化为当方程②有位于[-1,1]中的实数根时,求实数a的取值范围什么? 由方程②得: 故当a∈[-(5/4),1]∪[-(5/4),-1]=[-(5/4),1]时,原方程有关于x的实数根。 以上的方法用到了一元二次方程求根公式,用到了解两个无理不等式组成的不等式组,用到了集合的交集和并集。心里感觉踏实了,但运算较繁杂,有没有更好一些的方法? 五、改进 如果记方程②的左端为f(t),即f(t)=t2-t-1-a则方程②有[-1,1]中的实数解就等价于二次函数f(t)=t2-t-1-a 的图象抛物线在[-1,1]内与t轴有交点。数转化为形,以形助数。好,试试看。 当抛物线与t轴在[-1,1]内只有一个交点时,当且仅当 f(-1)f(1)≤0即 (1-a)(-1-a)≤0, 解之,有 -1≤a≤1; ③ 当抛物线与t轴在[-1,1]内有两个交点时,当且仅当 由③④得,当a∈[-1,1]∪[-(5/4),1]=[-(5/4),-1]时,y=f(t)与t轴在[-1,1]内有交点,方程②有实数解。 由于f(1)、f(-1),Δ等的计算比较简便,上述解法是不是比较简捷一点? 六、换个角度看问题 诗曰:“横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。”我们前面的解题思路,都把注意力注意在了“方程有实根”上,跳不出“方程有实根”的如来佛手心,“五”中的解法就渗透了数形转换,已属巧解。如果换个角度看问题,将方程①移项变形得a=cos2x-cosx-1视a为x的函数,用逆向思维来思考:x有实数解,则有cosx ∈[-1,1],a=[cosx-(1/2)]2-(5/4)当cosx=(1/2)时有最小值a最小=-(5/4);当cos=-1时有最大值a最大=(9/4)-(5/4)=1,故函数值域为 a∈[-(5/4),1]。反之,当a在[-(5/4),1]中取值时,cosx一定在[-1,1]中取值,x一定有实数解与之对应,你看,a的取值范围不是就求出来了吗? 七、变式 西游记中的孙悟空神通广大,能八九七十二变。好的数学题也会有一些“变式”。从上面的解法中你还能想到些什么?你能改编出一个相应的题目吗?试试看。 无独有偶,九年后的新千年第一年,2001年,北京市中学生数学竞赛高中一年能初赛试题“二、填空题”的最后一题即第8题如下:“8、若关于x的方程式sin2x+sinx+a=0 有实数解,求实数a的最大值与最小值的和” 读者诸君欣赏至此,是不是会“会心地笑了。” 八、启示 回顾以上解题过程,我们用到了方程的思想,等价转化的思想,数形结合转化的思想,变换角度看问题及逆向思维的思想。思想出智慧,智慧生妙解,妙解巧思令人陶醉。
黄宝宝0328
学术堂整理了十五个经济学毕业论文题目供大家进行参考:1、产业链竞争力理论研究2、产业投资基金支持文化产业发展研究3、城市交通与城市空间演化相互作用机制研究4、城乡一体化的理论探索与实证研究--以成都市为例5、城镇住房分类供应与保障制度研究6、创意产业发展与中国经济转型的互动研究7、创意产业与区域经济增长互动发展研究8、促进中部崛起研究9、大学生职业生涯规划研究10、低碳经济范式下的环境保护评价指标体系研究11、地方政府债务风险监管研究12、东北地区区域城市空间重构机制与路径研究13、东北亚区域能源安全与能源合作研究14、都市旅游发展与政府职能研究15、房地产投资信托(REITs)研究
★机械产品方案的现代设计方法及发展趋势★现代电力电子及电源技术的发展★面向FMS生产调度和控制的零件动态工艺模型研究★面向柔性自动化的成组统计质量控制技术★实施
学术堂整理了十五个好写的论文题目,供大家进行选择:1、一种软件定义网络中基于博弈的混合路由算法2、基于终端属性的矿下机会网络分组转发协议3、基于量子蚁群算法的片
论文之一:《当前国有企业文化建设存在的几个问题及对策》当前,我国正在掀起企业文化建设的第二次高潮这说明,企业文化建设又一次引起国人的高度重视,然而,回顾上世纪八
千古悠悠,长河汤汤,年华无法挽留历史匆匆前行的脚步。华夏大地上,有元谋人、蓝田人、山顶洞人的足迹,有夏商西周青铜文化的盛行;有秦皇汉武、唐宗宋祖的辉煌,有东临碣
1、国有企业人力资源激励机制的建立与实施2、大学生就业难的问题及其解决措施——基于劳动力市场分割的角度3、大型企业管理层员工激励机制研究4、企业文化建设对提升企