参考下这类的文献,免费查阅的可以去找汉斯的(材料科学)这本OA刊物
锂离子电池的研究进展摘要 介绍了锂离子电池的电化学反应原理、一般特性及电池正极材料、负极材料、电解质材料的研究进展,同时也介绍了目前存在的问题和发展前景。关键词 锂离子电池,研究进展,展望R&D of Li-ion secondary batterySun Chunwen(Department of Applied Chemistry,Tianjin University,300072)Abstract The fundamental principle of electrochemical reaction of Li-ion battery,its general properties and the progress of researches on materials for cathode,anode and electrolyte are introduced in this the same time its existing problems and prospects are also words Li-ion battery,research progress,prospect自从1859年Gaston Plante提出铅酸电池概念以来,化学电源界一直在研制新的高比能量、长循环寿命的二次电池。1990年日本索尼公司率先研制成功锂离子电池〔1〕。它是把锂离子嵌入碳中形成负极,取代传统锂电池的金属锂或锂合金作负极。负极材料是石墨和焦炭等碳材料。目前的正极材料主要是LiCoO2,其次是LiNiO2和LiMn2O4。电解质为LiAsF6+PC(碳酸丙烯酯)、LiAsF6+PC+EC(碳酸乙烯酯)及LiPF6+EC+DMC(碳酸二甲酯)。隔膜为PP微孔薄膜、PE微孔薄膜或两者双层。锂离子电池既保持了锂电池高电压、高容量的主要优点,又具有循环寿命长、安全性能好的显著特点,在便携式电子设备、电动汽车、空间技术、国防工业等领域展示了良好的应用前景和潜在的经济效益,是近年来受到广泛关注的研究热点。1 锂离子电池的电化学反应原理及特性这种电池的正负极均采用可供锂离子(Li+)自由嵌脱的活性物质,充电时,Li+从正极逸出,嵌入负极;放电时Li+则从负极脱出,嵌入正极。这种充放电过程,恰似一把摇椅。因此,这种电池又称为摇椅电池(Rocking Chair Batteries)。以LiCoO2为正极材料,石墨为负极材料的锂离子电池,充放电反应式为锂离子蓄电池的一般特性〔2〕:(1)体积及质量的能量密度高;(2)单电池的输出电压高,为 V;(3)自放电率小;(4)在60℃左右的高温下也可以使用;(5)不含有毒物质等。2 锂离子电池的研究进展研究锂离子蓄电池的关键技术是采用能在充放电过程嵌入和脱嵌锂离子的正、负极材料及选用合适的电解质材料。 正极材料作为正极材料的嵌锂化合物是锂离子的贮存库。为了获得较高的单体电池电压,应选择高电势的嵌锂化合物。一般而言,正极材料应满足〔3~7〕:(1)在所要求的充放电电位范围内,具有与电解质溶液的电化学相容性;(2)温和的电极过程动力学;(3)高度可逆性;(4)全锂化状态下在空气中稳定性好。目前研究的热点主要集中在层状LiMO2和尖晶石型LiM2O4结构的化合物上(M=Co、Ni、Mn、V等过渡金属离子)。能作正极活性物质的主要有LiCoO2、LiNiO2和LiMn2O4等。最早用于商品化的锂离子电池中的正极为LiCoO2,它属于α-FeO2型结构。其合成方法是将Li2CO3和CoCO3按摩尔比Li/Co=1∶1的比例混合,在空气中700℃灼烧而成〔8〕。其可逆性、放电容量、充放电效率、电压的稳定性等性能均很好。因此,目前正极材料主要采用LiCoO2,或在其中再添加Al、In等元素的复合钴酸锂。但是,由于钴材料成本较高,资源缺乏,因此,必须开发少用钴、不用钴或廉价易得的材料,如用镍或锰来取代钴,这样电池单价可大大降低。LiNiO2是继LiCoO2后研究较多的层状化合物,一般是用锂盐和镍盐混合在700~850℃经固态反应制备。镍与钴的性质相近,价格比钴低廉。LiNiO2目前的最大容量为150 mAh/g,工作电压范围为~ V,不存在过充电和过放电的限制,Ohzuku〔9〕认为它是锂离子电池中最有前途的正极材料之一。但由于LiNiO2的制备中存在许多问题,所以LiNiO2的实际应用还受到限制。例如,制备三方晶系的LiNiO2时容易产生立方晶系的LiNiO2,特别是当热处理温度大于900℃时,LiNiO2将全部以立方晶系形式存在,而在非水电解质溶液中,立方晶系的LiNiO2无电化学活性。尖晶石型的LiM2O4(M=Mn、Co、V等)中M2O4骨架是一个有利于Li+离子扩散的四面体和八面体共面的三维网络。其典型代表是LiMn2O4。因为在加热过程中易失去氧而产生电化学性能差的缺氧化合物,使高容量的LiMn2O4制备较复杂,现在常用的合成方法有多步加热固态合成法、溶液-凝胶法、沉淀法等。如何克服容量在循环时下降的问题是目前LiMn2O4研究的焦点。因此,尖晶石型特别是掺杂型LiMn2O4的制备及结构与性能的关系仍是今后锂离子电池电极材料研究的方向。 负极材料锂离子电池作为一种新型的高能电池在性能上的提高仍有很大的空间,而碳材料性能的提高是其中的主要关键。负极碳材料应具备大容量、良好的充放电特性、高度可逆的嵌入反应、热力学稳定以及对电解液稳定的性能。1973年就有人提出以碳作为嵌锂材料,但直到1990年索尼公司以石油焦炭作为负极,才使锂离子电池的研究进入实用化阶段,从而掀起了世界范围的研究热潮。用于锂离子电池的碳材料主要有以下几种,见下表。目前研究的碳负极材料主要有石墨、冶金焦炭、石油焦炭等。其中石墨具有层状结构,因此其层与层之间有可能嵌入原子或原子团,形成碳层间化合物。石墨用作锂离子蓄电池的负极,可用充电的方法在碳层之间嵌入锂离子,用放电的方法脱嵌锂离子。用嵌锂石墨作为负极时,研究的焦点主要有:不可逆容量损失的机理和抑制方法,石墨结构与电化学性能的关系等。石墨的结晶度、微观组织、堆积形式等都影响其嵌锂容量。有研究发现,部分无序排列的存在是石墨嵌锂容量小于理论容量的原因,通过调节热处理温度控制石墨的堆积形式是获得高容量的有效手段。日本本田研究与发展公司利用特殊处理方法解决了锂离子电池比容量低的问题。具体做法是将锂(分子)置于有序石墨板之间,材料经聚亚苯基(PPP)热处理后,再将高度取向的石墨经高压(5 000~6 000 MPa)热解。用该方法得到的石墨作负极,使负极达到了1 116 mAh/g的高比容量〔10〕。1991年日本NEC的Iijima用真空电弧蒸发石墨电极时,发现了具有纳米尺寸的碳多层管状物——纳米碳管。此后,引起了人们广泛的兴趣和深入的研究。纳米碳管具有尺寸小、机械强度高、比表面大、电导率高和界面效应强等特点,其顶端开口填充已用于高效催化载体、吸波材料等。近年来,已把碳管用于锂离子电池中作为负极材料,研究发现它具有高的可逆容量等优异的电极性能。目前,对碳电极材料的研究十分活跃,今后仍是锂离子电池研究的重点。 电解质材料主要采用锂盐和混合有机溶剂所组成的材料,如LiClO4/PC(碳酸丙烯酯)+DME(二甲基乙二醇)、PC+DME、PC+DME+EC(碳酸乙烯酯)、EC+DEC(碳酸二乙酯)、LiAsF6/EC+THF(四氢呋喃)等。有些专家认为,LiClO4是强氧化剂,使用很不安全。PC在蓄电池中因反应性强,易进入碳夹层,用于锂离子电池也不可取。LiPF6是适宜的用盐,1~2 mol/L LiPF6/EC+DMC是理想的电解液〔11〕。电解质的稳定性也是当前研究锂离子蓄电池的一个关键技术。另外,提高锂离子电池的容量、电极循环寿命、电池的安全性、减小自放电和实现快充仍是今后锂离子电池研究的关键技术。3 展望近年来锂离子电池作为一种新型的高能蓄电池,它的研究和开发已取得重大进展。但由于锂离子电池是一个涉及化学、物理、材料、能源、电子学等多学科的交叉领域,研制中还存在许多问题。运用传统的电化学研究方法结合现场、非现场的谱学方法等多种检测手段,对锂离子电池体系进行评价、优化设计,将会有力地推动锂离子电池的研究和应用。锂离子电池将是继镍镉、镍氢电池之后,在下世纪相当长一段时间内市场前景最好,发展最快的一种二次电池。参考文献1 Nagaura T,Tozawa Batts Sol Cells,1990(9):209~2172 李春鸿.电池,1996,26(6):286~2903 Miure K,Yamada A,et Acta,1996,41:249~2564 Gao Y,Dahn J Soc,1996,143:100~1145 Saidi M Y,Barker J,et Acta,1996,41:199~2046 Rougier A,Gravereau P,et Electrochem Soc,1996,143:1168~11757 周恒辉,慈云祥等.化学进展,1998,10(1):85~948 金属时评(日),1993(1525):29 Ohzuku T,Ueda A,et Acta,1993,38:1159~116710 任学佑.电池,1996,26(1):38~4011 Main Trends in Li-Ion Battery,Techno Japan,1994,27(3):58~60
使能量密度达到现有任何电池的三倍,研究显示金属催化物在提高电池效率上起到重要作用。该校机械工程和材料科学与工程副教授YangShao-Horn表示,许多研究团队如今正致力于锂-空气电池的研究,但目前还缺乏对何种电极材料能够促进电池内部电化学反应发生的理解。Shao-Horn和其团队成员在4月1日出版的《电化学与固态快报》上报道了其研究成果,在锂-空气电池中使用金或铂金电极作为催化剂具有比单一碳电极高得多的反应活性和效率。此外,这项研究也为进一步研究寻找更佳的电极材料,如金和铂金或其他金属的合金材料或金属氧化物材料以及减少使用昂贵材料奠定基础。论文的第一作者、博士生Yi-ChunLu指出,研究团队开发了一种分析电池中不同催化剂活性的方法,现在可以基于这项研究来试验多种可能的材料,以确定控制催化剂活性的物理特性,最终能够预测催化剂的反应活动。锂-空气电池原理与锂离子电池类似,而后者目前是便携式电子产品使用的主要电源,而且在电动汽车电源的竞争中也占据了领先地位。但由于锂-空气电池使用了碳基空气电极和空气流替代锂离子电池较重的传统部件,因此电池质量更轻,这也使得包括IBM和通用汽车等大企业纷纷投身于锂-空气电池技术的开发当中。但锂-空气电池在成为可商用化产品之前还有一系列的问题需要解决,其中最大的问题是如何确保在经过了许多次的充放电过程后仍能保持其电力水平,可用在电动汽车或电子产品中。研究人员还需要详细研究充放电过程的化学问题,如产生了那些化合物,在哪里产生,以及它们之间如何相互反应等。Shao-Horn坦承,目前这方面的研究还处于初级阶段,部分企业将锂-空气电池研究视之为10年期的研发项目,但这是一个非常有前景的领域,如果能够克服许多科学和工程挑战,真正实现能量密度达到目前锂离子电池的两到三倍,将能够首先应用在便携式电子产品如笔记本电脑和手机上,降低成本后更可作为电动汽车电源。该项研究受到美国能源部的资助,MartinFamilySocietyofFellowsforSustainability和美国国家科学基金会也给予了支持。根据《日刊工业新闻》报道,日本旭化成株式会社和Central硝子株式会社两家企业正式参加美国IBMAlmaden Reseach Center正在进行的锂空气电池研究项目。按照该项目研究分工,旭化成将利用其掌握的先进膜技术,负责开发重要的有关膜部件;Central硝子负责开发新型电解液和高性能添加剂。研究小组计划到2020年实现锂空气电池的大量生产和推广应用。
lithium-ion battery中文意思:锂离子电池例句1、Development situation and studies on the preparation and application of PP microporous membrane separators for lithium-ion battery were introduced.介绍了聚丙烯微孔薄膜在锂离子电池上的应用研究、制造工艺和发展现状。2、Nissan Motor Co. 's new lithium-ion battery plant in Smyrna, Tenn. goes one step further with an atmosphere reminiscent of a laboratory.在这个方面,位于美国田纳西州士麦那的日产(Nissan)全新锂电池工厂以其实验室般的整洁环境更进一步。3、Transition metal oxides and sulphides have been extensively studied for lithium-ion battery anode materials due to their high capacities.过渡金属氧化物与硫化物由于其大比容量,已被广泛研究用于锂离子电池负极材料。4、Research progress in layer LiMnO_2 cathode material for lithium-ion battery锂离子蓄电池层状锰系正极材料的研究进展5、Design of the lithium-ion battery charger based on portable computer基于便携机的锂离子蓄电池充电器的设计
最新研究进展:New Research Progress Recent Research And Development Latest advance FYI:Recent Research And Development of Cryogenic Heat Pipes 低温热管的最新研究进展 Latest advance of blood cell count technique 血细胞计数技术最新研究进展 New development of anode in lithium-ion batteries 锂离子蓄电池负极材料最新研究进展 New Research Progress of Thermoset/Montmorillonite Nano-composites 热固性塑料/蒙脱土纳米复合材料最新研究进展
使能量密度达到现有任何电池的三倍,研究显示金属催化物在提高电池效率上起到重要作用。该校机械工程和材料科学与工程副教授YangShao-Horn表示,许多研究团队如今正致力于锂-空气电池的研究,但目前还缺乏对何种电极材料能够促进电池内部电化学反应发生的理解。Shao-Horn和其团队成员在4月1日出版的《电化学与固态快报》上报道了其研究成果,在锂-空气电池中使用金或铂金电极作为催化剂具有比单一碳电极高得多的反应活性和效率。此外,这项研究也为进一步研究寻找更佳的电极材料,如金和铂金或其他金属的合金材料或金属氧化物材料以及减少使用昂贵材料奠定基础。论文的第一作者、博士生Yi-ChunLu指出,研究团队开发了一种分析电池中不同催化剂活性的方法,现在可以基于这项研究来试验多种可能的材料,以确定控制催化剂活性的物理特性,最终能够预测催化剂的反应活动。锂-空气电池原理与锂离子电池类似,而后者目前是便携式电子产品使用的主要电源,而且在电动汽车电源的竞争中也占据了领先地位。但由于锂-空气电池使用了碳基空气电极和空气流替代锂离子电池较重的传统部件,因此电池质量更轻,这也使得包括IBM和通用汽车等大企业纷纷投身于锂-空气电池技术的开发当中。但锂-空气电池在成为可商用化产品之前还有一系列的问题需要解决,其中最大的问题是如何确保在经过了许多次的充放电过程后仍能保持其电力水平,可用在电动汽车或电子产品中。研究人员还需要详细研究充放电过程的化学问题,如产生了那些化合物,在哪里产生,以及它们之间如何相互反应等。Shao-Horn坦承,目前这方面的研究还处于初级阶段,部分企业将锂-空气电池研究视之为10年期的研发项目,但这是一个非常有前景的领域,如果能够克服许多科学和工程挑战,真正实现能量密度达到目前锂离子电池的两到三倍,将能够首先应用在便携式电子产品如笔记本电脑和手机上,降低成本后更可作为电动汽车电源。该项研究受到美国能源部的资助,MartinFamilySocietyofFellowsforSustainability和美国国家科学基金会也给予了支持。根据《日刊工业新闻》报道,日本旭化成株式会社和Central硝子株式会社两家企业正式参加美国IBMAlmaden Reseach Center正在进行的锂空气电池研究项目。按照该项目研究分工,旭化成将利用其掌握的先进膜技术,负责开发重要的有关膜部件;Central硝子负责开发新型电解液和高性能添加剂。研究小组计划到2020年实现锂空气电池的大量生产和推广应用。
锂离子电池的研究进展摘要 介绍了锂离子电池的电化学反应原理、一般特性及电池正极材料、负极材料、电解质材料的研究进展,同时也介绍了目前存在的问题和发展前景。关键词 锂离子电池,研究进展,展望R&D of Li-ion secondary batterySun Chunwen(Department of Applied Chemistry,Tianjin University,300072)Abstract The fundamental principle of electrochemical reaction of Li-ion battery,its general properties and the progress of researches on materials for cathode,anode and electrolyte are introduced in this the same time its existing problems and prospects are also words Li-ion battery,research progress,prospect自从1859年Gaston Plante提出铅酸电池概念以来,化学电源界一直在研制新的高比能量、长循环寿命的二次电池。1990年日本索尼公司率先研制成功锂离子电池〔1〕。它是把锂离子嵌入碳中形成负极,取代传统锂电池的金属锂或锂合金作负极。负极材料是石墨和焦炭等碳材料。目前的正极材料主要是LiCoO2,其次是LiNiO2和LiMn2O4。电解质为LiAsF6+PC(碳酸丙烯酯)、LiAsF6+PC+EC(碳酸乙烯酯)及LiPF6+EC+DMC(碳酸二甲酯)。隔膜为PP微孔薄膜、PE微孔薄膜或两者双层。锂离子电池既保持了锂电池高电压、高容量的主要优点,又具有循环寿命长、安全性能好的显著特点,在便携式电子设备、电动汽车、空间技术、国防工业等领域展示了良好的应用前景和潜在的经济效益,是近年来受到广泛关注的研究热点。1 锂离子电池的电化学反应原理及特性这种电池的正负极均采用可供锂离子(Li+)自由嵌脱的活性物质,充电时,Li+从正极逸出,嵌入负极;放电时Li+则从负极脱出,嵌入正极。这种充放电过程,恰似一把摇椅。因此,这种电池又称为摇椅电池(Rocking Chair Batteries)。以LiCoO2为正极材料,石墨为负极材料的锂离子电池,充放电反应式为锂离子蓄电池的一般特性〔2〕:(1)体积及质量的能量密度高;(2)单电池的输出电压高,为 V;(3)自放电率小;(4)在60℃左右的高温下也可以使用;(5)不含有毒物质等。2 锂离子电池的研究进展研究锂离子蓄电池的关键技术是采用能在充放电过程嵌入和脱嵌锂离子的正、负极材料及选用合适的电解质材料。 正极材料作为正极材料的嵌锂化合物是锂离子的贮存库。为了获得较高的单体电池电压,应选择高电势的嵌锂化合物。一般而言,正极材料应满足〔3~7〕:(1)在所要求的充放电电位范围内,具有与电解质溶液的电化学相容性;(2)温和的电极过程动力学;(3)高度可逆性;(4)全锂化状态下在空气中稳定性好。目前研究的热点主要集中在层状LiMO2和尖晶石型LiM2O4结构的化合物上(M=Co、Ni、Mn、V等过渡金属离子)。能作正极活性物质的主要有LiCoO2、LiNiO2和LiMn2O4等。最早用于商品化的锂离子电池中的正极为LiCoO2,它属于α-FeO2型结构。其合成方法是将Li2CO3和CoCO3按摩尔比Li/Co=1∶1的比例混合,在空气中700℃灼烧而成〔8〕。其可逆性、放电容量、充放电效率、电压的稳定性等性能均很好。因此,目前正极材料主要采用LiCoO2,或在其中再添加Al、In等元素的复合钴酸锂。但是,由于钴材料成本较高,资源缺乏,因此,必须开发少用钴、不用钴或廉价易得的材料,如用镍或锰来取代钴,这样电池单价可大大降低。LiNiO2是继LiCoO2后研究较多的层状化合物,一般是用锂盐和镍盐混合在700~850℃经固态反应制备。镍与钴的性质相近,价格比钴低廉。LiNiO2目前的最大容量为150 mAh/g,工作电压范围为~ V,不存在过充电和过放电的限制,Ohzuku〔9〕认为它是锂离子电池中最有前途的正极材料之一。但由于LiNiO2的制备中存在许多问题,所以LiNiO2的实际应用还受到限制。例如,制备三方晶系的LiNiO2时容易产生立方晶系的LiNiO2,特别是当热处理温度大于900℃时,LiNiO2将全部以立方晶系形式存在,而在非水电解质溶液中,立方晶系的LiNiO2无电化学活性。尖晶石型的LiM2O4(M=Mn、Co、V等)中M2O4骨架是一个有利于Li+离子扩散的四面体和八面体共面的三维网络。其典型代表是LiMn2O4。因为在加热过程中易失去氧而产生电化学性能差的缺氧化合物,使高容量的LiMn2O4制备较复杂,现在常用的合成方法有多步加热固态合成法、溶液-凝胶法、沉淀法等。如何克服容量在循环时下降的问题是目前LiMn2O4研究的焦点。因此,尖晶石型特别是掺杂型LiMn2O4的制备及结构与性能的关系仍是今后锂离子电池电极材料研究的方向。 负极材料锂离子电池作为一种新型的高能电池在性能上的提高仍有很大的空间,而碳材料性能的提高是其中的主要关键。负极碳材料应具备大容量、良好的充放电特性、高度可逆的嵌入反应、热力学稳定以及对电解液稳定的性能。1973年就有人提出以碳作为嵌锂材料,但直到1990年索尼公司以石油焦炭作为负极,才使锂离子电池的研究进入实用化阶段,从而掀起了世界范围的研究热潮。用于锂离子电池的碳材料主要有以下几种,见下表。目前研究的碳负极材料主要有石墨、冶金焦炭、石油焦炭等。其中石墨具有层状结构,因此其层与层之间有可能嵌入原子或原子团,形成碳层间化合物。石墨用作锂离子蓄电池的负极,可用充电的方法在碳层之间嵌入锂离子,用放电的方法脱嵌锂离子。用嵌锂石墨作为负极时,研究的焦点主要有:不可逆容量损失的机理和抑制方法,石墨结构与电化学性能的关系等。石墨的结晶度、微观组织、堆积形式等都影响其嵌锂容量。有研究发现,部分无序排列的存在是石墨嵌锂容量小于理论容量的原因,通过调节热处理温度控制石墨的堆积形式是获得高容量的有效手段。日本本田研究与发展公司利用特殊处理方法解决了锂离子电池比容量低的问题。具体做法是将锂(分子)置于有序石墨板之间,材料经聚亚苯基(PPP)热处理后,再将高度取向的石墨经高压(5 000~6 000 MPa)热解。用该方法得到的石墨作负极,使负极达到了1 116 mAh/g的高比容量〔10〕。1991年日本NEC的Iijima用真空电弧蒸发石墨电极时,发现了具有纳米尺寸的碳多层管状物——纳米碳管。此后,引起了人们广泛的兴趣和深入的研究。纳米碳管具有尺寸小、机械强度高、比表面大、电导率高和界面效应强等特点,其顶端开口填充已用于高效催化载体、吸波材料等。近年来,已把碳管用于锂离子电池中作为负极材料,研究发现它具有高的可逆容量等优异的电极性能。目前,对碳电极材料的研究十分活跃,今后仍是锂离子电池研究的重点。 电解质材料主要采用锂盐和混合有机溶剂所组成的材料,如LiClO4/PC(碳酸丙烯酯)+DME(二甲基乙二醇)、PC+DME、PC+DME+EC(碳酸乙烯酯)、EC+DEC(碳酸二乙酯)、LiAsF6/EC+THF(四氢呋喃)等。有些专家认为,LiClO4是强氧化剂,使用很不安全。PC在蓄电池中因反应性强,易进入碳夹层,用于锂离子电池也不可取。LiPF6是适宜的用盐,1~2 mol/L LiPF6/EC+DMC是理想的电解液〔11〕。电解质的稳定性也是当前研究锂离子蓄电池的一个关键技术。另外,提高锂离子电池的容量、电极循环寿命、电池的安全性、减小自放电和实现快充仍是今后锂离子电池研究的关键技术。3 展望近年来锂离子电池作为一种新型的高能蓄电池,它的研究和开发已取得重大进展。但由于锂离子电池是一个涉及化学、物理、材料、能源、电子学等多学科的交叉领域,研制中还存在许多问题。运用传统的电化学研究方法结合现场、非现场的谱学方法等多种检测手段,对锂离子电池体系进行评价、优化设计,将会有力地推动锂离子电池的研究和应用。锂离子电池将是继镍镉、镍氢电池之后,在下世纪相当长一段时间内市场前景最好,发展最快的一种二次电池。参考文献1 Nagaura T,Tozawa Batts Sol Cells,1990(9):209~2172 李春鸿.电池,1996,26(6):286~2903 Miure K,Yamada A,et Acta,1996,41:249~2564 Gao Y,Dahn J Soc,1996,143:100~1145 Saidi M Y,Barker J,et Acta,1996,41:199~2046 Rougier A,Gravereau P,et Electrochem Soc,1996,143:1168~11757 周恒辉,慈云祥等.化学进展,1998,10(1):85~948 金属时评(日),1993(1525):29 Ohzuku T,Ueda A,et Acta,1993,38:1159~116710 任学佑.电池,1996,26(1):38~4011 Main Trends in Li-Ion Battery,Techno Japan,1994,27(3):58~60
尖晶石型锰酸锂正极材料的合成及电化学性能研究 在线阅读 整本下载 分章下载 分页下载 【英文题名】 The Study of Electrochemistry Performance for Synthesize Spinel Li-Mn-O Materials on the Lithium-ion Battery 【作者】 卢星河; 【导师】 唐致远; 【学位授予单位】 天津大学; 【学科专业名称】 应用化学 【学位年度】 2005 【论文级别】 博士 【网络出版投稿人】 天津大学 【网络出版投稿时间】 2007-07-10 【关键词】 锂离子电池; 正极材料; 尖晶石型锰酸锂; 阴阳离子复合掺杂; 包覆改性; 电化学性能; 高温性能; 【英文关键词】 lithium-ion battery; cathode material; spinel LiMn_2O_4; doping; surface modification; electrochemical performance; elevated temperature performance; 【中文摘要】 锂离子电池因质量比容量大、平均开路电压高和循环寿命长等优点已广泛应用于移动、便携式电器。目前锂离子电池的正极材料主要采用层状钴酸锂。由于钴资源的短缺、大电流充放电和高温环境使用的不安全因素,研究开发新一代高性能正极材料成为一项重要课题。尖晶石型LiMn_2O_4材料具有原料资源丰富、易制备和环境友好等优点,特别是因为充放电电压高、循环性能好、比容量高和使用安全等优良的电化学性能,该材料成为本研究的重点: 本研究首先对尖晶石型锰酸锂正极材料的研究现状、存在问题和解决方案等进行了较系统的探讨,先后制定了多项改善和提高尖晶石型锰酸锂电化学性能的措施。合成研究了分别和同时掺杂阴、阳离子正极材料Li_()M_xMn_(2-x)Q_yO_(4-y)的充放电比容量、循环性能、高温(55℃)性能和大电流充放电性能等,表征了合成材料的晶体结构、表观形态、粒径及粒径分布规律,进一步探讨了表面包覆(修饰)改性和电解液及其组成对锰酸锂正极材料的作用和影响。 以实验室合成的尖晶石型锰酸锂LiCo_xCr_yMn_(2-x-y)O_4材料为母体材料,以SiO_2... 【英文摘要】 The lithium-ion batteries have been widely used in portable electronic products such as, cell phones, notebook computers and cameras because of its high-capacity ( times as large as the Ni-Cd batteries and times as large as the Ni-MH batteries) and high average open voltage, that is, V in contrast with the of Ni-MH batteries. In the near future, the lithium-ion battery will used in the motive-batteries. As key parts of the battery,the anode and cathode have become one of the hott... 【DOI】 CNKI:CDMD: 【更新日期】 2007-07-25 【相同导师文献】 导师:唐致远 导师单位:天津大学 学位授予单位:天津大学[1] 高飞.锂离子电池正极材料LiFePO_4的合成与电化学性能研究[D]. 中国博士学位论文全文数据库,2008,(08)[2] 黄娟.循环冷却水新型加酸工艺配方的研究[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[3] 常林荣.铝轻型板栅在铅酸电池中的应用及聚苯胺的电化学合成[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[4] 穆雪梅.新型高效氧电极催化剂的研究与评价[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[5] 邱瑞玲.固相法合成LiFePO_4及其改性研究[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[6] 王倩.柔性纸质电池的研制[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[7] 赵松鹤.锂离子电池负极材料钛酸锂的研究[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[8] 张联忠.两种锂离子电池负极材料的研究[D]. 中国优秀硕士学位论文全文数据库,2006,(08)[9] 肖成伟.车用锂离子动力电池循环性能的研究[D]. 中国优秀硕士学位论文全文数据库,2007,(08)[10] 樊勇利.锂离子电池正极材料氧化镍钴锰锂的研究[D]. 中国优秀硕士学位论文全文数据库,2007,(08)
锂离子电池的负极是由负极活性物质碳材料或非碳材料、粘合剂和添加剂混合制成糊状胶合剂均匀涂抹在铜箔两侧,经干燥、滚压而成。锂离子电池能否成功地制成,关键在于能否制备出可逆地脱/嵌锂离子的负极材料。一般来说,选择一种好的负极材料应遵循以下原则:比能量高;相对锂电极的电极电位低;充放电反应可逆性好;与电解液和粘结剂的兼容性好;比表面积小(<10m2/g),真密度高(>);嵌锂过程中尺寸和机械稳定性好;资源丰富,价格低廉;在空气中稳定、无毒副作用。目前,已实际用于锂离子电池的负极材料一般都是碳素材料,如石墨、软碳(如焦炭等)、硬碳等。正在探索的负极材料有氮化物、PAS、锡基氧化物、锡合金、纳米负极材料,以及其他的一些金属间化合物等。
电化学研究的硅基复合材料具有大容量和良好的循环稳定性forrechargeable锂离子电池负极材料
我知道有两本刊物(材料科学、材料化学前沿)上面的文献都是可以免费查阅的
研究可行性高,开发前景良好。镁锂电池国内外研究现状与发展趋势的内容信息显示,镁锂电池国内外研究可行性较高,镁金属当中能量密度高,且具有电极电位低,具有良好的开发前景,能够正确的运用到化学工程电子工程以及安全生产过程当中。镁锂电池,指的是利用镁阳离子作为溶液中的活性电荷,传输剂和电化学电池的基本阳极的电池。
根据最近的学术报道,苏州大学材料与化学化工学部的汪胜教授团队最近发表了一篇题为“CoCu纳米芯片的反应性气体传感器应用研究”的论文。该研究利用电化学沉积法制备了CoCu合金纳米芯片,并将其应用于反应性气体传感器中。研究显示,在CO2和NH3等反应性气体的作用下,CoCu纳米芯片的电阻率发生明显变化。通过进一步的分析和实验,研究人员得出结论:CoCu纳米芯片可用作一种非常灵敏和准确的反应性气体传感器,并有望在环境检测、医疗诊断和制药生产等领域发挥重要作用。这项研究成果为新型纳米电化学材料的研究开辟了新的思路,对于促进纳米传感器技术的发展也具有重要意义。
近期,苏州大学材料与化学化工学部的汪胜教授在国际重量级学术期刊Advanced Materials上发表了题为“Ultrastrong and Tough Graphene Aerogel Fibers with Hierarchical Architecture”的论文。该论文报道了一种新型石墨烯气凝胶纤维,该纤维具有超强和韧性的特点,并且具有分层结构。这种新型石墨烯气凝胶纤维的制备方法简单易行,所得纤维具有超高的拉伸强度和韧性,并且具有显著的储能能力和超高的导电性能,因此在柔性电子、高强度材料和先进能源储存等领域有着广泛的应用前景。这项研究成果的发表不仅提高了我国在新型高性能材料领域中的国际影响力,而且也为石墨烯气凝胶纤维的制备和应用提供了新的思路。
最近,苏州大学材料与化学化工学部的汪胜研究团队在Advanced Materials和Biomaterials Science上分别发表了两篇论文。这些论文的主题集中在新型纳米材料在生物医学领域的应用。在Advanced Materials上发表的论文中,研究团队设计了一种基于层状双氧水钙钛矿纳米晶体的纳米药物载体。他们发现,这种载体可以有效地抑制癌细胞的增殖和扩散,并对正常细胞没有毒性。在Biomaterials Science上发表的论文中,研究团队探索了一种基于羟基磷灰石的生物活性材料,并将其应用于骨修复。他们发现,这种材料可以促进骨细胞的增殖和分化,从而加速骨的再生和修复。这些研究成果有望为生物医学领域提供新的治疗方法和技术,具有重要的应用价值。
使能量密度达到现有任何电池的三倍,研究显示金属催化物在提高电池效率上起到重要作用。该校机械工程和材料科学与工程副教授YangShao-Horn表示,许多研究团队如今正致力于锂-空气电池的研究,但目前还缺乏对何种电极材料能够促进电池内部电化学反应发生的理解。Shao-Horn和其团队成员在4月1日出版的《电化学与固态快报》上报道了其研究成果,在锂-空气电池中使用金或铂金电极作为催化剂具有比单一碳电极高得多的反应活性和效率。此外,这项研究也为进一步研究寻找更佳的电极材料,如金和铂金或其他金属的合金材料或金属氧化物材料以及减少使用昂贵材料奠定基础。论文的第一作者、博士生Yi-ChunLu指出,研究团队开发了一种分析电池中不同催化剂活性的方法,现在可以基于这项研究来试验多种可能的材料,以确定控制催化剂活性的物理特性,最终能够预测催化剂的反应活动。锂-空气电池原理与锂离子电池类似,而后者目前是便携式电子产品使用的主要电源,而且在电动汽车电源的竞争中也占据了领先地位。但由于锂-空气电池使用了碳基空气电极和空气流替代锂离子电池较重的传统部件,因此电池质量更轻,这也使得包括IBM和通用汽车等大企业纷纷投身于锂-空气电池技术的开发当中。但锂-空气电池在成为可商用化产品之前还有一系列的问题需要解决,其中最大的问题是如何确保在经过了许多次的充放电过程后仍能保持其电力水平,可用在电动汽车或电子产品中。研究人员还需要详细研究充放电过程的化学问题,如产生了那些化合物,在哪里产生,以及它们之间如何相互反应等。Shao-Horn坦承,目前这方面的研究还处于初级阶段,部分企业将锂-空气电池研究视之为10年期的研发项目,但这是一个非常有前景的领域,如果能够克服许多科学和工程挑战,真正实现能量密度达到目前锂离子电池的两到三倍,将能够首先应用在便携式电子产品如笔记本电脑和手机上,降低成本后更可作为电动汽车电源。该项研究受到美国能源部的资助,MartinFamilySocietyofFellowsforSustainability和美国国家科学基金会也给予了支持。根据《日刊工业新闻》报道,日本旭化成株式会社和Central硝子株式会社两家企业正式参加美国IBMAlmaden Reseach Center正在进行的锂空气电池研究项目。按照该项目研究分工,旭化成将利用其掌握的先进膜技术,负责开发重要的有关膜部件;Central硝子负责开发新型电解液和高性能添加剂。研究小组计划到2020年实现锂空气电池的大量生产和推广应用。
由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高,所以锂电池生产要在特殊的环境条件下进行。
但是由于锂电池的很多优点,锂电池被广泛的应用在电子仪表、数码和家电产品上。但是,锂电池多数是二次电池,也有一次性电池。
少数的二次电池的寿命和安全性比较差。 后来,日本发明了以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。
当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。
同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出, 又运动回正极。回正极的锂离子越多,放电容量越高。
我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。
Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。 所以Li-ion Batteries又叫摇椅式电池。
。
锂电池
锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。最早出现的锂电池来自于伟大的发明家爱迪生。
由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。所以,锂电池长期没有得到应用。
随着二十世纪微电子技术的发展,小型化的设备日益增多,对电源提出了很高的要求。锂电池随之进入了大规模的实用阶段。
最早得以应用于心脏起搏器中。由于锂电池的自放电率极低,放电电压平缓。使得起搏器植入人体长期使用成为可能。
锂电池一般有高于伏的标称电压,更适合作集成电路电源。二氧化锰电池,就广泛用于计算机,计算器,照相机、手表中。
为了开发出性能更优异的品种,人们对各种材料进行了研究。从而制造出前所未有的产品。比如,锂二氧化硫电池和锂亚硫酰氯电池就非常有特点。它们的正极活性物质同时也是电解液的溶剂。这种结构只有在非水溶液的电化学体系才会出现。所以,锂电池的研究,也促进了非水体系电化学理论的发展。除了使用各种非水溶剂外,人们还进行了聚合物薄膜电池的研究。
1992年Sony成功开发锂离子电池。它的实用化,使人们的移动电话、笔记本电脑等便携式电子设备重量和体积大大减小。使用时间大大延长。由于锂离子电池中不含有重金属铬,与镍铬电池相比,大大减少了对环境的污染。
发展进程 1、1970年代埃克森的M。
S。Whittingham采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂电池。
2、1980年,J。 Goodenough 发现钴酸锂可以作为锂离子电池正极材料。
3、1982年伊利诺伊理工大学(the Illinois Institute of Technology)的R。 R。
Agarwal和J。R。
Selman发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆。与此同时,采用金属锂制成的锂电池,其安全隐患备受关注,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。
首个可用的锂离子石墨电极由贝尔实验室试制成功。 4、1983年M。
Thackeray、J。Goodenough等人发现锰尖晶石是优良的正极材料,具有低价、稳定和优良的导电、导锂性能。
其分解温度高,且氧化性远低于钴酸锂,即使出现短路、过充电,也能够避免了燃烧、爆炸的危险。 。
在古代,人类有可能已经不断地在研究和测试“电”这种东西了。
一个被认为有数千年历史的粘土瓶在1932年于伊拉克的巴格达附近被发现。它有一根插在铜制圆筒里的铁条-可能是用来储存静电用的,然而瓶子的秘密可能永远无法被揭晓。
不管制造这个粘土瓶的祖先是否知道有关静电的事情,但可以确定的是古希腊人绝对知道。他们晓得如果摩擦一块琥珀,就能吸引轻的物体。
亚里斯多德(Aristotle)也知道有磁石这种东西,它是一种具有强大磁力能吸引铁和金属的矿石。 1780年,意大利解剖学家伽伐尼在做青蛙解剖时,两手分别拿着不同的金属器械,无意中同时碰在青蛙的大腿上,青蛙腿部的肌肉立刻抽搐了一下,仿佛受到电流的 *** ,而只用一种金属器械去触动青蛙,却并无此种反就。
伽伐尼认为,出现这种现象是因为动物躯体内部产生的一种电,他称之为“生物电”。伽伐尼于1791年将此实验结果写成论文,公布于学术界。
伽伐尼的发现引起了物理学家们极大兴趣,他们竞相重复枷伐尼的实验,企图找到一种产生电流的方法,意大利物理学家伏特在多次实验后认为:伽伐尼的“生物电”之说并不正确,青蛙的肌肉之所以能产生电流,大概是肌肉中某种液体在起作用。为了论证自己的观点,伏特把两种不同的金属片浸在各种溶液中进行试验。
结果发现,这两种金属片中,只要有一种与溶液发生了化学反应,金属片之间就能够产生电流。 1799年,伏特把一块锌板和一块银板浸在盐水里,发现连接两块金属的导线中有电流通过。
于是,他就把许多锌片与银片之间垫上浸透盐水的绒布或纸片,平叠起来。用手触摸两端时,会感到强烈的电流 *** 。
伏特用这种方法成功的制成了世界上第一个电池──“伏特电堆”。这个“伏特电堆”实际上就是串联的电池组。
它成为早期电学实验,电报机的电力来源。 意大利物理学家伏特就多次重复了伽伐尼的实验。
作为物理学家,他的注意点主要集中在那两根金属上,而不在青蛙的神经上。对于伽伐尼发现的蛙腿抽搐的现象,他想这可能与电有关,但是他认为青蛙的肌肉和神经中是不存在电的,他推想电的流动可能是由两种不同的金属相互接触产生的,与金属是否接触活动的或死的动物无关。
实验证明,只要在两种金属片中间隔以用盐水或碱水浸过的(甚至只要是湿和)硬纸、麻布、皮革或其它海绵状的东西(他认为这是使实验成功所必须的),并用金属线把两个金属片连接起来,不管有没有青蛙的肌肉,都会有电流通过。这就说明电并不是从蛙的组织中产生的,蛙腿的作用只不过相当于一个非常灵敏的验电器而已。
1836年,英国的丹尼尔对“伏特电堆”进行了改良。他使用稀硫酸作电解液,解决了电池极化问题,制造出第一个不极化,能保持平衡电流的锌─铜电池,又称“丹尼尔电池”。
此后,又陆续有去极化效果更好的“本生电池”和“格罗夫电池”等问世。但是,这些电池都存在电压随使用时间延长而下降的问题。
1860年,法国的普朗泰发明出用铅做电极的电池。这种电池的独特之处是,当电池使用一段使电压下降时,可以给它通以反向电流,使电池电压回升。
因为这种电池能充电,可以反复使用,所以称它为“蓄电池”。 然而,无论哪种电池都需在两个金属板之间灌装液体,因此搬运很不方便,特别是蓄电池所用液体是硫酸,在挪动时很危险。
也是在1860年,法国的雷克兰士(GeeLeclanche)还发明了世界广受使用的电池(碳锌电池)的前身。它的负极是锌和汞的合金棒(锌-伏特原型电池的负极,经证明是作为负极材料的最佳金属之一),而它的正极是以一个多孔的杯子盛装着碾碎的二氧化锰和碳的混合物。
在此混合物中插有一根碳棒作为电流收集器。负极棒和正极杯都被浸在作为电解液的氯化铵溶液中。
此系统被称为“湿电池”。雷克兰士制造的电池虽然简陋但却便宜,所以一直到1880年才被改进的“干电池”取代。
负极被改进成锌罐(即电池的外壳),电解液变为糊状而非液体,基本上这就是现在我们所熟知的碳锌电池。 1887年,英国人赫勒森发明了最早的干电池。
干电池的电解液为糊状,不会溢漏,便于携带,因此获得了广泛应用。 1890年Thomas Edison 发明可充电的铁镍电池 1896年在美国批量生产干电池 1896年发明D型电池. 1899年Waldmar Jungner 发明镍镉电池. 1910年可充电的铁镍电池商业化生产 1911年我国建厂生产干电池和铅酸蓄电池(上海交通部电池厂) 1914年Thomas Edison 发明碱性电池. 1934年Schlecht and Akermann 发明镍镉电池烧结极板. 1947年Neumann 开发出密封镍镉电池. 1949年Lew Urry (Energizer) 开发出小型碱性电池. 1954年Gerald Pearson, Calvin Fuller and Daryl Chapin 开发出太阳能电池. 1956年Energizer.制造第一个9伏电池 1956年我国建设第一个镍镉电池工厂(风云器材厂(755厂)) 1960前后Union Carbide.商业化生产碱性电池,我国开始研究碱性电池(西安庆华厂等三 家合作研发) 1970前后出现免维护铅酸电池. 1970前后一次锂电池实用化. 1976年Philips Research的科学家发明镍氢电池. 1980前后开发出稳定的用于镍氢电池的合金. 1983年我国开。
锂离子电池 正极材料:可选的正极材料很多,目前主品多采用锂铁盐。
不同的正极材料对照: 发展进程 1 1970年代埃克森的M。S。
Whittingham采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂电池。 2。
1980年,J。 Goodenough 发现钴酸锂可以作为锂离子电池正极材料。
3 1982年伊利诺伊理工大学(the Illinois Institute of Technology)的R。R。
Agarwal和J。R。
Selman发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆。 与此同时,采用金属锂制成的锂电池,其安全隐患备受关注,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。
首个可用的锂离子石墨电极由贝尔实验室试制成功。 4 1983年M。
Thackeray、J。Goodenough等人发现锰尖晶石是优良的正极材料,具有低价、稳定和优良的导电、导锂性能。
其分解温度高,且氧化性远低于钴酸锂,即使出现短路、过充电,也能够避免了燃烧、爆炸的危险。 。
电池的诞生,基于人们对于获取持续而稳定的电流的需要。
不过,电池的发明,是来源于一次青蛙的解剖实验所产生的灵感,多少有些偶然。 1780年的一天,意大利解剖学家伽伐尼(Luigi Galvani)在做青蛙解剖时,两手分别拿着不同的金属器械,无意中同时碰在青蛙的大腿上,青蛙腿部的肌肉立刻抽搐了一下,仿佛受到电流的 *** ,而如果只用一种金属器械去触动青蛙,就无此种反应。
伽伐尼认为,出现这种现像是因为动物躯体内部产生的一种电,他称之为“生物电”。 伽伐尼的发现引起了物理学家们的极大兴趣,他们竞相重复伽伐尼的实验,企图找到一种产生电流的方法。
而意大利物理学家伏特(Alessandro Volta)在多次实验后则认为:青蛙的肌肉之所以能产生电流,大概是肌肉中某种液体在起作用。为了论证自己的观点,伏特把两种不同的金属片浸在各种溶液中进行试验。
结果发现,这两种金属片中,只要有一种与溶液发生了化学反应,金属片之间就能够产生电流。1799年,伏特成功制成了世界上第一个电池“伏特电堆”。
这个“伏特电堆”实际上就是串联的电池组。 1836年,英国的丹尼尔对“伏特电堆”进行了改良,又陆续有效果更好的“本生电池”和“格罗夫电池”等问世。
然而在当时,无论哪种电池都需在两个金属板之间灌装液体,搬运很不方便,特别是蓄电池所用液体是硫酸,在挪动时很危险。干电池的诞生 干电池的鼻祖在19世纪中期诞生。
1860年,法国的雷克兰士(Gee Leclanche)发明了碳锌电池,这种电池更容易制造,且最初潮湿水性的电解液,逐渐被黏浊状类似糨糊的方式取代,于是装在容器内时,“干”性的电池出现了。 1887年,英国人赫勒森(Wilhelm Hellesen)发明了最早的干电池。
相对于液体电池而言,干电池的电解液为糊状,不会溢漏,便于携带,因此获得了广泛应用。 如今,干电池已经发展成为一个庞大的家族,种类达100多种。
常见的有普通锌-锰干电池、碱性锌-锰干电池、镁-锰干电池等。不过,最早发明的碳锌电池依然是现代干电池中产量最大的电池。
在干电池技术的不断发展过程中,新的问题又出现了。人们发现,干电池尽管使用方便、价格低廉,但用完即废,无法重新利用。
另外,由于以金属为原料容易造成原材料浪费,废弃电池还会造成环境污染。于是,能够经过多次充电放电循环,反复使用的蓄电池成为新的方向。
事实上,蓄电池的最早发明同样可以追溯到1860年。当年,法国人普朗泰(Gaston Plante)发明出用铅做电极的电池。
这种电池的独特之处是,当电池使用一段时间电压下降时,可以给它通以反向电流,使电池电压回升。因为这种电池能充电,并可反复使用,所以称它为“蓄电池”。
1890年,爱迪生发明可充电的铁镍电池,1910年可充电的铁镍电池商业化生产。如今,充电电池的种类越来越丰富,形式也越来越多样,从最早的铅蓄电池,铅晶蓄电池,到铁镍蓄电池以及银锌蓄电池,发展到铅酸蓄电池、太阳能电池以及锂电池等等。
与此同时,蓄电池的应用领域越来越广,电容越来越大,性能越来越稳定,充电越来越便捷。锂电池的产生 在电池这个领域,锂离子电池和燃料电池成为最令人瞩目的明星。
从上面的故事可以看出,整个电池的发展史也可以说是一个“试试各种金属能不能造电池”的历史。现在电池界最红的金属是“锂”。
锂是所有金属里最轻的,比水还轻,而且特别活泼,需要保存在石蜡里。实际上,当初爱迪生就曾经发明过锂电池,但是由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高,所以锂电池长期没有得到应用。
现在,人们对电池“求贤若渴”,这些问题也就不是问题了。恰好锂电池具有能量重量比高、电压高、自放电小、可长时间存放等优点,所以它在近30年中取得了巨大发展。
我们用的计算机、计算器、照相机、手表中的电池都是锂电池。 锂电池组装完成后电池即有电压,不需充电。
这种电池也可以充电,但循环性能不好,在充放电循环过程中,容易形成锂枝晶,造成电池内部短路,所以一般情况下这种电池是禁止充电的。后来,索尼公司发明了以炭材料为负极,以含锂的化合物做正极,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。
锂离子电池的优势十分明显:工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长。锂离子电池通过锂离子在正负极之间跑来跑去来充电和放电。
这个领域最牛的技术是“层迭电池结构”,也就是把好多个电池做成很薄的层然后迭在一起,这样可以用很小的体积达到很高的效率。所以,锂离子电池被广泛应用于汽车、笔记本、手机等行业。
后来河南鸿宾电池公司对锂电池进行研发,引入了冷注塑工艺技术,产生了冷注塑电电池---鸿宾电池,也就出现了高容量商务锂离子电池。现在高容量商务电池已进入人们的视线,被更多的人所关注。
燃料电池的发展 除了锂离子电池,还有一种电池很有前途,就是“燃料电池”,它是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。燃料和空气分别送进燃料电池,电就被奇妙地生。
1、1970年代埃克森的采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂电池。
2、1980年,J. Goodenough 发现钴酸锂可以作为锂离子电池正极材料。
3、1982年伊利诺伊理工大学(the Illinois Institute of Technology)的和发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆。与此同时,采用金属锂制成的锂电池,其安全隐患备受关注,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。首个可用的锂离子石墨电极由贝尔实验室试制成功。
4、1983年、等人发现锰尖晶石是优良的正极材料,具有低价、稳定和优良的导电、导锂性能。其分解温度高,且氧化性远低于钴酸锂,即使出现短路、过充电,也能够避免了燃烧、爆炸的危险。
5、1989年,和发现采用聚合阴离子的正极将产生更高的电压。
6、1991年索尼公司发布首个商用锂离子电池。随后,锂离子电池革新了消费电子产品的面貌。
7、1996年Padhi和Goodenough发现具有橄榄石结构的磷酸盐,如磷酸锂铁(LiFePO4),比传统的正极材料更具优越性,因此已成为当前主流的正极材料。
随着数码产品如手机、笔记本电脑等产品的广泛使用,锂离子电池以优异的性能在这类产品中得到广泛应用,并在逐步向其他产品应用领域发展。1998年,天津电源研究所开始商业化生产锂离子电池。习惯上,人们把锂离子电池也称为锂电池,但这两种电池是不一样的。锂离子电池已经成为了主流。
先说现在锂离子电池的应用和优点,然后说你这个项目用的什么正极材料,和其他锂离子电池相比有什么优势。比如现在类似的锂离子电池阻抗是多少我们用新的正极材料阻抗可以降低到多少