高次多项式如何因式分解?清华学霸毫无思路,高级教师1秒搞定!
多项式因式分解的方法,一个是根据完全平方公式,一个是配方法还有一个因式分解法。
一、提公因式法。
多项式中,每一都含有的公共的因式叫做这个多项式的公因式。通常,某些多项式的各项或一些项有公因式,那么,我们可以把这个公因式提出来,从而将多项式化成两个因式或多个因式的乘积的形式,这种分解因式的方法叫做提公因式法。
二、公式法。
将乘法公式反过来,就可以将某些多项式因式分解,这种方法叫公式法。
三、分组分解法。
分组分解法是分解较复杂的多项式的一种方法,在能分组的多项式往往有四项或者更多,一般分组为两两分组或三一分组,常用于多项式中的某些项分别进行合并后会有公因式或者可用公式化简等。
四、十字相乘法。
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
五、双十字相乘法。
分解形如ax²+bxy+cy²+dx+ey+f 的二次六项式在草稿纸上,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则。
则原式=(mx+py+j)(nx+qy+k)。也叫长十字相乘法。
扩展资料:
一、多项式的分解定理:
F[x]中任一个次数不小于 1的多项式都可以分解为F上的不可约多项式的乘积,而且除去因式的次序以及常数因子外,分解的方法是惟一的。
当F是复数域C时,根据代数基本定理,可证C[x]中不可约多项式都是一次的。因此,每个复系数多项式都可分解成一次因式的连乘积。
当F是实数域R时,由于实系数多项式的虚根是成对出现的,即虚根的共轭数仍是根,因此R[x]中不可约多项式是一次的或二次的。
所以每个实系数多项式都可以分解成一些一次和二次的不可约多项式的乘积。实系数二次多项式αx2+bx+с不可约的充分必要条件是其判别式b2-4αс<0。
当F是有理数域Q时,情况复杂得多。要判断一个有理系数多项式是否不可约,就较困难。应用本原多项式理论,可把有理系数多项式的分解问题化为整系数多项式的分解问题。
一个整系数多项式如其系数是互素的,则称之为本原多项式。每个有理系数多项式都可表成一个有理数及一个本原多项式的乘积。
二、因式分解的相关结论:
1、因式分解与解高次方程有密切的关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂,在非专业领域没有介绍。
对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。
2、 所有的三次和三次以上的一元多项式在实数范围内都可以因式分解,所有的二次或二次以上的一元多项式在复数范围内都可以因式分解。这看起来或许有点不可思议。比如x4+1,这是一个一元四次多项式,看起来似乎不能因式分解。
但是它的次数高于3,所以一定可以因式分解。也可以用待定系数法将其分解,只是分解出来的式子并不整洁。(这是因为,由代数基本定理可知n次一元多项式总是有n个根,也就是说,n次一元多项式总是可以分解为n个一次因式的乘积。
并且还有一条定理:实系数多项式的虚数根两两共轭的,将每对共轭的虚数根对应的一次因式相乘,可以得到二次的实系数因式,从而这条结论也就成立了。)
3、因式分解虽然没有固定方法,但是求两个多项式的公因式却有固定方法。因式分解很多时候就是用来提公因式的。寻找公因式可以用辗转相除法来求得。
标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以但比较笨,不过能有效地解决找公因式的问题。
4、因式分解是很困难的,初中所接触的只是因式分解很简单的一部分。
参考资料:百度百科-因式分解
多项式因式分解的话,这里主要是先看一看多项式之间是有哪一些公因式,有公因式的话就提出来,然后再进行进一步的分解。
导语:因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用。是解决许多数学问题的有力工具。把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
1、提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x3-2x2-x
x3-2x2-x=x(x2-2x-1)
2、应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a2+4ab+4b2
解:a2+4ab+4b2=(a+2b)2
3、分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m2+5n-mn-5m
解:m2+5n-mn-5m=m2-5m-mn+5n
= (m2-5m)+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、十字相乘法
对于mx2+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x2-19x-6
分析:1×7=7,2×(-3)=-6
1×2+7×(-3)=-19
解:7x2-19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的'可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x2+6x-40
解x2+6x-40=x2+6x+(9) -(9 ) -40
=(x+ 3)2-(7 )2
=[(x+3)+7]*[(x+3) – 7]
=(x+10)(x-4)
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
例7、分解因式2x4–x3-6x2-x+2(也叫相反式,在这里以二次项系数为中心对称项的系数是相等的,如四次项与常数项对称,系数相等,解法也是把对称项结合在一起)
解:2x4–x3-6x2-x+2=2(x4+1)-x(x2+1)-6x2
=x2{2[x2+()2]-(x+)-6}
令y=x+,
x2{2[x2+()2]-(x+)-6}
= x2[2(y2-2)-y-6]
= x2(2y2-y-10)
=x2(y+2)(2y-5)
=x2(x++2)(2x+-5)
=(x2+2x+1)(2x2-5x+2)
=(x+1)2(2x-1)(x-2)
8、求根法
令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则多项式可因式分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn)(一般情况下是试根法,并且一般试-3,-2,-1,0,1,2,3这些数是不是方程的根)
例8、分解因式2x4+7x3-2x2-13x+6
解:令f(x)=2x4+7x3-2x2-13x+6=0
通过综合除法可知,f(x)=0根为,-3,-2,1 ,
则2x +7x -2x-13x+6=(2x-1)(x+3)(x+2)(x-1)
9、图象法
(这种方法在以后学函数的时候会用到。现在只是作为了解内容,它和第八种方法是类似的)
令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x1,x2,x3,……xn,则多项式可因式分解为
f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn)
例9、因式分解x3+2x2-5x-6
解:令y=x3+2x2-5x-6
作出其图象,可知与x轴交点为-3,-1,2
则x3+2x2-5x-6=(x+1)(x+3)(x-2)
10、主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
例10、分解因式a2(b-c)+b2(c-a)+c2(a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
解:a2(b-c)+b2(c-a)+c2(a-b)=a2(b-c)-a(b2-c2)+bc(b-c)
=(b-c) [a2-a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、利用特殊值法
将2或10(或其它数)代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。例11、分解因式x3+9x2+23x+15
解:令x=2,则x3+9x2+23x+15=8+36+46+15=105
将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值
则x3+9x2+23x+15=(x+1)(x+3)(x+5)
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例12、分解因式x4–x3-5x2-6x-4
如果已知道这个多项式没有一次因式,因而只能分解为两个二次因式。
解:设x4–x3-5x2-6x-4=(x2+ax+b)(x2+cx+d)
= x4+(a+c)x3+(ac+b+d)x2+(ad+bc)x+bd
从而a+c=-1,ac+b+d=-5,ad+bc=-6,bd=-4
所以解得
则x4–x3-5x2-6x-4=(x2+x+1)(x2-2x-4)
1】提取公因式
这种方法比较常规、简单,必须掌握。
常用的公式有:完全平方公式、平方差公式等
例一:2x-3x=0
解:x(2x-3)=0
x1=0,x2=3/2
这是一类利用因式分解的方程。
总结:要发现一个规律就是:当一个方程有一个解x=a时,该式分解后必有一个(x-a)因式 这对我们后面的学习有帮助。
2】公式法
将式子利用公式来分解,也是比较简单的方法。
常用的公式有:完全平方公式、平方差公式等
注意:使用公式法前,建议先提取公因式。
例二:x-4分解因式
分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2 解:原式=(x+2)(x-2)
3】十字相乘法
是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。注意:它不难。
这种方法的关键是把二次项系数a分解成两个因数的积,把常数项c分解成两个因数的积,并使a1c2?a2c1正好是一次项b,那么可以直接写成结果
例三: 把2x-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项: 222
导语:因式分解的常用方法,还有很多方法都很不错,也能对我们的数学能力进行拓展,例如十字相乘法等等。我们在学习初中数学因式分解的时候,一定要多做题,题海战术虽然饱受诟病,但是对于初中数学确实是理解和熟练知识点的最佳途径,当然要适量,不可疲劳战,这是为了保持对学习的浓厚兴趣,长此以往,养成习惯,你会发现数学这么简单。
因式分解的步骤
1、提公因式;
2、公式法(完全平方式、平方差公式)。
初中数学因式分解常用解法有哪些提公因式法
① 公因式: 各项都含有的公共的因式叫做这个多项式各项的~.
② 提公因式法 :一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
③ 具体方法: 当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
初中数学因式分解常用解法有哪些
运用公式法
①平方差公式:.a^2-b^2=(a+b)(a-b)
②完全平方公式:a^2±2ab+b^2=(a±b)^2
※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
分组分解法
分组分解法:把一个多项式分组后,再进行分解因式的方法.
分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.
拆项、补项法
拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.
※多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
配方法: 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
换元法 :有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
待定系数法: 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
扩展资料:
因式分解(英语:factorization,factorisation或factoring)是指把一个多项式分解为两个或多个的因式的过程,分解过后会得出一堆较原式简单的多项式的积。例如多项式x-4可被分解为(x+2)(x-2)。
基本概念
定义
把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用,是解决许多数学问题的有力工具。
因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高综合分析和解决问题的能力。
相关结论
基本结论:分解因式与整式乘法为相反。
高级结论:在高等数学上因式分解有一些重要结论,在初等数学层面上证明很困难,但是理解很容易。
1)因式分解与解高次方程有密切的.关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂,在非专业领域没有介绍。对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。
2)所有的三次和三次以上的一元多项式在实数范围内都可以因式分解,所有的二次或二次以上的一元多项式在复数范围内都可以因式分解。这看起来或许有点不可思议。比如x+1,这是一个一元四次多项式,看起来似乎不能因式分解。但是它的次数高于3,所以一定可以因式分解。也可以用待定系数法将其分解,只是分解出来的式子并不整洁。(这是因为,由代数基本定理可知n次一元多项式总是有n个根,也就是说,n次一元多项式总是可以分解为n个一次因式的乘积。并且还有一条定理:实系数多项式的虚数根两两共轭的,将每对共轭的虚数根对应的一次因式相乘,可以得到二次的实系数因式,从而这条结论也就成立了。)
3)因式分解虽然没有固定方法,但是求两个多项式的公因式却有固定方法。因式分解很多时候就是用来提公因式的。寻找公因式可以用辗转相除法来求得。标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以但比较笨,不过能有效地解决找公因式的问题。
4)因式分解是很困难的,初中所接触的只是因式分解很简单的一部分。
分解一般步骤
1、如果多项式的首项为负,应先提取负号;
这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;
要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。
原则
1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。
2、分解因式的结果必须是以乘积的形式表示。
3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;
5、结果的多项式首项一般为正。在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;
6、括号内的首项系数一般为正;
7、如有单项式和多项式相乘,应把单项式提到多项式前。如(b+c)a要写成a(b+c);
8、考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。
口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。
分解方法
因式分解主要有十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法等方法,求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。
因式分解的方法和技巧:十字相乘法,双十字相乘法,提公因式法,因式定理法等。
1、十字相乘法
具体方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。
口诀:分二次项,分常数项,交叉相乘求和得一次项。(拆两头,凑中间)。
特点:
(1)二次项系数是1。
(2)常数项是两个数的乘积。
(3)一次项系数是常数项的两因数的和。
基本步骤:
(1)把二次项系数和常数项分别分解因数。
(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数。
(3)确定合适的十字图并写出因式分解的结果。
(4)检验。
2、双十字相乘法
一般步骤:
(1)用十字相乘法分解二次项(ax2 + bxy+ cy2),得到一个十字相乘图(有两列)。
(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原
式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx。
(3)先以一个字母的一次系数分数常数项。
(4)再按另一个字母的一次系数进行检验。
(5)横向相加,纵向相乘。
3、提公因式法
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积
的形式,这种分解因式的方法叫做提公因式法。
各项都含有的公共的因式叫做这个多项式各项的公因式。公因式可以是单项式,也可以是多项式。
具体方法:在确定公因式前,应从系数和因式两个方面考虑。当各项系数都是整数时,公因式
的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低
的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项为负,
要提出负号,使括号内的第一项的系数成为正数。提出负号时,多项式的各项都要变号。
基本步骤:
(1)找出公因式。
(2)提公因式并确定另一个因式。
①找公因式可按照确定公因式的方法先确定系数再确定字母。
②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商
即是提公因 式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一
个因式。
③提完公因式后,另一因式的项数与原多项式的项数相同。
口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。
4、因式定理法
根据因式定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解的方法
叫做因式定理法。
具体方法:根据因式定理(若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x一
a),找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根,对于任意多项式f(x),要求出它
的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,若既约分数
q/p是整系数多项式f(x)= AgX"+A|X 1 +...+ An-1X+A的根,则必有P是ao的约数,4是an的
约数。特别地,当ag=时,整系数多项式f(x)的整数根均为an的约娄数。
注意:
(1)对于系数全部是整数的多项式,若X=q/p(为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约娄。
(2)对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数。
(一)确定论文提要,再加进材料,形成全文的概要论文提要是内容提纲的雏型。一般书、教学参考书都有反映全书内容的提要,以便读者一翻提要就知道书的大概内容。我们写论文也需要先写出论文提要。在执笔前把论文的题目和大标题、小标题列出来,再把选用的材料插进去,就形成了论文内容的提要。(二)原稿纸页数的分配写好毕业论文的提要之后,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文,考虑序论用1页,本论用17页,结论用1—2页。本论部分再进行分配,如本论共有四项,可以第一项3—4页,第二项用4—5页,第三项3—4页,第四项6—7页。有这样的分配,便于资料的配备和安排,写作能更有计划。毕业论文的长短一般规定为5000—6000字,因为过短,问题很难讲透,而作为毕业论文也不宜过长,这是一般大专、本科学生的理论基础、实践经验所决定的。(三)编写提纲论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是经过深思熟虑构成的,写作时能顺利进行。没有这种准备,边想边写很难顺利地写下去。编写要点编写毕业论文提纲有两种方法:一、标题式写法。即用简要的文字写成标题,把这部分的内容概括出来。这种写法简明扼要,一目了然,但只有作者自己明白。毕业论文提纲一般不能采用这种方法编写。二、句子式写法。即以一个能表达完整意思的句子形式把该部分内容概括出来。这种写法具体而明确,别人看了也能明了,但费时费力。毕业论文的提纲编写要交与指导教师阅读,所以,要求采用这种编写方法。详细提纲举例详细提纲,是把论文的主要论点和展开部分较为详细地列出来。如果在写作之前准备了详细提纲,那么,执笔时就能更顺利。下面仍以《关于培育和完善建筑劳动力市场的思考》为例,介绍详细提纲的写法:上面所说的简单提纲和详细提纲都是论文的骨架和要点,选择哪一种,要根据作者的需要。如果考虑周到,调查详细,用简单提纲问题不是很大;但如果考虑粗疏,调查不周,则必须用详细提纲,否则,很难写出合格的毕业论文。总之,在动手撰写毕业论文之前拟好提纲,写起来就会方便得多。
毕业论文?不会把这年头初中都流行写论文了?
没听说过,还要写论文?我是高一的,我上初中的时候,怎么没写过,没这样事吧
数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,关于初中数学教学你有什么独到的看法呢?本文是我为大家整理的初中数学教学论文 范文 ,欢迎阅读! 初中数学教学论文范文篇一:初中数学智能教学研究 一、初中生智能 智能简单地说,就是智慧和能力。主要体现于大脑的功能,表现为大脑对外界信息加工处理的本领,它包括感知能力、记忆能力、想象能力和思维判断的能力,感知能力和记忆能力是智慧的基础,想象能力和思维判断的能力是智慧的核心。反映在数学上,就是区分形状不同的几何图形,不同变量变化的规律,从具体的形象思维——抽象概括思维—— 逻辑思维 ,对前人 总结 的定理、公示、法则的在现,洞察二维、三维空间物体相互位置关系,以及以记忆为基础的各种思维判断能力。中学生经过六年小学阶段 教育 ,已具备一定的“数学与逻辑推理能力”,从生理学角度来看,其大脑的四个功能区,即感受区、判断区、想象区已基本成熟,接近成年人这一阶段,人的认识呈“飞跃”式发展。初中生从十一、二岁进入学校,到十四、五岁初中 毕业 ,这一段时间有人把它称为人生中“黄金时段”我们就要抓住人生中的“黄金时段”,适时开发中学生智能,培养学生的创新精神,才能获得智能资源的大丰收。 二、发展智能是初中数学教学的重要任务 数学作为一门研究现实世界空间形成和数量关系的科学,是学习和研究现代科学技术必不可少的基础知识和基本工具。作为教师不能奢望每个学生都能成为一代娇子,但也完全可能让每个学生在他现有智能基础上得到充分的发展。为提高整个一代人的智能水平做出最大努力,这一出发点也可列为中学教师应尽的责任之一。中学数学的教学任务不仅要传授知识,尤其重要的是开发智力和培养能力。所以在数学教学中,传授知识和发展智能是相互影响、相互制约、不可分割的有机统一体。那种把发展智能和传授知识相对立起来,或者严重脱节的倾向,把发展智能神秘化,甚至认为高不可攀的观点都是错误的。作为一名学生教师应该清楚自己不仅是知识的传授者,而且是智能的开发者,应该把主要力量放在开发学生的智能上,在人生的最重要的“黄金时段”发掘人的最宝贵的东西——智能。 三、初中生的智能开发 开发学生的智能,要遵循客观规律。使每个学生的创造力和创造精神得到发展,凡有利于这一工作的工作,都属于开发智能的范畴。作为中学数学教师,在开发学生智能方面应该认识并做到以下几点:从人性角度看,人既是主体性与客观性的统一,又是能动性和受动性的统一,也是独立性与依赖性的统一。学生在学习活动中表现为:我要学和要我学。我要学是基于学生对学习的一种内在需要,表现为学习兴趣。学生有了学习兴趣,学习活动对他来讲就不是一种负担,而是一种享受,一种愉快的体验,学生会越学越想学,越学越爱学,有兴趣的学习事半功倍。兴趣是学生学好知识的、内在的、直接的动力,不断激发学生的学习兴趣,使学生始终处于积极的思维状态,是发展学生智能的基础。有人说:“生趣才能爱学,爱学才能增加,增加才能长智。”可见,生趣是爱学、增加、长智的起点。在实际的教学工作中,每节课都必须精心设计,以激发学生的求知欲。例如在讲“函数”时授课前让学生先计算:2的4次方是多少?2/3的三分之二次方是多少?学生在解决了第一题后,所学知识不能解出第二题,于是就有了找到解法的欲望。这时教师就顺势导出将要学习的新知识——函数。从而达到了激发学生学习兴趣的目的。 初中数学教学论文范文篇二:初中数学教学中数学思维培养 一、数学思维的特点 任何一门学科都具有其自身的特点,数学作为一门基础学科,更是具备了严谨性和抽象性的显著特点,只有牢牢把握数学的特点,在严谨性和抽象性特点的指导下开展教学工作,才能更好的培养学生严谨的数学 思维方式 。 1.数学思维具有严谨性 数学是一门对逻辑性思维要求十分严格的学科,它要求教学人员对概念和定义有精准的把握和透彻的理解,对于问题的结论,也应做到反复论证,以便在教学中能够完整的表达数学名词的实质意义。在实际教学过程中,不同学生对知识的理解能力也各不相同,因此在传授知识的过程中不能够向数学科学一样做到绝对精准,这就要求老师因材施教,差别化的对待不同学生,进行数学思维的培养,进而逐步走向严谨。 2.数学思维具有抽象性 所谓抽象性,就是指用数学来表示客观存在的事物的本质特征和物与物之间的关联性。所有的数学定义都是从客观事物中总结归纳而来的,并不断提升,不断探索新的规律和法则,最终形成的完整的数学体系。而在这个过程中,抽象性不断加深,概况性不断提升,人们对事物的认识程度也就不断加深。因此,与其他学科思维相比,数学学习所需的 抽象思维 更有层次性。 二、培养初中生良好思维方式的 方法 具备良好的思维方式是学好一门学科的关键,而思维的发展也需要一定的知识基础作铺垫。在初中教学中,也应掌握恰当的方式方法,综合运用不同技巧加强对学生数学思维的培养和引导。 1.不断拓展学生的思维 在教学过程中,老师的教授讲解固然重要,但也应适当给予学生独立思考的时间,并在习题练习的过程中对知识进行把握和充分理解。教师在对一些特殊概念和知识的讲解过程中应与学生深入探讨,而非停留在只教授不讨论、只讲概念不深入探究的阶段。要加强对学生自主学习能力的培养,带动学生学习的主动性,从而逐步拓宽学生的思维,增强学生数学学习的逻辑思维能力。另外,也要充分利用学生的错误,在学生错误解答题目或错误理解概念时,应当深入分析出错的原因,从根本上纠正错误的思维方式。 2.运用正确的引导方式和教学方式 教师在教学过程中,要有清晰的头脑和明确的思维逻辑方式,在讲解过程中应有步骤、有层次的进行讲解。例如,在初中数学中引入绝对值的概念,这就区别于低年级的数学教学,介绍负数的概念给学生,从而拓宽了学生对于数字的理解范围。对于|x|,x的值不是单一的+x,而是分成不同的情况。它的值可能是-x,也可能是+x,也可能是0。而教师在讲解绝对值概念时,也应结合数轴上的点来介绍绝对值的大小,即到原点零的距离。另外,对于不同版本的课本和教材,也应有不同的 教学方法 和顺序,适时调整教学活动,不拘泥于课本,才能更好的培养学生的思维能力,提升学生数学学习的整体能力。 3.培养学生的学习兴趣 学习兴趣是促进学生进步和发展的最大动力,因此,老师在教学的同时要善于培养学生的学习兴趣,有利于学生更快速的理解知识,使学生能够积极主动的学习而非被动听课。同时,应关心稍稍落后的学生,适时的给予鼓励和并加以引导,促使他们积极思考,不断发掘新问题,提出疑惑,并和学生一同思考解答。例如,在讲解“如何求解一元二次方程的根”的问题时,应带领学生尝试不同方法进行求解。详细介绍因式分解法、图象求解法、配方法等多种方法,并对应习题进行练习讲解,而不是固定的只讲解一种方法,应让学生自主选择合适的方法。 4.运用现代教学方式和技术进行课堂教学 随着科技的不断进步与发展,计算机电子技术的进步,应将其综合运用到数学教学中,对于几何学的教学,可采用动态图的演示方式,更加具体的使学生感受到图形的变化以及变化过程中的规律,及时进行归纳总结。对于没有条件的地区,教师在教授过程中,应有过硬的绘图功底,通过绘制主要的图形变化过程帮助学生理解课堂知识,拓宽思维。 三、结束语 数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,因此应当引起教学工作者足够的重视。在适当时应摒弃传统落后的教学观念,结合新的思维方式进行教学,留给学生充分的独立思考空间,激发学生学习数学的兴趣,使学生在学习过程中做到举一反三,让学生在自主学习的过程中发现数学的乐趣,并养成良好的思维方式,从而为今后的数学学习以及其他学科的学习打下扎实的基础。 初中数学教学论文范文篇三:初中数学教学课堂小结研究 一、进行课堂小结的方式 1.梳理课堂知识.一种常见的课堂小结方式,就是把整堂课的知识用简短的话从头到尾梳理一遍,这种梳理不是通篇的叙述,而是有重点的、分层次的总结.例如,在讲“点和圆,直线和圆的位置关系”时,课堂小结就主要是把点与圆的三种位置关系、直线与圆的三种位置关系,结合黑板上的图例再次梳理一遍.这种总结方式,可以让学生全面地复习一遍所讲内容,对新知识有整体了解,同时可以让学生形成对知识的网络式记忆,把知识延伸到整个学习系统中. 2.概括课堂知识.教师还可以对课堂内容进行几句话的概括总结,这种概括要涉及新课内容的关键点,通常用于新课内容有多个重要知识的情况下. 3.联系以前知识.有些新课的内容是在以前所学知识的基础上进一步扩展而来,或者是新课与所学知识有着一定的相似度.在课堂小结的时候,教师可以将两者进行联系,进行对照解读.这样的课堂小结,可以让学生具体形象地理解所学内容.当然,当遇到新课与旧知识有着明显反差的时候,教师也可以拿来对比解读,以避免学生对新知识和旧知识产生混淆.这样一来,学生心中的知识脉络就会更加清晰. 4.和学生共同回想课堂知识.数学教师在讲课时往往是单方面讲授课堂内容给学生,而很少有和学生进行互动的,这都是因为学科的特性和课堂时间的紧迫,而缺乏互动可能导致学生和课堂的融入度不够,容易造成开小差的现象.教师在进行课堂总结时可以有意地和学生进行互动,共同复习整堂课的知识.可以是对学生进行课堂关键内容的提问,也可以是向学生询问他们所认为的难点内容来再一次讲解以答疑和强化记忆.这样,不仅活跃了课堂气氛,拉近了教师与学生的距离,让学生更亲近课堂,让教师更了解学生的学习现状,同时让学生对难点内容有了进一步的学习和消化. 二、进行课堂小结的注意点 课堂小结不是教师一味地总结讲课知识,这里的本体应该是学生自己,是学生来回味和消化课堂所学内容,不懂的地方提出疑问,教师起到串联和辅导作用.教师可以从学生的角度考虑如何总结,才能提高复习效果. 1.课堂小结的概括性.课堂小结要简单明了,用几句概括性的话语进行总结,不宜多次重复复杂内容,这样不仅起不到总结的效果,还会让学生更加混淆,对所学知识产生过多疑问.另外,课堂小结应该用最直接的语言讲述出课堂内容,不应该加以多少修饰,以避免所述内容的冗长,导致上课时间的不够. 2.课堂小结要有重点.有的人说,一堂课里有一半的时间讲重点内容就很难得,而学生只要把这些重点听明白,他们这堂课的收益就很大.课堂小结相对于课堂上的详细讲解而言,是为大部分学生整理的要点总结,不需要对整堂课的内容都重述一遍,而要对讲课内容的要点进行有针对性的重点回顾,这样可以帮助学生理清课堂的重点内容,进行重点练习和记忆. 3.课堂小结要能引导课外学习.课堂小结是一堂课的结尾总结,也是学生课外学习的一个开始.课堂小结要注重引导学生对所学知识进行深入探究.例如,在讲解例题后,可以让学生寻找课外相似的题目进行训练,充分利用学生的课外时间进行学习拓展.同时,能使课堂与课外连接起来,促进学生的课外学习.总之,课堂小结是初中数学教学中必不可少的环节之一.做好课堂的总结是每个教师的分内之事,它不是一个可有可无的环节.做好课堂小结,不仅能让学生的学习更加轻松有效率,而且能够帮助教师进行授课总结,从而提高教学效果.
这里搜集了一些小学数学教学论文题目,仅供参考。1、课堂有效提问的初步探究2、小学数学数与计算教学的回顾与思考3、小学数学教材结构的研究与探讨4、小学数学应用题的研究5、改进教学方法培养创新技能6、使学生真正成为学习的主人7、改革课堂教学的着力点8、谈素质教育在小学数学教学中的实施9、素质教育与小学数学教育改革10、浅谈学生数学思维能力的培养11、实施创新教学策略,培养学生创新意识12、10以内加法整理和复习13、改良“有余数除法计算”教法14、给学生创新的时间和空间15、谈谈计算教学的改革16、面向21世纪的数学素质及其培养17、能被3整除的数的特征18、年、月、日19、培养自学能力,推进素质教育20、浅谈小学数学总复习的“步步反馈,逐层提高”法21、入情才能入理 激情方能启思22、实施“生活数学”教育,培养自主创新能力23、数学作业批改中巧用评语24、提高认知水平,培养自学能力25、圆的面积”的教案26、圆柱的认识27、运用多媒体辅助教学,优化数学教学方法28、组织课堂讨论 优化课堂教学29、重视学生获取知识的思维过程30、小论文巧算圆的面积31、联系生活实际提高课堂效率32、数学教学中如何调动学生的学习积极性33、根据心理学的理论进行计算法则教学34、简单应用题教学再探35、创设情境,培养学生创造个性36、学生“四会”能力的培养37、营造探究氛围一例38、实施创新教育 培养创新人格39、《9和几的进位加法》教学设计40、信息技术与小学数学41、合理运用学具 提高数学课堂教学效率42、略谈“问题解决”与小学数学教学43、渗透数学思想方法 提高学生思维素质44、引导学生参与教学过程 发挥学生的主体作用45、培养学生的创新意识要处理好的几个关系46、浅谈“数形结合”在小学低段数学教学中的应用47、借助学具,提高数学课堂效率48、对数学新课程理念下练习课教学的几点思考48、多通道促进数学课堂公平50、上“活”概念课,灵动新课堂51、对学生数学作业订正现状调查分析及对策52、对小学数学动态生成式课堂结构的认识53、对新课程中估算教学的几点想法54、谈小学应用题教学如何为学生自主探索创造条件55、小学数学课堂中的口头评价56、让新理念成为把握教材的支撑点57、立足现实起点,提高课堂效率58、谈课堂教学中有效情境的创设59、提高数学课堂教学效率之我见60、为学生营造一片探究学习的天地
没听说过,还要写论文?我是高一的,我上初中的时候,怎么没写过,没这样事吧
在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考
毕业论文?不会把这年头初中都流行写论文了?
1/2x^2-2xy+2y^2=(1/√ 2* x-√ 2* y)^2=[√ 2* (x-2y)]^2=(x-2y)^2/2=.由等式可以求出y=4/714y(x-3y)^2-4(3y-x)^3=14y(x-3y)^2+4(x-3y)^3=14y+4=12
上课认真听。多做练习,多反思。熟能生巧。
定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也作分解因式。 意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。 分解因式与整式乘法互为逆变形。[编辑本段]因式分解的方法 因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。 注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正[编辑本段]基本方法 ⑴提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。
定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也作分解因式。 意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。 分解因式与整式乘法互为逆变形。[编辑本段]因式分解的方法 因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。 注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正[编辑本段]基本方法 ⑴提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。 例如:-am+bm+cm=-m(a-b-c); a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。 注意:把2a*2+1/2变成2(a*2+1/4)不叫提公因式 ⑵公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式:a*2-b*2=(a+b)(a-b); 完全平方公式:a*2±2ab+b*2=(a±b)*2; 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 立方和公式:a*3+b*3=(a+b)(a*2-ab+b*2); 立方差公式:a*3-b*3=(a-b)(a*2+ab+b*2); 完全立方公式:a*3±3a*2b+3ab*2±b*3=(a±b)*3. 公式:a^3+b^3+c^3+3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) 例如:a*2 +4ab+4b*2 =(a+2b)*2。 (3)分解因式技巧 1.分解因式与整式乘法是互为逆变形。 2.分解因式技巧掌握: ①等式左边必须是多项式; ②分解因式的结果必须是以乘积的形式表示; ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止。 注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。 3.提公因式法基本步骤: (1)找出公因式; (2)提公因式并确定另一个因式: ①第一步找公因式可按照确定公因式的方法先确定系数在确定字母; ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式; ③提完公因式后,另一因式的项数与原多项式的项数相同。[编辑本段]竞赛用到的方法 ⑶分组分解法 分组分解是解方程的一种简洁的方法,我们来学习这个知识。 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。 同样,这道题也可以这样做。 ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 几道例题: 1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。 2. x^3-x^2+x-1 解法:=(x^3-x^2)+(x-1) =x^2(x-1)+ (x-1) =(x-1)(x2+1) 利用二二分法,提公因式法提出x2,然后相合轻松解决。 3. x2-x-y2-y 解法:=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1) 利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。⑷十字相乘法 这种方法有两种情况。 ①x²+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x²+(p+q)x+pq=(x+p)(x+q) . ②kx²+mx+n型的式子的因式分解 如果有k=ac,n=bd,且有ad+bc=m时,那么kx²+mx+n=(ax+b)(cx+d). 图示如下: × c d 例如:因为 1 -3 × 7 2 -3×7=-21,1×2=2,且2-21=-19, 所以7x²-19x-6=(7x+2)(x-3). 十字相乘法口诀:首尾分解,交叉相乘,求和凑中 ⑸拆项、添项法 这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。 例如:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b).⑹配方法 对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。 例如:x²+3x-40 =x²+3x+ =(x+)²-()² =(x+8)(x-5). ⑺应用因式定理 对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a. 例如:f(x)=x²+5x+6,f(-2)=0,则可确定x+2是x²+5x+6的一个因式。(事实上,x²+5x+6=(x+2)(x+3).) 注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数; 2、对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数 ⑻换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。 注意:换元后勿忘还元. 例如在分解(x²+x+1)(x²+x+2)-12时,可以令y=x²+x,则 原式=(y+1)(y+2)-12 =y²+3y+2-12=y²+3y-10 =(y+5)(y-2) =(x²+x+5)(x²+x-2) =(x²+x+5)(x+2)(x-1). 也可以参看右图。⑼求根法 令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) . 例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x^2-13x+6=0, 则通过综合除法可知,该方程的根为 ,-3,-2,1. 所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).⑽图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn). 与方法⑼相比,能避开解方程的繁琐,但是不够准确。 例如在分解x^3 +2x^2-5x-6时,可以令y=x^3; +2x^2 -5x-6. 作出其图像,与x轴交点为-3,-1,2 则x^3+2x^2-5x-6=(x+1)(x+3)(x-2).⑾主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。⑿特殊值法 将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例如在分解x^3+9x^2+23x+15时,令x=2,则 x^3 +9x^2+23x+15=8+36+46+15=105, 将105分解成3个质因数的积,即105=3×5×7 . 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值, 则x^3+9x^2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。⒀待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例如在分解x^4-x^36-5x^2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。 于是设x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d) =x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd 由此可得a+c=-1, ac+b+d=-5, ad+bc=-6, bd=-4. 解得a=1,b=1,c=-2,d=-4. 则x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4). 也可以参看右图。⒁双十字相乘法 双十字相乘法属于因式分解的一类,类似于十字相乘法。 双十字相乘法就是二元二次六项式,启始的式子如下: ax^2+bxy+cy^2+dx+ey+f x、y为未知数,其余都是常数 用一道例题来说明如何使用。 例:分解因式:x^2+5xy+6y^2+8x+18y+12. 分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。 解:图如下,把所有的数字交叉相连即可 x 2y 2 ① ② ③ x 3y 6 ∴原式=(x+2y+2)(x+3y+6). 双十字相乘法其步骤为: ①先用十字相乘法分解2次项,如十字相乘图①中x^2+5xy+6y^2=(x+2y)(x+3y); ②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y²+18y+12=(2y+2)(3y+6); ③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。[编辑本段]多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止。 也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。” 几道例题 1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2. 解:原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y). 2.求证:对于任何实数x,y,下式的值都不会为33: x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5. 解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y). (分解因式的过程也可以参看右图。) 当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。 3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形。 分析:此题实质上是对关系式的等号左边的多项式进行因式分解。 证明:∵-c^2+a^2+2ab-2bc=0, ∴(a+c)(a-c)+2b(a-c)=0. ∴(a-c)(a+2b+c)=0. ∵a、b、c是△ABC的三条边, ∴a+2b+c>0. ∴a-c=0, 即a=c,△ABC为等腰三角形。 4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。 解:-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1) =-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).[编辑本段]因式分解四个注意: 因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。 现举下例 可供参考 例1 把-a2-b2+2ab+4分解因式。 解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2) 这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误 例2把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1) 这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。 分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。 考试时应注意: 在没有说明化到实数时,一般只化到有理数就够了 由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的。[编辑本段]因式分解的应用 1、 应用于多项式除法。 2、 应用于高次方程的求根 3、 应用于分式的运算