环氧树脂性能稳定,能够使其产生老化的原意应该是紫外线!
环氧树脂市场分析 环氧树脂是指分子中含有两个或两个以上环氧基团的有机高分子化合物,其分子结构是以分子链中含有活泼的环氧基团为特征。这使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物,并由此特性成为先进复合材料中应用最广泛的树脂体系,可适用于多种成型工艺配制成不同配方,可调节粘度范围大;以适应于不同的生产工艺。近年来橡胶弹性体增韧、树脂合金化改性以及环氧树脂增韧改性新技术等增韧技术的日益成熟,环氧树脂得到了更好更广泛的应用。目前环氧树脂统治着高性能复合材料的市场,因此对环氧树脂市场的研究有着广泛的意义。根据最新统计,我国2005年全年环氧树脂产量为44万吨、进口量为25万吨、出口量为6万吨、消费总量为63万吨,产量继续保持较大增长,进口量在总消费量中的比较进一步下降,消费量已趋于稳定合理。纵观近年来国际环氧树脂市场,1993年,世界环氧树脂生产能力为130万吨,1996年递增到万吨,1999年为万吨,2002年为186万吨,2005年为201万吨,预计2010年可达到250万吨左右。尤其是欧美、日本环氧树脂公司兼并及投资建设较为活跃。国际大鳄经过一系列重组整合,全球环氧树脂行业三甲已轮流坐庄,由20世纪末的Shell、DOW、Ciba-Geigy,变成Hexion、DOW、南亚。市场新三强生产能力分别达到38、36、30万吨/年!并且Hexion、DOW、南亚三甲目前在中国都设有生产基地,中国在数量上已成为全球环氧树脂最大生产国和重要消费国,但从消费结构以及企业个体角度来看,作为经济组织国内企业还有待做大做强。一、产业历史我国环氧树脂产业起步于1958年,但是计划经济的束缚、加上文革的影响,使我国的发展步子明显慢于国外。上世纪80年代情况有所好转,年增长率达到了7%左右,但从总量上看每年计划安排的环氧树脂用量始终在万吨以下。90年代初,我国经济发展逐渐与国际市场、国际经济接轨,环氧树脂行业出现了众多外资企业、中外合资企业,加上大量乡镇企业、私营企业的进入,我国环氧树脂生产企业如雨后春笋,一下子由原来的几十家扩大到近200家,出现了多种经济成份相互竞争、共同发展的局面。但当时的单套装置规模均在5000吨/年以下,与国外相比差距甚远,工艺技术上同样具有很大距离。经过上世纪90年代的大力发展,我国环氧树脂行业进入了又一个发展期。1998年环氧树脂消费量达到12万吨。技术引进在此过程中发挥了重要作用,使我国环氧树脂生产从技术水平到生产规模都有了一个很大的提高,他们生产的环氧树脂已经能够与进口货抗衡。在这一发展期间,我国环氧树脂行业出现了聚集发展的格局,龙头企业充分发挥了对整个行业的牵幅射作用,形成了我国环氧树脂的核心产业带;安徽黄山地区异军突起,他们独辟蹊径发展粉末涂料专用的固体树脂,凭借专业化的优势,构成了环氧树脂和环氧树脂粉末涂料联合生产基地;华南地区成为我国环氧树脂应用的一个高地,该地区凭借毗邻港的地域优势在大力发展电子工业的同时,带动了环氧树脂在电子领域的应用,是电子领域成为我国环氧树脂主要消费方向之一的重要推动力量。进入21世纪,电子电气、交通运输、石油化工、建筑工程等与环氧树脂相关的行业发展尤其迅猛,经济建设对环氧树脂的需求量急剧增加。在这一“发展”的大背景,我国环氧树脂迎来了黄金发展阶段。生产和消费的平均增长达到30%左右,远远高于同期全球3%的增长水平,成为全球环氧树脂增长的主要拉动力量。主要的发展特点表现为以下几个方面。二、产业特点一是外资带动。美国以及台资等纷纷在大陆建厂生产,这些外资工厂具有相当生产规模,几乎占了目前中国大陆环氧树脂生产能力的一半。同时采用的工艺技术都是国际最先进的,使我国环氧树脂产业不仅生产能力大幅提升,而且技术素质有了飞跃,特别是从国外到国内的技术“领先”刺激,促使国内原有的环氧树脂企业奋发创新,从而实现了良好的整体带动战略。二是行业内部通过结构调整,产业链与区域经济整体发展、同步提升,企业素质有了质的提高。规模化成为当前内资环氧树脂企业的最大特点,目前企业数量已从高峰时的200多家调整到100家左右,企业生产规模则有了极大提高,技术水平同样快速提高,而且其发展不再是孤立的而是具有带动或呼应整个产业链同步提升的能力,产生的聚集效应值得充分肯定,已经把我国环氧树脂产业水平推进到了一个新的高度。三是技术创新能力大为提高,技术水平进入世界较先进行列。当今环氧树脂产业领域的竞争,除了人才、管理、资本等因素外更重要的是技术的比较,目前中国环氧树脂业随着资本结构的多元化,同时也成为中外各种先进工艺技术的比拼舞台,在这一决定竞争成败的竞技场上,中国本土的企业在依靠自有知识产权的同时不断推进技术进步,在竞争中逐步发展壮大。四是整个行业呈现分工较为明确的格局。生产能力在2万吨/年左右的大型企业,无论内资、外资均以大宗的基础树脂为主,在这些领域没有规模就没有优势,小企业难以有所作为;内资企业的一些传统大厂也是新产品研发的中心,不断培育新的品种,不断形成新的大宗品种;而在粉末涂料重镇黄山,单一优势明显,产品大量出口;特种、专用产品和技术全面开花,一些小型企业“内精外王”,为业界瞩目。五是环氧树脂应用领域迅速打开。应用的力度和深度是产品生产规模的基础,材料制造行业为应用行业提供先进的材料、满足其生产出更好产品的要求,而应用行业又反过来要求材料制造行业提供更加先进的材料、促进其不断发展。其中许多以前依赖进口的产品,实现了国内部分或全部替代。六是信息化建设进展神速、与行业的现代化发展相辅相成。信息化促进产业化、产业化带动现代化已成该行业的真实写照,该行业先进企业大都有着信息化手段的有力支撑。通过ERP系统等全面的信息化建设,在流程上实现效率、在应用中实现了降耗的目标。三、应用分析目前我国环氧树脂应用主要领域有:电子信息,其中彩电、音响、电话机产量跃居世界第一,目前正在聚焦信息家电、移动计算、数字电视、无线局域网、汽车电子等领域的新兴市场,环氧树脂在其中的应用主要形式是敷铜板、塑封料、浇注料、包封料、贴片胶、模具胶等;交通设备,交通运输设备制造业中大量使用环氧电泳涂料、重防腐涂料、模具胶、工具胶等各类粘接剂、复合材料等;能源工业,环氧树脂在该行业中的应用主要是作为绝缘材料,应用形式主要有层压板、浇注料、塑封料、绝缘漆、粘接剂;汽车制造,高速发展的汽车产业将大力促使环氧树脂生产,目前每辆汽车平均需耗环氧树脂5公斤,随着我国汽车产业的腾飞,内需拉动下环氧树脂在该领域大有可为;建筑、水利行业,环氧树脂在该领域中的使用形式主要包括地坪、防腐涂料、其它建筑涂料、复合材料混凝土、环氧沥青、建筑补强和堵漏材料、大坝防腐材料等;石油石化,环氧树脂在石油石化的应用以防腐为核心,应用形式主要有海上石油平台、油罐、输油管道防腐材料。环氧树脂消费与经济发展存在着高度正相关联系,经济越发达、生活水平越高则环氧树脂消费量越高,目前发达国家人均消费环氧树脂水平达到1公斤/年左右。而我国人均消费环氧树脂2000年仅公斤,而2005年已达到公斤,增长了2倍,由于我国人口基数的庞大因此在今后几年的产业震荡中行业规模的扩张还是非常可观的。我国环氧树脂需求量的急速增加,引起国际业界高度关注。环氧树脂跨国公司几乎全部前来或正在前来我国投资兴建大型生产厂,国内企业也纷纷新建扩建环氧树脂装置。据公开披露的信息,目前拟新增环氧树脂生产能力达到55万吨/吨左右,加上现有生产能力40万吨/吨,预计2010年前后我国环氧树脂生产能力将达到130万吨/吨,接近全球的一半,成为世界环氧树脂大国。我国环氧树脂事业目前正进入一个新的关键发展期。四、市场建议但我国环氧树脂产业如何实现大国梦,并进而成为强国,还有很多课题要解决。首先要走专和特的道路。我国环氧树脂市场大,国产环氧树脂市场占有率一直持续上升并逐渐占据优势,同时开始走向国际市场,成绩可喜;但是进一步扩大优势就要从环氧树脂市场面大量广、用户产品更新换代快、工艺技术进步迅速这个特点出发,根据应用行业发展特点大力发展特种或专用环氧树脂,学习黄山的产业结构,中小企业力争单一优势,以专以特作市场。其次积极瞄准国外高档产品进行攻关,早日实现替代。我国短缺的、需要依赖进口的环氧树脂产品,价格都相当高甚至高得离谱,这些产品开发难度大、成本高,有些目前需求不大,但决不能因此放弃发展,有条件的厂应积极组织开发。一来可以为下游行业压缩过高成本,二来可以为自身赢得未来的市场。再次,要开发绿色产品,实现清洁生产。环氧树脂废水的治理是环氧树脂行业的一大难题,这主要是由于环氧废水中含有大量老化树脂和较高浓度的碱盐,采用传统的废水治理方法难以奏效。尤其电气、电子、建材方面对环保产品的要求呼声很高,目前大量使用非环保的溴化环氧树脂的覆铜板、阻燃电器浇注料已受到一定的限制,发展非卤化阻燃环氧树脂要立即行动。环保水溶性环氧树脂、无溶剂型环氧树脂、高固体份环氧树脂目前产量还很低、品种也不多,要大力推动发展。最后,必须加快发展原料、辅料的配套发展。目前我国双酚A、环氧氯丙烷、固化剂的生产远远跟不上环氧光固化涂料用环氧树脂的研究。五、上游行业分析环氧树脂生产中固化剂及环氧氯丙烷是最重要的生产要素。我国环氧树脂固化剂业的问题主要表现在以下几方面:一是产需矛盾突出,高档及许多专用固化剂需进口;二是品种少、系列化程度低,难以适应千变万化的环氧树脂配方之需;三是环氧树脂与固化剂配套发展水平极低,缺乏产业链的配套优势;四是固化剂发展缺乏统筹规划;五是研发状况不尽人意。我国环氧氯丙烷的发展,始终与环氧树脂的发展密切地联系在一起,至今为止我国环氧氯丙烷的主要用途还是用于生产环氧树脂。目前国内环氧氯丙烷消费结构为:环氧树脂行业占85%,合成甘油占7%,氯醇橡胶占2%,其他占6%。环氧氯丙烷在精细化工中的应用已开始起步,虽然使用量不能同环氧树脂同日而语,但其发展前景广阔,值得肯定。目前国内环氧氯丙烷生产企业在原材料及公用工程消耗、产品质量、生产成本等方面与国外先进水平比有较大差距。唯有大力改进生产技术,努力降低成本,提高产品质量,才能在提升行业国际竞争力的基础上更好的为国内的环氧树脂行业提供助力。按照环氧树脂消费与国民经济发展的关系曲线,以及与涂料、胶粘剂、复合材料等应用材料,电子、电工、建筑、汽车等应用领域的关联度,从多个方面进行测算,到2010年我国环氧树脂生产能力将达到130万吨,占全球总产能的一半,环氧树脂总消费量为150万吨左右,继去年成为全球最大生产国后,将于“十一五”中期成为全球最大消费国。六、市场预期2006年初,相对于原料行情的尴尬境地,环氧树脂市场达到了近10年来的高价位。但无论是双酚A价格疲软还是环氧氯丙烷供不应求,对于下游环氧树脂厂家来说均有一定影响,目前这种上下游之间的脱节必然是暂时现象,经过一段时间的调整后,在需求拉动下,环氧树脂及原料行业一定会回归共同繁荣的局面。中国环氧树脂产业“十一五”规划于日前正式开始编制,规划将特别贯彻环境友好、资源节约、自主创新原则。结合产业环境以及各行业需求,我们可以得出以下数据:1、预计2010年我国汽车产能将达到1200万辆,以目前辆汽车平均需耗环氧树脂5公斤计算,2010年我国汽车工业涂料消费环氧树脂约为6万吨,加上保有汽车的修补漆所需环氧树脂的量预计在9万吨左右。2、船舶工业、海洋工业所需环氧树脂涂料前景诱人。21世纪是“海洋的世纪”,是海洋开发的新时代。从现在到2010年,将是世界造船业大发展的时期,世界各类船只的需求量将增加50%。我国已脐身世界航运和造船业大国之列,码头设施、海上建筑、钻井平台、输油管道、海水养殖设施等行业也需要大量的环氧涂料(防腐、防海洋生物污染)。今后5年对环氧锌粉车间底漆、环氧铁红车间底漆、环氧沥清防锈漆、油舱压载水舱环氧涂料、环氧树脂软水舱漆、海洋工程及海上建筑用环氧防腐涂料的需求量很大,专家预测,2010年我国船舶工业、海洋工业需15万吨环氧树脂左右。3、集装箱工业:我国集装箱工业发展迅猛,已成为世界第一大集装箱生产国。预计2010年,集装箱用涂料需7万吨左右,要消耗环氧树脂5万吨左右。4、食品罐工业:随着生活水平的提高,食品罐头、食品贮存容器制造业持续高速发展,罐头涂料需要越来越多的环氧树脂。印度艾迪泰雅·比尔拉化学(泰国)有限公司总裁,最近在北京第3届酚酮及衍生物大会上称,今后3年中国将是亚洲环氧树脂市场中惟一保持赤字的国家。并进而表示2008年中国大陆环氧树脂生产能力42万吨/年、需求万吨/年,短缺万吨/年。中国环氧树脂行业协会()专家针对这一消息评论说,的论断指明了明环氧树脂全球过剩、中国短缺的趋势,这是正确的;但其所援引的数据是几年前的,按惯例几年间数据一般不会有大变化,但事实恰恰相反。变化如此巨大造成分析失误,可见我国环氧树脂业发展之快。 在2月24日于北京举行的第3届酚/酮及衍生物大会上,Agarwal称今后3年中国大陆环氧树脂需求增长率估计为,这明显高于日本、中国台湾地区和韩国,后3者的需求增长率估计分别为、和。至2008年中国将能生产近万吨/年环氧树脂,而其需求将为万吨/年,这导致短缺万吨/年。事实上近5年来中国大陆环氧树脂产需增长平均速度在20%以上,2005年中国大陆环氧树脂生产量32万吨、消费量62万吨。中国环氧树脂行业协会()专家说,这远“超过”先生2008年的预计数。 先生还表示,2008年中国台湾地区的环氧树脂产能将达到万吨/年,而其需求仅为万吨/年,导致过剩万吨/年。中国大陆的高增长率难以缓解亚洲过剩的供应,2005年亚洲环氧树脂总需求为万吨/年,而总产量为120万吨/年,导致过剩万吨/年。这种供需形势预计将不会得到改善,因为2008年亚洲环氧树脂总产量估计为万吨,而总需求为万吨,过剩45万吨。这些数字也大相径庭,实际上亚洲2005年环氧树脂需求为:中国大陆62万吨左右、台湾地区20万吨左右、日本18万吨左右,加上其它国家和地区根据不是万吨的概念。据中国环氧树脂行业协会()专家不完全统计,目前全球环氧树脂生产能力至少已达到万吨/年,中国占总能力的、其中大陆占总能力的。中国大陆环氧树脂生产能力从1999年5万吨/年、占世界总量的,发展到2005年32万吨/年、占世界总量的是个为全球了不起的成绩。中国已经成为全球环氧树脂主要生产国、重要消费国。 进入2006年,中国大陆环氧树脂生产能力已达到45万吨/年,同时在建生产能力达10万吨/年左右。从全球范围看环氧树脂产能已经过剩,但在中国大陆尚处于短缺,但短缺的是特种产品而非常规产品。中国环氧树脂行业协会()专家强调指出,业界投资时必须充分考虑这一现状,切忌低水平重复建设、一哄而上。为此要坚持以下原则:一是要改变以6101为主的产品思路,双酚A型环氧体系产品是世界环氧行业的主流,但应以618环氧树脂为基础树脂,长期以来我国环氧树脂的生产都是以6101或E-44为主要产品,而基础树脂618或E-51生产量极少,这是我国过去采用手糊法生产玻璃钢而造成的事实,现在形势已经发生变化故为此不能抱住6101这个产品不放,而应该扩大思路生产无溶剂、低粘度、或改性的新产品;二是发展目前紧缺的环氧树脂产品,目前我国环氧树脂年用量已达30万吨左右,但其中二分之一仍然依靠进口,国产环氧树脂以双酚A型为主,而且固化剂、活性稀释剂、助剂等配套不齐不成系统,150多家生产环氧树脂厂大多在双酚A型环氧树脂方面抡跑道,而一些前景好的跑道都让给外商,例如耐热系列、阻燃系列、水溶系列、高纯度系列的产品国内生产厂家很少,其实酚醛环氧、邻甲酚甲醛环氧、双酚F环氧、脂环族环氧、含磷环氧及光固化环氧、水性环氧都是目前看好的产品;三是开发有利环保的新产品,各行各业现在都十分注重环境保护,市面上出现了不少“绿色”产品,为此对使用的原料也提出了这方面的要求,如覆铜板、阻燃电器浇注料大量使用溴化环氧树脂,而溴化物因破坏大气层臭氧结构目前已受到一定的限制,生产非卤化阻燃环氧树脂必须尽早计议;四是走合作联合之路,开拓环氧系统产品,我国环氧树脂生产和科研起步不晚但发展速度慢了点,。在我国也有一些很有实力的环氧树脂生产和研究单位以及大专院校,曾经开发出许多当时比较先进的生产工艺和产品,但不知什么原因没有推广开来,现在很多单位已经采用鼓励科研开发新机制,相信发展新技术、新产品的速度会比以前快。 改革开放以来的事实证明了我国环氧树脂企业界有信心、有能力来发展好我国环氧树脂事业。当中国市场刚开放时国外环氧树脂大量涌进中国市场,一度国产环氧树脂曾被压得透不过气,国外环氧树脂在国内市场的占有率曾高达65%左右。时至今日虽然进口的环氧树脂为30万吨左右,但国产环氧树脂产量也达到30万吨左右,国产环氧树脂与国外环氧树脂在国内市场的占有率上已平分秋色。而且在环氧树脂的出口方面,虽然总量很小,但蓝星新材料无锡树脂厂等企业已实现批量出口,去年以来该厂出口增长巨大,这也说明我国环氧树脂也是有能力进入国际市场。 最近,由于下游行业开工情况不理想,加上原料双酚A价格低迷,国内环氧树脂行情在外盘走高的背景下反而趋疲,10天左右时间降幅300~500元/吨。目前液体树脂主流价格华东地区23000~24000、华南地区24000-24500、华北地区23000~24000、东北地区23500~24500元/吨,固体树脂主流价格华东地区18800~19000、华南地区19000~19200元/吨。 环氧树脂2大原料双酚A和环氧氯丙烷,前期价格一弱一挺,环氧氯丙烷的居高不下使环氧树脂承受成本之痛,双酚A的持续低迷让环氧树脂售价欲提还休;随着环氧氯丙烷行情的下调,环氧树脂价格迅速挫低。据中国环氧树脂行业协会()市场分析人士介绍,目前主导产品液体环氧树脂618(E-51)价格23500~24000元/吨,6101(E-44)价格23000~23500元/吨,固体环氧树脂604(E-12)价格为18700~19000元/吨。环氧氯丙烷行情的调整从固体产品疲、液体产品平,转变为液体产品疲、固体产品平,上周5(3月10日)华东、华南、华北、东北各地全面下挫。 国内环氧树脂市场当前的另一个特点是外盘高、内贸疲。虽然也感受到了出货困难的压力,但环氧树脂进口市场依然坚挺,其中美国瀚森(Hexion,原壳牌)828价格27000~27500元/吨,台湾南亚128(E-51)价格24800~25000元/吨,陶氏331(E-51)价格在26500元/吨。中国环氧树脂行业协会()市场人士介绍说,陶氏化学计划3月中旬上调环氧树脂美金报价,前期美国瀚森外盘价格上涨了100美元/吨。 从原料供应角度看目前成本难以下降。其中环氧氯丙烷行情虽有下调但空间有限,可以说是上涨下跌均受限:近期国内环氧氯丙烷整体成交量未有明显起色,由于前期下游环氧树脂行情持续疲软、需求冷清而造成无形压力,一方面外盘价格高挺、市场货源一般、贸易商走货意向不强,另一方面国内厂家价格持稳、走货顺畅,从而导致市场价格进入僵持局面,目前下游环氧树脂略有起色是为利好,但上周末约有2000吨环氧氯丙烷进口货到港,鉴于此前环氧氯丙烷价格一直高位徘徊,因此其行情上涨动力不足,近期走势波动空间有限。而双酚A在贸易商推价努力下开始起色,主流市场华东地区价格提升至11800~11900元/吨,且成交情况有所好转,中国环氧树脂行业协会()市场人士分析认为,双酚A内外盘倒挂已维持较长时间,加上近期亚太地区酚酮和双酚A装置逐步进入检修,外盘下行可能性甚小,从而将对内贸市场形成回升支撑,同时由于下游环氧树脂市场疲态减缓,双酚A行情有所重返12000元/吨平台.品 种 成交价格(元∕吨) 升跌率(%) 评 析环氧树脂 E-51 24500 / 受生产原材料等影响,价格稍有上升环氧树脂 E-54 24800 / 同上环氧树脂 E-44 24000 / 同上环氧树脂 E-20 23500 / 同上环氧树脂 E-12 24000 / 同上酚醛环氧树脂 F-51 33000~35000 / 固 化 剂 1044 16000 / 无毒、性价比高固 化 剂 2544 22000 / 无毒、性价比高固 化 剂 T-31 14500~17500 / 因产品质量及原材料不同,真假T-31之间差异较大固 化 剂 650 20000 / 固 化 剂 651 23000 / 固 化 剂 H300 22000 / 固 化 剂 593 28000~34000 / 部分厂家用591冒充593低价进入市场固 化 剂 113 19000 / 因主要原材料DDM主要产地都在华东,所以华南价格较高固 化 剂 (地坪面涂用) 42000 / 固 化 剂 (水晶胶用) 43000 / 固 化 剂 (打磨胶用) 62000 / 甲基四氢苯酐 910 16500 / 促 进 剂 DMP30 22000 / 促 进 剂 二甲基苄胺 38000 / 稀 释 剂 660A 30000 / 稀 释 剂 661 16000 / 稀 释 剂 6630 30000 / 前期,因环氧氯丙烷价格持续走高,导致环氧树脂价位逐步提升、双酚A价位较为稳定、对环氧的价位起一定的高位打压,所以环氧树脂的升浮步子不是很大。 前期,由于受到南亚等大装备将要投产,冲击市场,对业内人士心理上造成阴影,较多厂商压缩库存观望,但形势突变现象并未出现。主要原因是环氧生产量扩容,超过了前道ECH的供应量,ECH的价格提升,限制了环氧树脂的成本,使其已经没有回降的空间,再加上国内环氧树脂的出口大增,国内用量也逐步进入旺季,所以预测三,四,五月份环氧树脂价格仍呈上升趋势.
环氧树脂的耐久性很好。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。 1、 形式多样。各种树脂、固化剂、改性剂体系几乎可以适应各种应用对形式提出的要求,其范围可以从极低的粘度到高熔点固体。2、 固化方便。选用各种不同的固化剂,环氧树脂体系几乎可以在0~180℃温度范围内固化。3、 粘附力强。环氧树脂分子链中固有的极性羟基和醚键的存在,使其对各种物质具有很高的粘附力。环氧树脂固化时的收缩性低,产生的内应力小,这也有助于提高粘附强度。4、 收缩性低。环氧树脂和所用的固化剂的反应是通过直接加成反应或树脂分子中环氧基的开环聚合反应来进行的,没有水或其它挥发性副产物放出。它们和不饱和聚酯树脂、酚醛树脂相比,在固化过程中显示出很低的收缩性(小于2%)。5、 力学性能。固化后的环氧树脂体系具有优良的力学性能。6、 电性能。固化后的环氧树脂体系是一种具有高介电性能、耐表面漏电、耐电弧的优良绝缘材料。7、 化学稳定性。通常,固化后的环氧树脂体系具有优良的耐碱性、耐酸性和耐溶剂性。像固化环氧体系的其它性能一样,化学稳定性也取决于所选用的树脂和固化剂。适当地选用环氧树脂和固化剂,可以使其具有特殊的化学稳定性能。上述的许多性能的综合,使环氧树脂体系具有突出的耐久性。
有两篇,你看着修改吧混凝土裂缝的预防与处理 混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程中常见的一些裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。 一、前言 混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于这些初始缺陷的存在才使混凝土呈现出一些非均质的特性。微裂缝通常是一种无害裂缝,对混凝土的承重、防渗及其他一些使用功能不产生危害。但是在混凝土受到荷载、温差等作用之后,微裂缝就会不断的扩展和连通,最终形成我们肉眼可见的宏观裂缝,也就是混凝土工程中常说的裂缝。 混凝土建筑和构件通常都是带缝工作的,由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命,严重者将会威胁到人们的生命和财产安全。很多工程的失事都是由于裂缝的不稳定发展所致。近代科学研究和大量的混凝土工程实践证明,在混凝土工程中裂缝问题是不可避免的,在一定的范围内也是可以接受的,只是要采取有效的措施将其危害程度控制在一定的范围之内。钢筋混凝土规范也明确规定[1]:有些结构在所处的不同条件下,允许存在一定宽度的裂缝。但在施工中应尽量采取有效措施控制裂缝产生,使结构尽可能不出现裂缝或尽量减少裂缝的数量和宽度,尤其要尽量避免有害裂缝的出现,从而确保工程质量。 混凝土裂缝产生的原因很多,有变形引起的裂缝:如温度变化、收缩、膨胀、不均匀沉陷等原因引起的裂缝;有外载作用引起的裂缝;有养护环境不当和化学作用引起的裂缝等等。在实际工程中要区别对待,根据实际情况解决问题。 二、 凝土工程中常见裂缝及预防 1.干缩裂缝及预防 干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右。水泥浆中水分的蒸发会产生干缩,且这种收缩是不可逆的。干缩裂缝的产生主要是由于混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。相对湿度越低,水泥浆体干缩越大,干缩裂缝越易产生。干缩裂缝多为表面性的平行线状或网状浅细裂缝,宽度多在之间,大体积混凝土中平面部位多见,较薄的梁板中多沿其短向分布。干缩裂缝通常会影响混凝土的抗渗性,引起钢筋的锈蚀影响混凝土的耐久性,在水压力的作用下会产生水力劈裂影响混凝土的承载力等等。混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、集料的性质和用量、外加剂的用量等有关。 主要预防措施:一是选用收缩量较小的水泥,一般采用中低热水泥和粉煤灰水泥,降低水泥的用量。二是混凝土的干缩受水灰比的影响较大,水灰比越大,干缩越大,因此在混凝土配合比设计中应尽量控制好水灰比的选用,同时掺加合适的减水剂。三是严格控制混凝土搅拌和施工中的配合比,混凝土的用水量绝对不能大于配合比设计所给定的用水量。四是加强混凝土的早期养护,并适当延长混凝土的养护时间。冬季施工时要适当延长混凝土保温覆盖时间,并涂刷养护剂养护。五是在混凝土结构中设置合适的收缩缝。 2.塑性收缩裂缝及预防 塑性收缩是指混凝土在凝结之前,表面因失水较快而产生的收缩。塑性收缩裂缝一般在干热或大风天气出现,裂缝多呈中间宽、两端细且长短不一,互不连贯状态。较短的裂缝一般长20~30cm,较长的裂缝可达2~3m,宽1~5mm。其产生的主要原因为:混凝土在终凝前几乎没有强度或强度很小,或者混凝土刚刚终凝而强度很小时,受高温或较大风力的影响,混凝土表面失水过快,造成毛细管中产生较大的负压而使混凝土体积急剧收缩,而此时混凝土的强度又无法抵抗其本身收缩,因此产生龟裂。影响混凝土塑性收缩开裂的主要因素有水灰比、混凝土的凝结时间、环境温度、风速、相对湿度等等。主要预防措施:一是选用干缩值较小早期强度较高的硅酸盐或普通硅酸盐水泥。二是严格控制水灰比,掺加高效减水剂来增加混凝土的坍落度和和易性,减少水泥及水的用量。三是浇筑混凝土之前,将基层和模板浇水均匀湿透。四是及时覆盖塑料薄膜或者潮湿的草垫、麻片等,保持混凝土终凝前表面湿润,或者在混凝土表面喷洒养护剂等进行养护。五是在高温和大风天气要设置遮阳和挡风设施,及时养护。 3.沉陷裂缝及预防 沉陷裂缝的产生是由于结构地基土质不匀、松软,或回填土不实或浸水而造成不均匀沉降所致;或者因为模板刚度不足,模板支撑间距过大或支撑底部松动等导致,特别是在冬季,模板支撑在冻土上,冻土化冻后产生不均匀沉降,致使混凝土结构产生裂缝。此类裂缝多为深进或贯穿性裂缝,其走向与沉陷情况有关,一般沿与地面垂直或呈30°~45°角方向发展,较大的沉陷裂缝,往往有一定的错位,裂缝宽度往往与沉降量成正比关系。裂缝宽度受温度变化的影响较小。地基变形稳定之后,沉陷裂缝也基本趋于稳定。 主要预防措施:一是对松软土、填土地基在上部结构施工前应进行必要的夯实和加固。二是保证模板有足够的强度和刚度,且支撑牢固,并使地基受力均匀。三是防止混凝土浇灌过程中地基被水浸泡。四是模板拆除的时间不能太早,且要注意拆模的先后次序。五是在冻土上搭设模板时要注意采取一定的预防措施。 4.温度裂缝及预防 温度裂缝多发生在大体积混凝土表面或温差变化较大地区的混凝土结构中。混凝土浇筑后,在硬化过程中,水泥水化产生大量的水化热,(当水泥用量在350~550 kg/m3,每立方米混凝土将释放出17500~27500kJ的热量,从而使混凝土内部温度升达70℃左右甚至更高)。由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升,而混凝土表面散热较快,这样就形成内外的较大温差,较大的温差造成内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力(实践证明当混凝土本身温差达到25℃~26℃时,混凝土内便会产生大致在10MPa左右的拉应力)。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生在混凝土施工中后期。在混凝土的施工中当温差变化较大,或者是混凝土受到寒潮的袭击等,会导致混凝土表面温度急剧下降,而产生收缩,表面收缩的混凝土受内部混凝土的约束,将产生很大的拉应力而产生裂缝,这种裂缝通常只在混凝土表面较浅的范围内产生。 温度裂缝的走向通常无一定规律,大面积结构裂缝常纵横交错;梁板类长度尺寸较大的结构,裂缝多平行于短边;深入和贯穿性的温度裂缝一般与短边方向平行或接近平行,裂缝沿着长边分段出现,中间较密。裂缝宽度大小不一,受温度变化影响较为明显,冬季较宽,夏季较窄。高温膨胀引起的混凝土温度裂缝是通常中间粗两端细,而冷缩裂缝的粗细变化不太明显。此种裂缝的出现会引起钢筋的锈蚀,混凝土的碳化,降低混凝土的抗冻融、抗疲劳及抗渗能力等。 主要预防措施:一是尽量选用低热或中热水泥,如矿渣水泥、粉煤灰水泥等。二是减少水泥用量,将水泥用量尽量控制在450kg/m3以下。三是降低水灰比,一般混凝土的水灰比控制在以下。四是改善骨料级配,掺加粉煤灰或高效减水剂等来减少水泥用量,降低水化热。五是改善混凝土的搅拌加工工艺,在传统的三冷技术的基础上采用二次风冷新工艺,降低混凝土的浇筑温度。六是在混凝土中掺加一定量的具有减水、增塑、缓凝等作用的外加剂,改善混凝土拌合物的流动性、保水性,降低水化热,推迟热峰的出现时间。七是高温季节浇筑时可以采用搭设遮阳板等辅助措施控制混凝土的温升,降低浇筑混凝土的温度。八是大体积混凝土的温度应力与结构尺寸相关,混凝土结构尺寸越大,温度应力越大,因此要合理安排施工工序,分层、分块浇筑,以利于散热,减小约束。九是在大体积混凝土内部设置冷却管道,通冷水或者冷气冷却,减小混凝土的内外温差。十是加强混凝土温度的监控,及时采取冷却、保护措施。十一是预留温度收缩缝。十二是减小约束,浇筑混凝土前宜在基岩和老混凝土上铺设5mm左右的砂垫层或使用沥青等材料涂刷。十三是加强混凝土养护,混凝土浇筑后,及时用湿润的草帘、麻片等覆盖,并注意洒水养护,适当延长养护时间,保证混凝土表面缓慢冷却。在寒冷季节,混凝土表面应设置保温措施,以防止寒潮袭击。十四是混凝土中配置少量的钢筋或者掺入纤维材料将混凝土的温度裂缝控制在一定的范围之内。 5.化学反应引起的裂缝及预防 碱骨料反应裂缝和钢筋锈蚀引起的裂缝是钢筋混凝土结构中最常见的由于化学反应而引起的裂缝。 混凝土拌和后会产生一些碱性离子,这些离子与某些活性骨料产生化学反应并吸收周围环境中的水而体积增大,造成混凝土酥松、膨胀开裂。这种裂缝一般出现中混凝土结构使用期间,一旦出现很难补救,因此应在施工中采取有效措施进行预防。主要的预防措施:一是选用碱活性小的砂石骨料。二是选用低碱水泥和低碱或无碱的外加剂。三是选用合适的掺和料抑制碱骨料反应。 由于混凝土浇筑、振捣不良或者是钢筋保护层较薄,有害物质进入混凝土使钢筋产生锈蚀,锈蚀的钢筋体积膨胀,导致混凝土胀裂,此种类型的裂缝多为纵向裂缝,沿钢筋的位置出现。通常的预防措施有:一是保证钢筋保护层的厚度。二是混凝土级配要良好。三是混凝土浇注要振捣密实。四是钢筋表层涂刷防腐涂料。 三、裂缝处理 裂缝的出现不但会影响结构的整体性和刚度,还会引起钢筋的锈蚀、加速混凝土的碳化、降低混凝土的耐久性和抗疲劳、抗渗能力。因此根据裂缝的性质和具体情况我们要区别对待、及时处理,以保证建筑物的安全使用。 混凝土裂缝的修补措施主要有以下一些方法:表面修补法,灌浆、嵌逢封堵法,结构加固法,混凝土置换法,电化学防护法以及仿生自愈合法。 1.表面修补法 表面修补法是一种简单、常见的修补方法,它主要适用于稳定和对结构承载能力没有影响的表面裂缝以及深进裂缝的处理。通常的处理措施是在裂缝的表面涂抹水泥浆、环氧胶泥或在混凝土表面涂刷油漆、沥青等防腐材料,在防护的同时为了防止混凝土受各种作用的影响继续开裂,通常可以采用在裂缝的表面粘贴玻璃纤维布等措施。 2.灌浆、嵌逢封堵法 灌浆法主要适用于对结构整体性有影响或有防渗要求的混凝土裂缝的修补,它是利用压力设备将胶结材料压入混凝土的裂缝中,胶结材料硬化后与混凝土形成一个整体,从而起到封堵加固的目的。常用的胶结材料有水泥浆、环氧树脂、甲基丙烯酸酯、聚氨酯等化学材料。 嵌缝法是裂缝封堵中最常用的一种方法,它通常是沿裂缝凿槽,在槽中嵌填塑性或刚性止水材料,以达到封闭裂缝的目的。常用的塑性材料有聚氯乙烯胶泥、塑料油膏、丁基橡胶等等;常用的刚性止水材料为聚合物水泥砂浆。 3.结构加固法 当裂缝影响到混凝土结构的性能时,就要考虑采取加固法对混凝土结构进行处理。结构加固中常用的主要有以下几种方法:加大混凝土结构的截面面积,在构件的角部外包型钢、采用预应力法加固、粘贴钢板加固、增设支点加固以及喷射混凝土补强加固。 4.混凝土置换法 混凝土置换法是处理严重损坏混凝土的一种有效方法,此方法是先将损坏的混凝土剔除,然后再置换入新的混凝土或其他材料。常用的置换材料有:普通混凝土或水泥砂浆、聚合物或改性聚合物混凝土或砂浆。 5.电化学防护法 电化学防腐是利用施加电场在介质中的电化学作用,改变混凝土或钢筋混凝土所处的环境状态,钝化钢筋,以达到防腐的目的。阴极防护法、氯盐提取法、碱性复原法是化学防护法中常用而有效的三种方法。这种方法的优点是防护方法受环境因素的影响较小,适用钢筋、混凝土的长期防腐,既可用于已裂结构也可用于新建结构。 6.仿生自愈合法 仿生自愈合法是一种新的裂缝处理方法,它模仿生物组织对受创伤部位自动分泌某种物质,而使创伤部位得到愈合的机能,在混凝土的传统组分中加入某些特殊组分(如含粘结剂的液芯纤维或胶囊),在混凝土内部形成智能型仿生自愈合神经网络系统,当混凝土出现裂缝时分泌出部分液芯纤维可使裂缝重新愈合[4]。 四、结 论 裂缝是混凝土结构中普遍存在的一种现象,它的出现不仅会降低建筑物的抗渗能力,影响建筑物的使用功能,而且会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,影响建筑物的承载能力,因此要对混凝土裂缝进行认真研究、区别对待,采用合理的方法进行处理,并在施工中采取各种有效的预防措施来预防裂缝的出现和发展,保证建筑物和构件安全、稳定地工作。
[1]曾清华,王栋知,王淀佐.聚合物-粘土矿物纳米复合材料.化工进展,1998,17(2):13~16.
[2]王立新,张楷亮,任丽,等.聚合物/层状硅酸盐纳米复合材料的研究进展.复合材料学报,2001,18(3):5~9.
[3] Giannalis E layered silicate Mater,1996,8(1):29~35.
[4] Alexandre M,Dubois silicate nanocomposites:Preparation,properties and uses of a new class of Sci Eng,2000,Report,28(1~2):1~63.
[5]徐卫兵.聚合物/蒙脱土插层纳米复合材料的研究.中国科学技术大学,博士论文,2001.
[6]张琴.熔体插层聚丙烯纳米复合材料:形成过程、剥离机理、形态与性能.四川大学,博士论文,2002.
[7]袁昌来,董发勤.粘土/有机纳米复合粉体材料.中国非金属矿工业导刊,2003,(4):14~17.
[8]吕建坤.环氧树脂及高性能热塑性树脂与粘土插层复合的研究.浙江大学,博士论文,2001.
[9]须藤俊男,著.严寿鹤,刘万,贾克实,译.粘土矿物学.北京:地质出版社,1981.
[10] OlejnikSL,,1968,72(1):241~249.
[11] Theng B K G,Churchman G J,Whitton J S,Claridge G G of Intercalation Methods for differentiating halloysite from and Clay Minerals,1984,32(4):249~258.
[12] of Solid State13Cand29Si nuclear Magnetic Resonance spectra of Kaolinite and Clay Minerals,1985,33(3):173~180.
[13] Sugahara Y,Satokawa S,Kuroda K,Kato for the Formation of Interlayer Polyacrylonitrile in and Clay Minerals,1988,36(4):343~348.
[14] Sidheswaran P,Bhat A N,Ganguli of Salts of Fatty Acids into and Clay Minerals,1990,38(1):29~32.
[15] Sugahara Y,Satokawa S,Kuroda K,Kato of a kaolinite-polyacrylamide intercalation and Clay Minerals,1990,38(2):137~143.
[16] Tunney J J,Detellier and characterization of two distinctet hylene glycol derivatives of and Clay Minerals,1994,42(5):552~560.
[17] Tunney J J,Detellier nanocomposite (ethyleneglycol)-kaolinite ,8:927~935.
[18] Frost R L,Tran T H,Kristof spectroscopy of the lattice region of kaolinite and its Spectroscopy,1997,13:175~186.
[19] Frost R L,Kristof of halloysite:a Raman Spectroscopic and Clay Minerals,1997,45(4):551~563.
[20] Frost R L,Tran T H,Kristof structure of a intercalated ordered kaolinite-a Raman microscopy Minerals,1997,32:587~596.
[21] Komori Y,Sugahara kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of ,1998,13(4):930~934.
[22] Komori Y,Sugahara Y,Kuroda transformation of a kaolinite-poly(acrylamide)intercalation ,1999,9:3081~3085.
[23] Gardolinski J E,Zamora P P,Wypych and Characterization of akaolinite-1-methyl-2-pyrrolidone Intercalation of Colloid and Interface Science,1999,211:137~141.
[24] Itagaki T,Komori Y,Sugahara Y,Kuroda of a kaolinite-poly(β-alanine)intercalation ,2001,11:3291~3295.
[25] Komori Y,Sugahara intercalation of poly(vinylpyrrolidone)into kaolinite by arefined guest displacement ,1999,11:3~6.
[26] Komori Y,Sugahara Y,Kuroda of alkylamines and water into kaolinite with methanol kaolinite as an Clay Science,1999,15:241~252.
[27] Takenawa R,Komori Y,Hayashi S,Kawamata J,Kuroda of nitroanilines into kaolinite and second harmonic ,2001,13:3741~3746.
[28] Matsumura A,Komori Y,Itagaki T,Sugahara Y,Kuroda of a kaolinite-nylon 6 intercalation ,2001,74:1153~1158.
[29] Szilvia Papp,Anna Szucs,Imre synthesis of monodisperse Pd nanoparticles in layered State Ionics,2001,141~142:169~176.
[30] Patakfalvi R,Oszko A,Dekany and characterization of silver nanoparticle/kaolinite and Surfaces A:,2003,220:45~54.
[31]卢寿慈.粉体加工技术.北京:中国轻工业出版社,1999.
[32]杨雅秀,张乃娴,苏昭冰,等.中国粘土矿物.北京:地质出版社,1994.
[33] Hayashi Study of Dynamics and Evolution of Guest Molecules in Kaolinite/Dimethyl and Clay Minerals,1997,45(5):724~732.
[34] Hayashi Study of Dynamics of dimethyl Sulfoxide Molecules in Kaolinite/Dimethyl Sulfoxide Intercalation ,1995,99:7120~7129.
[35] Hayashi S,Ueda T,Hayamizu K,et study of kaolinite.Ⅰ.29Si,27Al, Phys Chem,1992,96:10992~10928.
[36] Xie X L,Hayashi study of kaolinite in tercalation compound with formamide and its derivatives.Ⅰ.Structure and orientation of guest Phys Chem B,1999,103:5949~5955.
[37] Tunney J J,Detellier nanocomposite (ethyleneglycol)~kaolinite ,1998,8:927~935.
[38] Komori Y,Sugahara kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of ,1998,13(4):930~934.
[39] Komori Y,Sugahara Y,Kuroda transformation of a kaolinite-poly(acrylamide)intercalation ,1999,9:3081~3085.
[40] Kelleher B P,Sutton D,O'Dwyer T Effect of Kaolinite Intercalation on the Structural Arrangements of NMethylformamide and of Colloid and Interface Science,2002,255:219~224.
[41]Frost R L,Kristof J,Horrath E,et Interface Sci,1999,412:380.
[42]王林江,吴大清,袁鹏,等.高岭石/甲酰胺插层的1H魔角旋转核磁共振谱.科学通报,2001,46(22):1910~1913.
[43] Tunney J J,Detellier modified of methoxy groups on the interlamellar aluminol surface of ,1996,6(10):1679~1685.
[44]赵顺平,夏华,张生辉.高岭石/有机插层复合材料的研究进展.材料科学与工程学报,2003,21(4):620~624.
[45]古映莹,廖仁春,吴幼纯,等.高岭石-MBT复合材料的制备及其对Pb2+的吸附性能.贵州化工,2001,26(3):23~25.
[46] FrostRL,VanDerGaastSJ,Zbik M,Kloro eJT,Paroz G kaolinite:a hihly ordered kaolinite that is difficult to intercalate-an XRD,SEM and Raman spectroscopic Clay Science,2002,20:177~187.
[47]王林江,吴大清.高岭石有机插层反应的影响因素.化工矿物与加工,2001,(5):29~32.
[48]李伟东,黄建国,许承晃.高岭土-二甲亚砜夹层复合物的形成机理.华侨大学学报(自然科学版),1994,15(1):48~52.
[49]李学强,夏华.高岭土-乙酸钾夹层复合物制备.非金属矿,2002,25(4):22~23.
[50] Tunney J J,Detellier and Characterization of two Distinct Ethylene Glycol Derivatives of and Clay Minerals,1994,42(5),552~560.
[51] Sato of Kaolinite-Amino acid intrecalates derived from hydrated and Clay Minerals,1999,47(6):793~802.
[52] Itagati A,Matsumura A,Kato M,et of material of science letters,2001,20:1483~1484.
[53]沈忠悦,袁明永,叶瑛,杨帅杰.高岭石的夹层化合物及其剥片作用.非金属矿,2000,23(6):12~13.
[54]刘岚,罗远芳,贾德民.聚合物/高岭石嵌入纳米复合材料研究进展.合成橡胶工业,2002,25(3):190~193.
[55] Lawrence G,Ginanelis polymer electrolyte nanocomposites:Melt intercalation of poly(ethyleneoxide)in micatype Mater,1995,7(2):154~156.
[56] LiuYJ,Schindler J L,DeGroot D C,et ,structure,and reactions of poly(ethyleneoxide)/V2O5intercalative Mater,1996,8(2):525~534.
[57] Murray H and new applications for kaolin,smectite,and palygorskite:A general Clay Sci,2000,17(5~6):207~221.
[58] Balbir Singh,Woodlands,Ian Donald Richard Mackinnon,Ellengrove,Both of Patent 6022821,2000.
[59] John Gerard Thompson,Page;Ian Donald Richard Mackinnon,Ellengrove;Sasha Koun,Cook;Neil Gabbitas,Kambah,all of Patent 5858081,1999.
既然你这么急,给你推荐一个人吧 他能帮你的,很快Q9281 06483
[1]曾清华,王栋知,王淀佐.聚合物-粘土矿物纳米复合材料.化工进展,1998,17(2):13~16.
[2]王立新,张楷亮,任丽,等.聚合物/层状硅酸盐纳米复合材料的研究进展.复合材料学报,2001,18(3):5~9.
[3] Giannalis E layered silicate Mater,1996,8(1):29~35.
[4] Alexandre M,Dubois silicate nanocomposites:Preparation,properties and uses of a new class of Sci Eng,2000,Report,28(1~2):1~63.
[5]徐卫兵.聚合物/蒙脱土插层纳米复合材料的研究.中国科学技术大学,博士论文,2001.
[6]张琴.熔体插层聚丙烯纳米复合材料:形成过程、剥离机理、形态与性能.四川大学,博士论文,2002.
[7]袁昌来,董发勤.粘土/有机纳米复合粉体材料.中国非金属矿工业导刊,2003,(4):14~17.
[8]吕建坤.环氧树脂及高性能热塑性树脂与粘土插层复合的研究.浙江大学,博士论文,2001.
[9]须藤俊男,著.严寿鹤,刘万,贾克实,译.粘土矿物学.北京:地质出版社,1981.
[10] OlejnikSL,,1968,72(1):241~249.
[11] Theng B K G,Churchman G J,Whitton J S,Claridge G G of Intercalation Methods for differentiating halloysite from and Clay Minerals,1984,32(4):249~258.
[12] of Solid State13Cand29Si nuclear Magnetic Resonance spectra of Kaolinite and Clay Minerals,1985,33(3):173~180.
[13] Sugahara Y,Satokawa S,Kuroda K,Kato for the Formation of Interlayer Polyacrylonitrile in and Clay Minerals,1988,36(4):343~348.
[14] Sidheswaran P,Bhat A N,Ganguli of Salts of Fatty Acids into and Clay Minerals,1990,38(1):29~32.
[15] Sugahara Y,Satokawa S,Kuroda K,Kato of a kaolinite-polyacrylamide intercalation and Clay Minerals,1990,38(2):137~143.
[16] Tunney J J,Detellier and characterization of two distinctet hylene glycol derivatives of and Clay Minerals,1994,42(5):552~560.
[17] Tunney J J,Detellier nanocomposite (ethyleneglycol)-kaolinite ,8:927~935.
[18] Frost R L,Tran T H,Kristof spectroscopy of the lattice region of kaolinite and its Spectroscopy,1997,13:175~186.
[19] Frost R L,Kristof of halloysite:a Raman Spectroscopic and Clay Minerals,1997,45(4):551~563.
[20] Frost R L,Tran T H,Kristof structure of a intercalated ordered kaolinite-a Raman microscopy Minerals,1997,32:587~596.
[21] Komori Y,Sugahara kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of ,1998,13(4):930~934.
[22] Komori Y,Sugahara Y,Kuroda transformation of a kaolinite-poly(acrylamide)intercalation ,1999,9:3081~3085.
[23] Gardolinski J E,Zamora P P,Wypych and Characterization of akaolinite-1-methyl-2-pyrrolidone Intercalation of Colloid and Interface Science,1999,211:137~141.
[24] Itagaki T,Komori Y,Sugahara Y,Kuroda of a kaolinite-poly(β-alanine)intercalation ,2001,11:3291~3295.
[25] Komori Y,Sugahara intercalation of poly(vinylpyrrolidone)into kaolinite by arefined guest displacement ,1999,11:3~6.
[26] Komori Y,Sugahara Y,Kuroda of alkylamines and water into kaolinite with methanol kaolinite as an Clay Science,1999,15:241~252.
[27] Takenawa R,Komori Y,Hayashi S,Kawamata J,Kuroda of nitroanilines into kaolinite and second harmonic ,2001,13:3741~3746.
[28] Matsumura A,Komori Y,Itagaki T,Sugahara Y,Kuroda of a kaolinite-nylon 6 intercalation ,2001,74:1153~1158.
[29] Szilvia Papp,Anna Szucs,Imre synthesis of monodisperse Pd nanoparticles in layered State Ionics,2001,141~142:169~176.
[30] Patakfalvi R,Oszko A,Dekany and characterization of silver nanoparticle/kaolinite and Surfaces A:,2003,220:45~54.
[31]卢寿慈.粉体加工技术.北京:中国轻工业出版社,1999.
[32]杨雅秀,张乃娴,苏昭冰,等.中国粘土矿物.北京:地质出版社,1994.
[33] Hayashi Study of Dynamics and Evolution of Guest Molecules in Kaolinite/Dimethyl and Clay Minerals,1997,45(5):724~732.
[34] Hayashi Study of Dynamics of dimethyl Sulfoxide Molecules in Kaolinite/Dimethyl Sulfoxide Intercalation ,1995,99:7120~7129.
[35] Hayashi S,Ueda T,Hayamizu K,et study of kaolinite.Ⅰ.29Si,27Al, Phys Chem,1992,96:10992~10928.
[36] Xie X L,Hayashi study of kaolinite in tercalation compound with formamide and its derivatives.Ⅰ.Structure and orientation of guest Phys Chem B,1999,103:5949~5955.
[37] Tunney J J,Detellier nanocomposite (ethyleneglycol)~kaolinite ,1998,8:927~935.
[38] Komori Y,Sugahara kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of ,1998,13(4):930~934.
[39] Komori Y,Sugahara Y,Kuroda transformation of a kaolinite-poly(acrylamide)intercalation ,1999,9:3081~3085.
[40] Kelleher B P,Sutton D,O'Dwyer T Effect of Kaolinite Intercalation on the Structural Arrangements of NMethylformamide and of Colloid and Interface Science,2002,255:219~224.
[41]Frost R L,Kristof J,Horrath E,et Interface Sci,1999,412:380.
[42]王林江,吴大清,袁鹏,等.高岭石/甲酰胺插层的1H魔角旋转核磁共振谱.科学通报,2001,46(22):1910~1913.
[43] Tunney J J,Detellier modified of methoxy groups on the interlamellar aluminol surface of ,1996,6(10):1679~1685.
[44]赵顺平,夏华,张生辉.高岭石/有机插层复合材料的研究进展.材料科学与工程学报,2003,21(4):620~624.
[45]古映莹,廖仁春,吴幼纯,等.高岭石-MBT复合材料的制备及其对Pb2+的吸附性能.贵州化工,2001,26(3):23~25.
[46] FrostRL,VanDerGaastSJ,Zbik M,Kloro eJT,Paroz G kaolinite:a hihly ordered kaolinite that is difficult to intercalate-an XRD,SEM and Raman spectroscopic Clay Science,2002,20:177~187.
[47]王林江,吴大清.高岭石有机插层反应的影响因素.化工矿物与加工,2001,(5):29~32.
[48]李伟东,黄建国,许承晃.高岭土-二甲亚砜夹层复合物的形成机理.华侨大学学报(自然科学版),1994,15(1):48~52.
[49]李学强,夏华.高岭土-乙酸钾夹层复合物制备.非金属矿,2002,25(4):22~23.
[50] Tunney J J,Detellier and Characterization of two Distinct Ethylene Glycol Derivatives of and Clay Minerals,1994,42(5),552~560.
[51] Sato of Kaolinite-Amino acid intrecalates derived from hydrated and Clay Minerals,1999,47(6):793~802.
[52] Itagati A,Matsumura A,Kato M,et of material of science letters,2001,20:1483~1484.
[53]沈忠悦,袁明永,叶瑛,杨帅杰.高岭石的夹层化合物及其剥片作用.非金属矿,2000,23(6):12~13.
[54]刘岚,罗远芳,贾德民.聚合物/高岭石嵌入纳米复合材料研究进展.合成橡胶工业,2002,25(3):190~193.
[55] Lawrence G,Ginanelis polymer electrolyte nanocomposites:Melt intercalation of poly(ethyleneoxide)in micatype Mater,1995,7(2):154~156.
[56] LiuYJ,Schindler J L,DeGroot D C,et ,structure,and reactions of poly(ethyleneoxide)/V2O5intercalative Mater,1996,8(2):525~534.
[57] Murray H and new applications for kaolin,smectite,and palygorskite:A general Clay Sci,2000,17(5~6):207~221.
[58] Balbir Singh,Woodlands,Ian Donald Richard Mackinnon,Ellengrove,Both of Patent 6022821,2000.
[59] John Gerard Thompson,Page;Ian Donald Richard Mackinnon,Ellengrove;Sasha Koun,Cook;Neil Gabbitas,Kambah,all of Patent 5858081,1999.
有两篇,你看着修改吧混凝土裂缝的预防与处理 混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程中常见的一些裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。 一、前言 混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于这些初始缺陷的存在才使混凝土呈现出一些非均质的特性。微裂缝通常是一种无害裂缝,对混凝土的承重、防渗及其他一些使用功能不产生危害。但是在混凝土受到荷载、温差等作用之后,微裂缝就会不断的扩展和连通,最终形成我们肉眼可见的宏观裂缝,也就是混凝土工程中常说的裂缝。 混凝土建筑和构件通常都是带缝工作的,由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命,严重者将会威胁到人们的生命和财产安全。很多工程的失事都是由于裂缝的不稳定发展所致。近代科学研究和大量的混凝土工程实践证明,在混凝土工程中裂缝问题是不可避免的,在一定的范围内也是可以接受的,只是要采取有效的措施将其危害程度控制在一定的范围之内。钢筋混凝土规范也明确规定[1]:有些结构在所处的不同条件下,允许存在一定宽度的裂缝。但在施工中应尽量采取有效措施控制裂缝产生,使结构尽可能不出现裂缝或尽量减少裂缝的数量和宽度,尤其要尽量避免有害裂缝的出现,从而确保工程质量。 混凝土裂缝产生的原因很多,有变形引起的裂缝:如温度变化、收缩、膨胀、不均匀沉陷等原因引起的裂缝;有外载作用引起的裂缝;有养护环境不当和化学作用引起的裂缝等等。在实际工程中要区别对待,根据实际情况解决问题。 二、 凝土工程中常见裂缝及预防 1.干缩裂缝及预防 干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右。水泥浆中水分的蒸发会产生干缩,且这种收缩是不可逆的。干缩裂缝的产生主要是由于混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。相对湿度越低,水泥浆体干缩越大,干缩裂缝越易产生。干缩裂缝多为表面性的平行线状或网状浅细裂缝,宽度多在之间,大体积混凝土中平面部位多见,较薄的梁板中多沿其短向分布。干缩裂缝通常会影响混凝土的抗渗性,引起钢筋的锈蚀影响混凝土的耐久性,在水压力的作用下会产生水力劈裂影响混凝土的承载力等等。混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、集料的性质和用量、外加剂的用量等有关。 主要预防措施:一是选用收缩量较小的水泥,一般采用中低热水泥和粉煤灰水泥,降低水泥的用量。二是混凝土的干缩受水灰比的影响较大,水灰比越大,干缩越大,因此在混凝土配合比设计中应尽量控制好水灰比的选用,同时掺加合适的减水剂。三是严格控制混凝土搅拌和施工中的配合比,混凝土的用水量绝对不能大于配合比设计所给定的用水量。四是加强混凝土的早期养护,并适当延长混凝土的养护时间。冬季施工时要适当延长混凝土保温覆盖时间,并涂刷养护剂养护。五是在混凝土结构中设置合适的收缩缝。 2.塑性收缩裂缝及预防 塑性收缩是指混凝土在凝结之前,表面因失水较快而产生的收缩。塑性收缩裂缝一般在干热或大风天气出现,裂缝多呈中间宽、两端细且长短不一,互不连贯状态。较短的裂缝一般长20~30cm,较长的裂缝可达2~3m,宽1~5mm。其产生的主要原因为:混凝土在终凝前几乎没有强度或强度很小,或者混凝土刚刚终凝而强度很小时,受高温或较大风力的影响,混凝土表面失水过快,造成毛细管中产生较大的负压而使混凝土体积急剧收缩,而此时混凝土的强度又无法抵抗其本身收缩,因此产生龟裂。影响混凝土塑性收缩开裂的主要因素有水灰比、混凝土的凝结时间、环境温度、风速、相对湿度等等。主要预防措施:一是选用干缩值较小早期强度较高的硅酸盐或普通硅酸盐水泥。二是严格控制水灰比,掺加高效减水剂来增加混凝土的坍落度和和易性,减少水泥及水的用量。三是浇筑混凝土之前,将基层和模板浇水均匀湿透。四是及时覆盖塑料薄膜或者潮湿的草垫、麻片等,保持混凝土终凝前表面湿润,或者在混凝土表面喷洒养护剂等进行养护。五是在高温和大风天气要设置遮阳和挡风设施,及时养护。 3.沉陷裂缝及预防 沉陷裂缝的产生是由于结构地基土质不匀、松软,或回填土不实或浸水而造成不均匀沉降所致;或者因为模板刚度不足,模板支撑间距过大或支撑底部松动等导致,特别是在冬季,模板支撑在冻土上,冻土化冻后产生不均匀沉降,致使混凝土结构产生裂缝。此类裂缝多为深进或贯穿性裂缝,其走向与沉陷情况有关,一般沿与地面垂直或呈30°~45°角方向发展,较大的沉陷裂缝,往往有一定的错位,裂缝宽度往往与沉降量成正比关系。裂缝宽度受温度变化的影响较小。地基变形稳定之后,沉陷裂缝也基本趋于稳定。 主要预防措施:一是对松软土、填土地基在上部结构施工前应进行必要的夯实和加固。二是保证模板有足够的强度和刚度,且支撑牢固,并使地基受力均匀。三是防止混凝土浇灌过程中地基被水浸泡。四是模板拆除的时间不能太早,且要注意拆模的先后次序。五是在冻土上搭设模板时要注意采取一定的预防措施。 4.温度裂缝及预防 温度裂缝多发生在大体积混凝土表面或温差变化较大地区的混凝土结构中。混凝土浇筑后,在硬化过程中,水泥水化产生大量的水化热,(当水泥用量在350~550 kg/m3,每立方米混凝土将释放出17500~27500kJ的热量,从而使混凝土内部温度升达70℃左右甚至更高)。由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升,而混凝土表面散热较快,这样就形成内外的较大温差,较大的温差造成内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力(实践证明当混凝土本身温差达到25℃~26℃时,混凝土内便会产生大致在10MPa左右的拉应力)。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生在混凝土施工中后期。在混凝土的施工中当温差变化较大,或者是混凝土受到寒潮的袭击等,会导致混凝土表面温度急剧下降,而产生收缩,表面收缩的混凝土受内部混凝土的约束,将产生很大的拉应力而产生裂缝,这种裂缝通常只在混凝土表面较浅的范围内产生。 温度裂缝的走向通常无一定规律,大面积结构裂缝常纵横交错;梁板类长度尺寸较大的结构,裂缝多平行于短边;深入和贯穿性的温度裂缝一般与短边方向平行或接近平行,裂缝沿着长边分段出现,中间较密。裂缝宽度大小不一,受温度变化影响较为明显,冬季较宽,夏季较窄。高温膨胀引起的混凝土温度裂缝是通常中间粗两端细,而冷缩裂缝的粗细变化不太明显。此种裂缝的出现会引起钢筋的锈蚀,混凝土的碳化,降低混凝土的抗冻融、抗疲劳及抗渗能力等。 主要预防措施:一是尽量选用低热或中热水泥,如矿渣水泥、粉煤灰水泥等。二是减少水泥用量,将水泥用量尽量控制在450kg/m3以下。三是降低水灰比,一般混凝土的水灰比控制在以下。四是改善骨料级配,掺加粉煤灰或高效减水剂等来减少水泥用量,降低水化热。五是改善混凝土的搅拌加工工艺,在传统的三冷技术的基础上采用二次风冷新工艺,降低混凝土的浇筑温度。六是在混凝土中掺加一定量的具有减水、增塑、缓凝等作用的外加剂,改善混凝土拌合物的流动性、保水性,降低水化热,推迟热峰的出现时间。七是高温季节浇筑时可以采用搭设遮阳板等辅助措施控制混凝土的温升,降低浇筑混凝土的温度。八是大体积混凝土的温度应力与结构尺寸相关,混凝土结构尺寸越大,温度应力越大,因此要合理安排施工工序,分层、分块浇筑,以利于散热,减小约束。九是在大体积混凝土内部设置冷却管道,通冷水或者冷气冷却,减小混凝土的内外温差。十是加强混凝土温度的监控,及时采取冷却、保护措施。十一是预留温度收缩缝。十二是减小约束,浇筑混凝土前宜在基岩和老混凝土上铺设5mm左右的砂垫层或使用沥青等材料涂刷。十三是加强混凝土养护,混凝土浇筑后,及时用湿润的草帘、麻片等覆盖,并注意洒水养护,适当延长养护时间,保证混凝土表面缓慢冷却。在寒冷季节,混凝土表面应设置保温措施,以防止寒潮袭击。十四是混凝土中配置少量的钢筋或者掺入纤维材料将混凝土的温度裂缝控制在一定的范围之内。 5.化学反应引起的裂缝及预防 碱骨料反应裂缝和钢筋锈蚀引起的裂缝是钢筋混凝土结构中最常见的由于化学反应而引起的裂缝。 混凝土拌和后会产生一些碱性离子,这些离子与某些活性骨料产生化学反应并吸收周围环境中的水而体积增大,造成混凝土酥松、膨胀开裂。这种裂缝一般出现中混凝土结构使用期间,一旦出现很难补救,因此应在施工中采取有效措施进行预防。主要的预防措施:一是选用碱活性小的砂石骨料。二是选用低碱水泥和低碱或无碱的外加剂。三是选用合适的掺和料抑制碱骨料反应。 由于混凝土浇筑、振捣不良或者是钢筋保护层较薄,有害物质进入混凝土使钢筋产生锈蚀,锈蚀的钢筋体积膨胀,导致混凝土胀裂,此种类型的裂缝多为纵向裂缝,沿钢筋的位置出现。通常的预防措施有:一是保证钢筋保护层的厚度。二是混凝土级配要良好。三是混凝土浇注要振捣密实。四是钢筋表层涂刷防腐涂料。 三、裂缝处理 裂缝的出现不但会影响结构的整体性和刚度,还会引起钢筋的锈蚀、加速混凝土的碳化、降低混凝土的耐久性和抗疲劳、抗渗能力。因此根据裂缝的性质和具体情况我们要区别对待、及时处理,以保证建筑物的安全使用。 混凝土裂缝的修补措施主要有以下一些方法:表面修补法,灌浆、嵌逢封堵法,结构加固法,混凝土置换法,电化学防护法以及仿生自愈合法。 1.表面修补法 表面修补法是一种简单、常见的修补方法,它主要适用于稳定和对结构承载能力没有影响的表面裂缝以及深进裂缝的处理。通常的处理措施是在裂缝的表面涂抹水泥浆、环氧胶泥或在混凝土表面涂刷油漆、沥青等防腐材料,在防护的同时为了防止混凝土受各种作用的影响继续开裂,通常可以采用在裂缝的表面粘贴玻璃纤维布等措施。 2.灌浆、嵌逢封堵法 灌浆法主要适用于对结构整体性有影响或有防渗要求的混凝土裂缝的修补,它是利用压力设备将胶结材料压入混凝土的裂缝中,胶结材料硬化后与混凝土形成一个整体,从而起到封堵加固的目的。常用的胶结材料有水泥浆、环氧树脂、甲基丙烯酸酯、聚氨酯等化学材料。 嵌缝法是裂缝封堵中最常用的一种方法,它通常是沿裂缝凿槽,在槽中嵌填塑性或刚性止水材料,以达到封闭裂缝的目的。常用的塑性材料有聚氯乙烯胶泥、塑料油膏、丁基橡胶等等;常用的刚性止水材料为聚合物水泥砂浆。 3.结构加固法 当裂缝影响到混凝土结构的性能时,就要考虑采取加固法对混凝土结构进行处理。结构加固中常用的主要有以下几种方法:加大混凝土结构的截面面积,在构件的角部外包型钢、采用预应力法加固、粘贴钢板加固、增设支点加固以及喷射混凝土补强加固。 4.混凝土置换法 混凝土置换法是处理严重损坏混凝土的一种有效方法,此方法是先将损坏的混凝土剔除,然后再置换入新的混凝土或其他材料。常用的置换材料有:普通混凝土或水泥砂浆、聚合物或改性聚合物混凝土或砂浆。 5.电化学防护法 电化学防腐是利用施加电场在介质中的电化学作用,改变混凝土或钢筋混凝土所处的环境状态,钝化钢筋,以达到防腐的目的。阴极防护法、氯盐提取法、碱性复原法是化学防护法中常用而有效的三种方法。这种方法的优点是防护方法受环境因素的影响较小,适用钢筋、混凝土的长期防腐,既可用于已裂结构也可用于新建结构。 6.仿生自愈合法 仿生自愈合法是一种新的裂缝处理方法,它模仿生物组织对受创伤部位自动分泌某种物质,而使创伤部位得到愈合的机能,在混凝土的传统组分中加入某些特殊组分(如含粘结剂的液芯纤维或胶囊),在混凝土内部形成智能型仿生自愈合神经网络系统,当混凝土出现裂缝时分泌出部分液芯纤维可使裂缝重新愈合[4]。 四、结 论 裂缝是混凝土结构中普遍存在的一种现象,它的出现不仅会降低建筑物的抗渗能力,影响建筑物的使用功能,而且会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,影响建筑物的承载能力,因此要对混凝土裂缝进行认真研究、区别对待,采用合理的方法进行处理,并在施工中采取各种有效的预防措施来预防裂缝的出现和发展,保证建筑物和构件安全、稳定地工作。
参考文献标注的正确格式如下:1、参考文献格式为:[序号]+著作作者+篇名或书名等+参考文献的类型+著作的“出版年”或期刊的“年,卷(期)”等+“:页码(或页码范围)”。2、引用别人的毕业论文的标注格式为(毕业论文类型为学位论文[D]):[序号]主要责任者.文献题名[D].出版地:出版单位.出版年:起止页码(可选)。3、举例如:[11]张筑生.微分半动力系统的不变集[D].北京:北京大学数学系数学研究所,1983:1-7。
一、没有固化剂环氧树脂很难自行固化,因此不能如你所说的方法“干燥”,如果你只想“干燥”,由液体变为固体,可以降温,但这只是物理状态的变化。另外环氧树脂种类很多,也有在常温就是固体的。二、环氧树脂的延展性应与参与固化的增韧剂有关,只要配方合适,也有很好延展性的固化物。但用环氧树脂制成薄膜,似乎并不常见。聚酯薄膜倒是很常见且用途广泛。三、不同分子量的环氧树脂价格有区别,就常用的电工类环氧树脂而言,国内价格大概在18元/kg左右。四、环氧树脂用途非常广泛,最常用作电工绝缘材料,还作为油漆、胶粘剂的主要成分。五、确切地说应是环氧树脂固化物的耐烧烤温度。有很多配方能达到这一要求。知识水平有限,不知上述回答能否满意?
由于环氧树脂是线型结构的热固性树脂,所以施工前必须加入水性环氧固化剂,在室温环境下发生化学交联反应,环氧树脂固化后就改变了原来可溶可熔的性质而变成不溶不熔的空间网状结构,显示出优异的性能。水性环氧树脂涂料除了具有溶剂型环氧树脂涂料的诸多优点。
一是适应能力强,对众多底材具有极高的附着力,固化后的涂膜耐腐蚀性和耐化学药品性能优异,并且涂膜收缩小、硬度高、耐磨性好、电气绝缘性能优异等;是环保性能好,还具有不含有机溶剂或挥发性有机化合物含量较低,不会造成空气污染,因而满足当前环境保护的要求;是真正水性化,以水作为分散介质,价格低廉、无气味、不燃,储存、运输和使用过程中的安全性也大为提高;是操作性佳,水性环氧树脂涂料的施工操作性能好,施工工具可用水直接清洗,可在室温和潮湿的环境中固化,有合理的固化时间,并保证有很高的交联密度。这是通常的水性丙烯酸涂料和水性聚氨酯涂料所无法比拟的。
1.可以将固体环氧树脂溶解到溶剂中,然后涂刷,溶剂挥发后,树脂又可以恢复到原来的固体状而成型,但只是一个物理变化,常温下可以密封放置,有效期在1年以上!2.这个性能没有比较过,从结构上来讲,个人认为饱和聚酯的可能拉伸性会好一点;3.价格交替比较明显,2012年的价格在19000-27000元/吨波动!4.常用的作为绝缘材料,防腐涂料方面应用比较多5.一般不能,需要添加其它材料方可。
环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。
环氧树脂其实就是一种热固性树脂,属于一种有机化学物,它的耐热性好,电绝缘性佳,有较强的耐腐蚀性,同时又具有优良的耐化学性,其中耐碱性方面最好,所以被广泛运用于装饰地坪地面。
环氧树脂的漆膜附着力较强,一旦环氧树脂固化的话,就可以在金属材料、非金属材料的表面起到良好的粘接效果,同时还可以让变定收缩率变小。环氧树脂的韧性也比较好,硬度又高,所以还被经常用于国防等行业。
分类
1、按其主要组成分为纯环氧树脂胶黏剂和改性环氧树脂胶黏剂。
2、按其专业用途分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等。
3、按其施工条件分为常温固化型胶、低温固化型胶和其他固化型胶。
一、组成不同
1、环氧聚氨酯:为双组份自干型漆,成份一为聚酯色浆,成份二为专用固化剂。
2、聚氨酯:可以分为双组分聚氨酯涂料和单组分聚氨酯涂料。双组分聚氨酯涂料一般是由异氰酸酯预聚物(也叫低分子氨基甲酸酯聚合物)和含羟基树酯两部分组成,通常称为固化剂组分和主剂组分。
二、用途不同
1、环氧聚氨酯:广泛用于要求较高的室内用工业品及木器家具的涂装。
2、聚氨酯:此类漆漆膜光亮丰满、坚硬耐磨,耐油、耐酸、耐化学品和工业废气,电性能好,能和多种树酯混溶,可在广泛范围内调整配方,以满足不同需要。广泛应用于木器、汽车、飞机、机械、电器、仪器仪表、塑料、皮革、纸张、织物、石油化工等各个方面。
三、性能不同
1、环氧聚氨酯:环氧聚氨酯漆具有良好的装饰性和机械性能,硬度和耐磨性较高,且具有耐水、耐油、耐溶剂的特点。
2、聚氨酯:单组分聚氨酯漆的特性:具有良好的耐磨、耐碱、耐油和耐溶剂性,但耐侯性差,不适合室外使用。双组分聚氨酯漆的特性:羟基固化型聚氨酯漆具有可以室温干燥、毒性小、漆膜坚韧、光泽度高、附着力好、耐侵蚀性、耐油、耐水机能优良等长处。
参考资料来源:百度百科-环氧聚氨酯漆
参考资料来源:百度百科-聚氨酯漆
一、优点:
1、聚氨酯:高的机械强度和氧化稳定性;具有较高的柔曲性和回弹性;具有优良的耐油性、耐溶剂性、耐水性和耐火性。
2、环氧树脂:耐化学品性优良,尤其是耐碱性;漆膜附着力强,特别是对金属;具有较好的耐热性和电绝缘性;漆膜保色性较好。
二、缺点:
1、聚氨酯:其阻燃性能差,燃烧速度快且过程中会产生过度溶滴,容易导致火势加速蔓延。
2、环氧树脂:耐候性差,漆膜在户外易粉化失光又欠丰满,不宜作户外用涂料及高装饰性涂料之用。
聚氨酯:
环氧树脂:
扩展资料:
聚氨酯的用途:
1、主要用作聚氨酯合成革、聚氨酯泡沫塑料、聚氨酯涂料、聚氨酯粘合剂、聚氨酯橡胶(弹性体)和聚氨酯纤维等。
2、此外,聚氨酯还用于土建、地址钻探,采矿和石油工程中,起堵水、稳固建筑物或路基的作用;作为铺面材料,用于运动场的跑道、建筑物的室内地板等。
参考资料来源:百度百科-聚氨酯
参考资料来源:百度百科-环氧树脂
环氧树脂和聚氨脂的区别是:成分不同、优缺点不同、用途不同
一、成分不同
1、环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。
2、聚氨酯是聚氨基甲酸酯的简称,英文名称是polyurethane,它是一种高分子材料。
二、优缺点不同
1、环氧树脂作为防腐蚀材料不但具有密实、抗水、抗渗漏好、强度高等特点,同时具有附着力强、常温操作、施工简便等良好的工艺性,而且价格适中。
缺点是:产品脆性大、价格较高。
2、聚氨脂的优点是:性能可调范围宽、适应性强;耐磨性能好;弹性好,具有优良的复原性;耐候性好,使用寿命长达15~20年,耐油性好,耐生物老化。
缺点是:阻燃性能差,燃烧速度快且过程中会产生过度溶滴,容易导致火势加速蔓延。在燃烧时还会产生更多的有毒气体,以一氧化碳(CO)为主。
三、用途不同
1、环氧树脂的用途:
(1)环氧树脂在涂料中的应用占较大的比例,它能制成各具特色、用途各异的品种。
(2)环氧树脂有有万能胶之称,环氧胶粘剂是结构胶粘剂的重要品种。
(3)环氧树脂的绝缘性能高、结构强度大和密封性能好等许多独特的优点,已在高低压电器、电机和电子元器件的绝缘及封装上得到广泛应用。
(4)用作防腐地坪、环氧砂浆和混凝土制品、高级路面和机场跑道、快速修补材料、加固地基基础的灌浆材料、建筑胶粘剂及涂料等。
2、聚氨酯的用途:
(1)用于航空、铁路、建筑、体育等方面;用于木制家具及金属的表面罩光。
(2)用于贮罐、管道、冷库、啤酒、发酵罐、保鲜桶的绝热保温保冷,房屋建筑绝热防水。
(3)可用于制造塑料制品、耐磨合成橡胶制品、合成纤维、硬质和软质泡沫塑料制品、胶粘剂和涂料等。
(4)用于各类木器、化工设备、电讯器材和仪表及各种运输工具的表面涂饰。
参考资料来源:百度百科-环氧树脂
参考资料来源:百度百科-聚氨酯
聚氨酯是目前最耐磨的高分子材料,磨损质量大大低于环氧树脂。聚氨酯是为数不多的可以同时具有高硬度和柔韧性的材料,可以说聚氨酯是“硬而韧”,它的抗冲击性能非常好,比“硬而脆”的环氧树脂更适合做地面铺装材料。聚氨酯具有很好的抗湿滑性能,是制作工程轮胎、防滑轮胎、防滑鞋底的材料,因此在潮湿有水的环境,使用聚氨酯地面不易滑倒更安全。除此之外,聚氨酯具有比环氧更好的耐腐蚀性能,可以用作对腐蚀性要求较高的环境。聚氨酯做地坪材料具有耐磨、抗冲击,耐腐蚀性使得它的使用寿命比环氧高出若干倍