这个问题我也在查,祝你考试顺利。
iii 毕业设计(论文)题目:隧道病害整治方法探讨 一、 毕业设计论文内容 土工合成材料在铁道隧道病害整治中得到广泛的应用,起到排水反滤、防渗、加筋、隔离、防护和减载等作用。这些作用是以不同的形式的产品来实现的,土工织物用于滤层、隔离和防护;土工网和三维植被网垫用于排水和坡面的稳定;土工格栅、条带和有纺或编织土工织物用于加筋、土工膜用于防渗等。因此,首先要预防为主,必须在设计阶段就要采取预防措施,防止病害产生;另一方面,对出现的病害须查清病害原因、采取合理的措施进行整治,提高隧道病害整治的工程质量和经济效益。 二、 基本要求 ①选择沙害威胁最轻地段。 ②使线路通过起伏不大的沙丘地段、使线路由沙区内的古河道及山前平原的潜水带边缘通过。 ③力求使线路通过植被较好的固定沙丘及半固定沙丘。 ④将线路选择在沙丘体的上风一侧,将线路选择在沙区间沼泽地或草垫子地的下风侧。 ⑤使线路与当地主风向平行,尽量避免弯道。 三、 重点研究问题 铁路隧道在运营中会出现渗漏水、衬砌裂损、隧道冻害、衬砌腐蚀、震害和洞内空气污染等病害,还有火灾威胁。这些病害和危害对隧道的安全、舒适、正常运营有重要影响和威胁。因此、在隧道规划和设计阶段要预防可能的病害、危害、进行合理设计;在隧道施工阶段要采用合理的施工工艺、方法、措施和材料,以保证施工质量。在隧道运营阶段要及时检查、发现病害,分析病害成因,采用合理的整治设计和施工方法. 四、 主要技术指标 (1)增加土工合成材料生产原料的技术要求,分不同地区、不同的应用条件提出相应产品技术指标。对作为重要受力构件的材料(如加筋土挡土墙拉筋带),要增加蠕变强度等指标。
隧道病害探讨的论文,什么时间要?
一般山岭隧道排水设施主要排出的水是山体里的地下水。
现阶段,我国秦岭隧道基本情况怎么样?西汉高速秦岭隧道情况怎么样?中达咨询小编整理秦岭隧道基本内容如下:中达咨询通过本网站建筑知识专栏的知识整理,秦岭隧道基本情况如下:秦岭隧道:目前,中国铁路、公路有过七次穿越秦岭的经历:第一次是50年代宝成铁路盘山越过秦岭;第二次是修建西康铁路秦岭隧道;第三次是西安南京铁路东秦岭隧道;第四次是包茂高速(西康高速)公路秦岭终南山隧道,第五次是西汉高速(京昆高速)公路秦岭隧道群,第六次是在建的兰渝铁路西秦岭隧道,第七次是在建的西成高速铁路秦岭山区隧道群。中达咨询小编以西汉高速秦岭隧道项目情况为例,基本情况如下:西汉高速秦岭隧道基本概况:西汉高速公路从秦岭腹地“穿堂而过”,桥隧相连占全线的66%,多集中在户县至洋县间这140多公里的秦岭山区,特别是秦岭Ⅰ、Ⅱ、Ⅲ号隧道组成的17多公里的隧道群,是西汉高速的一个亮点,我在秦岭隧道管理中心工作一段时间后,更加领略到隧道群的风采与韵味。西汉高速秦岭隧道工程特点:据说当年在讨论穿越秦岭主峰掘隧的方案时,,在这里完全可以建设一个超过号称世界第一特长隧道的终南山大隧道(全长公里)的,但高速人放弃了,选择了修隧道群的方案,三座隧道间各有一段“抬头望天”的空间,用意是让司乘人员不致有视觉的疲劳。当然分成三个隧道,无疑也加快了工程进度,确保了工程质量,节约了成本。在隧道群施工中,Ⅰ、Ⅱ号隧道要各打一口通风斜井。高速人为了环保却决定从下往上打,这样不用在山上修施工便道,也不用考虑石渣的堆放场地,更不用破坏山上的植被。结果从下往上打井,打出的石渣在隧道内就地加工,成了衬砌隧道的石料。一举多得,这是何等的智慧。更多关于标书代写制作,提升中标率,点击底部客服免费咨询。
在中国地貌高低不平,行走于西南一带便是有很多火车隧道,那么中国最长的火车隧道在哪里呢?让我们一起来看看中国地势造成的奇观,驱车行走要多久呢?
秦岭隧道最长的多长驱车要多长时间
秦岭隧道是我国目前最长铁路隧道之一,位于陕西省长安县和柞水县交界处,在青岔车站与营盘车站之间,设计由两座基本平行的单线隧道组成,两线间距为30米。其中I线隧道全长18452米,里程为DK64+:Ⅱ线隧道全长18456米,里程为DK64+370~DK82+826。隧道两端高差155米。I、Ⅱ线隧道纵坡基本相同,由西安端进洞后约公里范围为11‰上坡,然后约公里范围以3‰的下坡出洞。I线隧道较Ⅱ线隧道高~米。隧道两端均位于半径500米的曲线地段。驱车也需要十五分钟左右才能走出秦岭隧道。
秦岭隧道
秦岭隧道(Qinling tunnel)的铁路隧道有宝成铁路的“秦岭隧道”,长约2364米;西康铁路的“秦岭隧道”,长约千米;宁西铁路的“东秦岭隧道”,长约千米;兰渝铁路的“西秦岭隧道”,长约千米。中国铁路、公路有过五次穿越秦岭的经历:第一次是50年代宝成铁路盘山越过秦岭;第二次是修建西康铁路秦岭隧道;第三次是西安南京铁路东秦岭隧道;第四次是包茂高速(西康高速)公路秦岭终南山隧道;第五次是兰渝铁路西秦岭隧道。
秦岭隧道曾是中国最长的铁路隧道,位于西(安)(安)康铁路青岔车站和营盘车站之间,由两座基本平行的单线隧道组成,两线间距为30米,其中Ⅰ线隧道全长18460米;Ⅱ线隧道全长18456米。隧道通过地区岩性主要为混合片麻岩、混合花岗岩、含绿色矿物混合花岗岩;洞身穿过13条断层,其中大的断层有 F、F、F等区域断层。隧道北洞口高程约870米,南洞口高程约1025米,隧道两端高差约155米。卫星拍摄的秦岭隧道位置图Ⅰ、 Ⅱ线隧道纵坡基本相同,由西安端进洞后约公里范围为11‰上坡,然后以公里、3‰的下坡出洞。隧道最大埋深约1600米,埋深超过1000 米地段长约公里。秦岭隧道穿越地段地质条件十分复杂,经多种手段测试,施工时有高地应力、岩爆、地垫、断裂带涌水、围岩失稳等不良地质灾害发生,工程建设任务十分艰巨。
秦岭隧道变革
秦岭隧道Ⅰ、Ⅱ线均为单线电气化铁路隧道,全部采用支承块式整体道床,超长无缝线路。Ⅰ线(左线)隧道使用2台米敞开式掘进机(TBM)由隧道两端相向施工。Ⅱ线隧道(右线),采用新奥法施工,初期支护为锚喷,二次支护为马蹄型带仰拱的模筑混凝土复合衬砌。Ⅱ线平行导坑于1995年元月18日开工,平导单口平均月进度为200~250米,平导比Ⅰ线隧道提前10个月贯通。
秦岭隧道地质复杂、工程巨大,在设计、施工、运营安全和维修管理方面都有许多技术难关,且Ⅰ线隧道采用掘进机施工,在我国铁路隧道施工尚属首次,为此有六类24项部重点科研项目立项研究,均取得了不俗的成果。秦岭特长隧道的修建,使我国隧道工程建设从整体上提高到一个新的技术水平。隧道1995年1月18 日正式开工,1999年9月6日全部贯通,2000年8月18日西康铁路开通运营。
东秦岭隧道全长12668米,是国家重点工程西安南京铁路的头号重点工程。总工期48个月,于2007年1月正式开通。
秦岭终南山特长公路隧道,西康高速公路秦岭终南山隧道,长18020米,双洞,共四车道,为我国第一,世界第二长公路隧道,2007年1月20日正式通车。
西汉高速公路秦岭隧道群,西汉高速公路是国家高速公路网G5京昆高速,在陕西境内的一段,以隧道群形式穿越秦岭,其中秦岭一号隧道6144米、秦岭二号隧道6125米、秦岭三号隧道4930米。
兰渝铁路西秦岭隧道,隧道长28236米,为我国第二长铁路隧道(含在建),仅次于在建的新关角隧道,隧道位于甘肃省陇南市武都区。为双洞单线隧道,由中国隧道集团及中铁十八局采用两台TBM和钻爆法施工。西秦岭隧道于2008年8月开工,是兰渝铁路先期开工工程,工期约5年。
西成客运专线已正式动工兴建,这是我国第一条穿越秦岭的高速铁路。据悉西成高铁将以隧道群的方式穿越秦岭。其穿越秦岭山区地段线路总长135公里,隧道里程高达127公里,桥隧比高达94%。10公里以上特长隧道共有6座,其中设计最长的天华山双线隧道,长达公里。
西成铁路秦岭山区隧道群首次采用25‰的大坡度(国内目前在建客专最大坡度为20‰),且大坡道持续段落长达46公里,这在国内拟建的山区高标准现代化铁路建设中属首次尝试。由于山区持续大坡道对动车的牵引制动、牵引供电、运营安全、运营能力等有着重要影响,需攻克诸多关键技术难题。
秦岭终南山高速公路隧道创造了我国高速公路隧道建设史上的六项之最:
1.目前世界上最长的双洞高速公路隧道;
2.第一座由我国自行设计、自行施工、自行监理、自行管理,综合技术水平最高的高速公路特长隧道;
3.拥有目前世界口径最大、深度最高的竖井通风工程;
4.拥有目前世界上高速公路隧道最完备的监控和防灾求援系统;
5.拥有目前世界上高速公路隧道最先进的特殊灯光带,缓解视觉疲劳,保证行车安全;
6.首次创造性提出策略管理理论,并运用了首套策略自动生成软件,对火灾、交通事故、养护等方面发生的事件进行自动监测和管理 。
秦岭终南山高速公路隧道创造了我国高速公路隧道建设史上的六项之最:
1.目前世界上最长的双洞高速公路隧道;
2.第一座由我国自行设计、自行施工、自行监理、自行管理,综合技术水平最高的高速公路特长隧道; 3.拥有目前世界口径最大、深度最高的竖井通风工程;
4.拥有目前世界上高速公路隧道最完备的监控和防灾求援系统;
5.拥有目前世界上高速公路隧道最先进的特殊灯光带,缓解视觉疲劳,保证行车安全;
6.首次创造性提出策略管理理论,并运用了首套策略自动生成软件,对火灾、交通事故、养护等方面发生的事件进行自动监测和管理
你知道全球最长的隧道是在哪里吗?下面就让我告诉你吧。
1.隧道的简介
隧道是指在既有的建筑或土石结构中挖出来的通道,是埋置于地层内的工程建筑物,是人类利用地下空间的一种形式。隧道可分为交通隧道,水工隧道,市政隧道,矿山隧道。1970年国际经济合作与发展组织召开的隧道会议综合了各种因素,对隧道所下的定义为:“以某种用途、在地面下作用任何方法规定形状和尺寸修筑的断面积大于2㎡的洞室。”
2.组成
西安至南京铁路东秦岭隧道
隧道的结构包括主体建筑物和附属设备两部分。主体建筑物由洞身和洞门组成,附属设备包括避车洞、消防设施、应急通讯和防排水设施,长大隧道还有专门的通风和照明设备。
高速铁路隧道内不设置供养护维修人员待避的洞室,但应考虑设置存放维修工具和其他业务部门需要的专用洞室。
高速铁路隧道内应设置安全空间和贯通的救援通道。
安全空间应设置在距线路中心处以外,单线隧道在救援通道一侧设置,多线隧道在双侧设置。安全空间的高度不应小于,宽度不应小于。救援通道设置在安全空间一侧,距线路中心不应小于。救援通道的宽度不宜小于,高度不应小于。
高速铁路长度大于50m的隧道,应在洞内设置余长电缆腔,并应与专用洞室结合设置。余长电缆腔沿隧道两侧交错布置,每侧间距宜为500m。长度500-1000m的隧道,可只在其中部设置一处。长度500m以上的隧道应设置作业照明设置,长度5km及以上的隧道还应设置应急照明。
高速铁路长隧道及特长隧道应结合辅助坑道情况设置紧急出口,紧急出口上方应设标示牌和紧急照明设施。紧急出口通道的设置应符合相关规定。
3.分类
铁路隧道分类:(1)特长隧道:全长10000m以上;
铁路隧道分类:(2)长隧道:全长3000m以上至10000m,含10000m;
铁路隧道分类:(3)中隧道:全长500m以上至3000m,含3000m;
铁路隧道分类:(4)短隧道:全长500m及以下。
公路隧道分类:(1)特长隧道:全长3000m以上;
公路隧道分类:(2)长隧道:全长1000m以上至3000m,含3000m;
公路隧道分类:(3)中隧道:全长500m以上至1000m,含1000m;
公路隧道分类:(4)短隧道:全长500m及以下。
4.奇观
秦岭终南山公路隧道
这是世界最长的双洞单向公路隧道,它北起西安市长安区青岔,南至商洛市所辖的柞水县营盘镇,全长公里,设计时速80公里,人们驱车15分钟便可穿越秦岭这一中国南北分界线。值得称道的是,这个“世界之最”是完全由中国人自主设计施工的,而且在设计上也体现了人性化的理念:隧道里专门设置了特殊灯光带,通过不同的灯光和幻灯图案变化呈现出“蓝天”“白云”“彩虹”等景象,可以使驾驶员和乘客仿佛置身室外,有助于缓解驾驶和乘车的疲劳感。
台湾狮球岭隧道
秦岭终南山公路隧道
1876年10月,清政府以万两白银将英国人在上海修筑的吴淞铁路赎回,然而腐败的清政府根本认识不到铁路这种新式运输工具的优越性,反而昏庸地把这条不惜重金赎回的铁路拆掉了。当时的福建巡抚兼台湾学政丁日昌请求在台湾修筑铁路,于是把拆下来的钢轨、机车、车辆等器材运到了台湾的打狗港 (今高雄港),但清政府拒绝在经济上继续支持丁日昌的筑路计划,使台湾铁路一时未能修筑。
1885年,刘铭传任台湾首任巡抚,上任后他两次上书清政府,主张在台湾修筑铁路。当时,由于中法战争,基隆两次遭法军进攻,列强对我国领土虎视眈眈,垂涎三尺。为了免遭厄运,清政府决定有限制地修筑铁路,以强国防。正是在这种形势下,刘铭传的第二次上书才得到了批准。为解决筑路的款源,刘铭传采用了招股集资的方法,发行了铁路股票。
1887年6月,铁路自台北向基隆修筑,长公里,第二年又从台北往南向新竹修筑,长公里。在台北至基隆段,铁路要穿越狮球岭,需开凿261米长的隧道,这是中国最早的一座山岭隧道。隧道穿过页岩、砂岩夹粘土层,最大埋深为61米。由于当时资金及技术有限,只能因陋就简施工,加之缺少安全设施,施工中发生多次塌方。最后隧道贯通时,幸好没有发生 “穿袖子”现象 (左右错开),但是北端的标高竟高出南端米。无论如何,这座隧道的修筑留给后人许多宝贵的施工经验。
1891年10月,台北至基隆段通车,1893年1月,台北至新竹段通车。至此,基隆—台北—新竹全线建成通车,这是台湾历史上第一条铁路。这条铁路总耗银万两,平均每公里造价为万两白银,比当时国外的铁路造价还低。
挪威洛达尔隧道
挪威洛达尔隧道也可谓“世界第一”——世界上最长的单洞公路隧道,全长约公里。它位于挪威中部地区,东起洛达尔城,西至艾于兰城,是连接首都奥斯陆与第二大城市卑尔根的咽喉要道。
过去,来往于奥斯陆和卑尔根的车辆不仅要在洛达尔乘三个小时的轮渡穿越松恩峡湾,还要在洛达尔和艾于兰之间翻越地势险峻的山路,并且冬季冰冻时期禁止通行。洛达尔隧道通车后,两地间的行车时间从原先的14个小时缩短至7个小时,车辆在冬季照常通行。
根据设计,洛达尔隧道每小时通车能力为400辆。但由于挪威人口较少,隧道每昼夜通过的轿车仅为1000辆,仅为设计流量的十分之一。
瑞士圣哥达隧道
建筑中的落马洲支线铁路隧道
瑞士圣哥达隧道为世界上最长的汽车专用隧道,长公里。隧道穿越苏黎世东南阿尔卑斯山脉圣哥达峰,是瑞士国有公路系统中连接南北干线的重要枢纽。
这条隧道在设计施工中遇到了诸多技术难题。隧道需通过花岗岩、片麻岩和片岩等地层,最坏地段为风化的砂砾和滑石。为了便于通风、排水和出碴,需在隧道一侧30米处开挖平行导坑,每隔250米设一横向联络通道与隧道联通,以后还可用于修建第二条隧道。
在防火设计中,隧道顶部被分隔成进风道和排风道,一旦发生火灾,横向通风可分区段隔断而不影响其他通风区。隧道两端还设有计算机控制站,以监视和控制车流,并对空气清洁度变化、失火及照明亮度及时预警。
日本关越隧道
与前三座隧道相比,日本关越隧道是建造时间最早的一条超长公路隧道。为此,日本官方还发行了“开通纪念”邮票,以此来纪念这条日本最长的公路隧道。
这条隧道连接群马县与新潟县,全长公里。它贯穿了山峰险峻、终年积雪的谷川山脉。为防止山峰积雪崩塌、堵塞峒口,隧道采用了衬砌外伸的方式。此外,技术人员还采用了先进的隧道设备,设计一改长大隧道贯用的横向通风方式,率先运用电气除尘机和竖井相结合的纵向通风方式,降低了能耗,取得了明显成效。
5. 种类
铁路隧道
人行隧道:人行隧道 是土木工程、交通、建筑物、隧道之一种,作用供行人、通道使用,解决在地面人车争路的问题。
运河隧道
输水隧道
排水隧道(下水道为其一种)
山岭隧道:穿越山岭,供车辆行驶,减少行车距离。
城市地下隧道
水底隧道:水底隧道顾名思义是一种建于水底的隧道,而由于使用透明物料建造隧道组件有太多技术问题有待解决,所以现时未有采用透明物料在海底建造水底行车隧道。
海底隧道:海底隧道是在海底建造的连接海峡两岸的隧道,是供车辆通行的。
过江隧道
建筑中的沙田岭隧道管道
电缆隧道
隧道分类
1、按照隧道所处的地质条件分类:分为土质隧道和石质隧道。
2、按照隧道的长度分类:分为短隧道(铁路隧道规定:L≤500m;公路隧道规定:L≤250m)、中长隧道(铁路隧道规定:500<1000m)、长隧道(铁路隧道规定:300010000m;公路隧道规定:L>3000m)。<1000m)、长隧道(铁路隧道规定:3000
3、按照国际隧道协会(ITA)定义的隧道的横断面积的大小划分标准分类:分为极小断面隧道(2~3㎡)、小断面隧道(3~10㎡)、中等断面隧道(10~50㎡)、大断面隧道(50~100㎡)和特大断面隧道(大于100㎡)。
4、按照隧道所在的位置分类:分为山岭隧道、水底隧道和城市隧道。
5、按照隧道埋置的深度分类:分为浅埋隧道和深埋隧道。
6、按照隧道的用途分类:分为交通隧道、水工隧道、市政隧道和矿山隧道。
6.举例
欧洲
直布罗陀海峡跨海通道:由连结欧洲和非洲的海底隧道、及部分的海上桥梁所构成,由西班牙、英国、摩洛哥等拥有海峡主权的国家共同规划中。根据英国广播公司报道,兴建费用估计达100亿美元。
挪威的洛达尔隧道:世界最长的公路隧道,长度公里。
瑞士的圣哥达隧道:世界第三长的公路隧道,长度公里,连接瑞士的乌里州和提契诺州。
英法海底隧道:世界第二长的铁路隧道,长度公里,海底长度公里,也是世界海底长度最长的海底隧道,跨越英吉利海峡连接英国和法国。
亚洲
2002年尚在施工中的台湾雪山隧道
香港海底隧道:世界上最繁忙的行车隧道之一,全长公里,平均每日行车量达121700辆,跨越维多利亚港连接九龙半岛和香港岛。
青函隧道:目前世界最长的铁路隧道,全长公里,海底长度公里。此隧道跨越津轻海峡连接日本的北海道和本州。
秦岭终南山特长公路隧道:亚洲及中国最长的公路隧道,也是世界最长的双孔公路隧道,长公里,2006年完工后已超过圣哥达隧道成为世界第二长的公路隧道。
北京五环路的晓月隧道:北京五环路的唯一隧道,为下穿式隧道。
北京六环路的卧龙岗隧道:北京环路唯一的越岭隧道。
台湾的雪山隧道:东南亚最长的公路隧道,也是全世界规模最大的双孔公路隧道群,全长公里,跨越雪山山脉支脉连接台北台北县和宜兰县。
高雄港过港隧道:跨越高雄港连接高雄市前镇区和旗津区,是台湾唯一的水底公路隧道。
风火山隧道:位于青藏高原。轨道面海拔4905米,是世界上海拔最高的隧道,也是世界上海拔最高的高原冻土隧道。
美洲
美国的德拉瓦隧道:世界最长的输水隧道,全长169公里。
美国纽约的林肯隧道:跨越哈德逊河连接纽约市和纽泽西州,是世界最繁忙的公路隧道之一,长度公里。
香港隧道
香港岛:
香港仔隧道
海底隧道:
香港海底隧道
东区海底隧道
西区海底隧道
九龙:
启德隧道(前称机场隧道)
九龙至新界:
狮子山隧道
大老山隧道
将军澳隧道
尖山隧道
沙田岭隧道
新界:
孖指径隧道(一般和针山隧道合称城门隧道)
针山隧道(一般和孖指径隧道合称城门隧道)
长青隧道
大榄隧道(包括在青朗公路内)
愉景湾隧道
南湾隧道
大围隧道
另外,香港约有50多条供汽车通过的下通道。
中国隧道
公路隧道:
上海地区隧道:
上海长江隧道
外环隧道
翔殷路隧道
西藏南路隧道
复兴东路隧道
上中路隧道
大连路隧道
延安东路隧道
打浦路隧道(中国第一条水底道路隧道)
上海外滩观光隧道
临沂三河口隧道(山东省第一条内河河底隧道)
中国澳门地区隧道:
澳门松山队道
其他地区:
珠江隧道
双向分离式四车道终南山隧道位居世界第二、亚洲第一长的公路隧道。
高度争议的台海隧道也在计划中。
厦门翔安隧道中国首条海底隧道工程计划2009年完工启用工程总投资约32亿元人民币。
北京五环路的晓月隧道:北京市区内唯一隧道,也是北京环路的唯一隧道。
马尾隧道
鼓山隧道
雪峰山隧道:位于上海到瑞丽高速公路湖南邵阳至怀化路段之间,为双洞双车道隧道,全长7039米,是全国高速公路第三长隧道。
铁路隧道:
八达岭铁路隧道
中国目前最长的隧道是铁路线上的秦岭隧道,全长公里。
川藏公路海子山隧道全长公里。
乌鞘岭特长隧道
深埋隧道工程的灾害地质问题论文
摘要 :在进行深埋隧道工程施工过程中,由于洞程较长,洞深埋设较大,地质条件较复杂,在施工时,如果处理措施不当会出现高地温、岩爆、高压涌水等问题。鉴于此,以实际工程为例,对深埋隧道工程主要存在的灾害地质问题进行了分析和探讨,保证了施工的顺利进行,以期为类似工程提供参考与借鉴。
关键词 :深埋隧道工程;灾害地质;高压涌水
1工程概况
太行山高速公路邯郸东坡隧道位于武安市岭底村南、七水岭村东、涉县东坡村东北处。隧道为分离式特长隧道,隧道工程总施工长度为3134m。左幅为ZK38+624~ZK41+740,长3116;右幅为K38+642~K41+776。最大埋深为176m。本文以此工程为例,对深埋隧道工程主要灾害地质问题进行分析和探讨。
2深埋隧道中的高地温难题
深埋地下隧道的工程中,地质问题是需要进行探索和研究的关键领域,最先要通过预测天然地温,一旦地温超过30℃一般将其称之为高地温。高地温不仅会恶化深埋隧道作业的环境,还会严重降低工人的劳动生产率,甚至会对现场施工人员的生命造成极大危害。此外,对深埋隧道施工材料选取的难度也相应增加[1]。然而,地温值是随着地下工程埋深在不断变化的,但地下工程的最大埋深和地温值的增加关系不是呈线性的,因为造成这种深埋隧道中的高地温问题的原因主要是地下水活动以及近期岩浆活动中放射性生热元素含量较高等。
3深埋隧道与岩爆的高地应力问题
在深埋地下隧道的工程中,其中一个突出的地质难题就是岩爆问题。地下隧道工程埋得越深,其地应力就会越高。深埋隧道工程和近地表工程的不同之处除了具有较高的水平构造应力外,最主要取决于围岩出现的高地应力。它不仅在硐侧壁引起高压应力,还导致硐顶部出现高拉应力,这样会导致硐室围岩不稳定,埋下隐患。由于高地应力的存在,一些黏性土含量较高,而硬岩含量较低的围岩就会产生被塑性挤出的可能。高地应力不断释放,地下隧洞就会发生变形,往往会出现隧洞短时间内突然变小的异常现象。就好比从掌子面距离正洞30m开始,洞身变形的长度有40m,起初的支架保护结构破坏就会非常严重,通过测量计算,隧洞拱顶的下沉在10~20cm之间,隧洞的拱脚和边墙也出现不同程度的挤压和移位,甚至还有混凝土开裂的情况[2]。这时就需设计一套科学有效、刚柔结合、综合治理的施工方案。为克制高地应力,考虑使用约1万根超长锚杆,要求总长超过11×104m,把地下隧洞中的断面改成环形成拱,做到先柔后刚、先放后抗的设计要求。岩爆受影响的原因有地震爆破,也有相邻岩爆或机械等外因动力的振动,但其中影响岩爆的最基本原因是岩石的结构特征。经过大量的数据分析发现,岩石颗粒排列呈定向排列还是随机排列,岩石是胶结连接还是结晶连接,是钙质胶结还是硅质胶结,这最终关系着岩爆烈度的强弱。例如:(1)随机排列的花岗岩、闪长岩等岩石的岩爆烈度,会比片麻岩、花岗片麻岩、糜棱岩等具有定向排列的围岩颗粒更强一些;(2)结晶连接的深层岩浆岩石中的岩爆烈度比胶结连接的沉积岩强;(3)具有硅质胶结岩石的天生桥二级水电站引水隧洞比关村坝的隧道中钙质胶结岩石的爆烈度强。
4深埋隧道中的高压涌水难题
深埋地下隧道的施工过程中,除了高地温以外,涌水问题也成为隧道运营中亟待解决的又一难题。由于地质条件复杂,隧道通过的地段会挖掘出很多水流量大的地质单元,一般就会出现涌水量大或水头压力高的情况。地下水水压在深部岩体中极高时,就会导致岩体水力劈裂。这就说明在高水头压力的作用下,在岩体的突水点附近,岩体断续裂隙、裂缝是朝着某个方向的,受网状交织的构造裂隙影响,经过融合后发生扩展的裂隙、空隙最终张裂开来。随着隧道深部岩体涌水量越来越大,地下水水压越来越高,会导致深埋隧道工程围岩水力劈裂。一旦出现水力劈裂的情况,就会迅速连通裂隙,空隙的张裂程度就会越来越大,涌水的渗透力会越来越强。再加上动水压力的影响,裂隙会再扩展,而使在裂隙面上的充填物发生剪切变形和位移。不论是在深埋隧道工程中还是在浅埋隧道中,容易发生的地质灾害主要表现为断层破碎带,岩体不整合接触面和结构不利组合段造成的塌方、地震,还有瓦斯爆炸、有害气体以及溶岩塌陷、泥屑流等[3]。其中,瓦斯爆炸主要指甲烷CH4在相对封闭的煤系构造地层中,由冲击波的产生、剧烈的氧化作用而导致的爆破,其灾害性极强。
5基岩裂隙水
基岩裂隙水的含义
只有储存在坚硬岩石裂隙中的非可溶性地下水,才被统一归纳在基岩裂隙水的`传统范畴中,根据含水介质的基础特征,可以将地下水分为空隙、裂隙、岩溶3种,但并非在地下水、岩石以及岩石中的空隙这3者之中产生对应关系。贮水空隙系统具有双重空隙介质,在地下水勘探中,关于贮水空隙类型还探索到了新的领域。基岩裂隙水主要存在于受符合地质构造条件的属坚硬或半坚硬的岩石所控制的以裂隙为主的贮水空间,是具有运动、富集规律的地下水。不管是溶蚀裂隙地下水在可溶性岩石中的部分,还是孔隙裂隙水中的半坚硬岩石,都属于基岩裂隙水,而它与其他类型地下水的基本区别,关键在于是不是受地质构造因素的严格控制。岩石含水的裂隙有成岩裂、构造裂和风化裂,主要是依照它的成因来划分的。如果非要与风化裂隙水和成岩裂隙水作比较,那么水源集中、水量较大的必定是构造裂隙。
基岩裂隙水的特点
由于主控因素作用,不同的蓄水构造中分布、富集基岩裂隙水的基本规律和决定主控的因素也基本相同,具有独特的分布和运动规律。我国基岩裂隙水富集的基本特色理论就是蓄水构造系统,其主要特点如下。(1)基岩裂隙水具有复杂多样的埋藏和分布形态。将储存、运移基岩裂隙水的空间和通道,叫做岩石裂隙。基岩裂隙的大小和基岩裂隙的形状,以及控制埋藏和分布裂隙发育带的产状,都是受地质构造、地层岩性、地貌条件等影响的。埋藏、分布不均匀的基岩裂隙水,大多具有不规则的含水层、多种多样形态、分布呈带状的特点[4]。比如用脆性和塑性这两种地层做比较,会产生较强的赋水性。若裂隙发育在褶皱构造中,像褶皱轴、转折、背斜倾伏等处,富水段的形成就会比较容易,而压性断裂破碎带中的赋水性是比较差的。(2)复杂的基岩裂隙水中,由于储存空间中不均匀的介质,埋深程度不同的同一含水层,其地下水的运动状态也各有不同。对于岩石中所要形成和分布的空隙,最基础的因素是地质构造,主要表现在:岩石裂隙的发育和裂隙水的储存都是受地质构造和地层岩性所影响,其中,基岩裂隙水的运动规律也被地质构造所牵制。由于地下水面的不同,即便是在基岩相同的裂缝水中,也是有时而出现无压水,时而出现承压水的情况[5]。层流、管道流、紊流、明渠流水是在岩石裂隙、溶洞的特殊形态作用下形成水运动的不同状态,因此,基岩裂隙水的不均一性以及强烈的方向感,是导致裂隙岩体的透水复杂多样、不具有规律性的根本原因。
6结论
在深埋地下隧道的工程中,比较突出的几大地质难题包括高地应力及岩爆问题、高压涌水突水问题、高地温问题等。此外,还有像地震震害、瓦斯有害气体爆炸以及涌水突泥、围岩塌方、岩溶塌陷、泥屑流等。于是,在这个复杂的、系统的深埋隧道工程中,关于灾害地质的研究,对隧道工程能否顺利开展是关键的一步,在隧道工程施工前应按照隧道工程的各方面具体情况,采取有效、有针对性的防御措施。
参考文献:
[1]重庆交通科研设计院.公路隧道设计规范:JTGD70—2004[S].北京:人民交通出版社,2004.
[2]上海市隧道工程轨道交通设计研究院,清华大学.隧道工程防水技术规范:CECS370—2014[S].北京:中国计划出版社,2014
[3]孙赤.锦屏二级深埋隧道大理岩段突水破坏机理研究[D].成都:成都理工大学,2014.
[4]王洪新.土压平衡盾构刀盘开口率选型及其对地层适应性研究[J].土木工程学报,2010(3):88-92.
[5]武力,屈福政,孙伟,等.基于离散元的土压平衡盾构密封舱压力分析[J].岩土工程学报,2010,32(1):18-23.
火灾带来的危害极其的大,特别是在高速公路隧道里,那你知道高速公路隧道火灾的发生原因以及应急 措施 有哪些吗?下面是我带来的关于高速公路隧道火灾的发生原因以及应急措施的内容,欢迎阅读参考! 高速公路隧道火灾的发生原因以及应急措施 1. 隧道火灾的原因及隐患 隧道火灾的原因:从国内外隧道火灾事故案例可知,造成火灾事故的原因是多方面的。隧道火灾原因大致有以下几个方面。 车辆本身故障引发的火灾:车辆故障引发汽车火灾的主要原因有机件摩擦起火、化油器回火、电气线路短路、车辆漏油等引发火灾。 车辆撞击起火:由于隧道内车辆超速行驶和隧道能见度低,极易发生车辆之间、车辆与隧道及隧道设施相撞或擦挂,发生交通事故导致火灾的。 车辆上的货物引起火灾的:隧道内有各种车辆通过,他们所载的货物有可燃的或易燃的物品,可能会因各种原因引发火灾。 另外还有隧道内的设施、设备着火而引起的隧道火灾等。 隧道火灾的隐患:据国际消防技术委员会(CTIF)近期对多国隧道的检查中发现,当前不少隧道由于设计和管理差错,存在以下火灾隐患。 缺少紧急出口通道:当前各国隧道的外观比较优美,结构各不相同,高度和密度也各异,但都缺少紧急进出口道。不少公路只能从两端进出。有些隧道虽然有少量进出口道,但标志不醒目,一旦发生火灾,不但消防和救护车辆无法到现场,遇难者也难逃出,必然造成重大损失。 防火救护设备少:不少隧道内缺少灭火水源和灭火器,消火栓间隔太远,救护工具也很少。一旦发生火灾,现场人员无法及时灭火救灾。此外还有许多人们不重视或不了解的危险因素。如国际消防技术委员会多次火灾案例 报告 中所述,通过隧道运输的面粉、咖啡粉和牛奶粉等有机粉末与隧道中灰尘混合后,遇到高温或明火时同样会发生爆炸。隧道火灾危险性大于敞开空间火灾的危险性。 通风排气道少:隧道中经常运输化学物品和多种易燃易爆物品,由于隧道内通风排气道少,必然通风不畅,温度上升快,许多有害气体都滞留在隧道内,不但伤害人体健康,而且遇到高温和名火,及易发生火灾和爆炸,造成重大损失。 2. 隧道火灾的防范 隧道的耐火等级:隧道内发生火灾时,隧道顶部的温度将会很高。而公路隧道墙体内一般埋有电缆等设施,如果墙体耐火等级太低火灾时极易将电缆烧坏,影响隧道内设备的使用。因而隧道所用的材料耐火极限应为 ,隧道内的拱顶和侧壁的表面应喷涂隧道防火涂料或其他措施予以保护,提高其耐火等级,使耐火极限达到2h以上,防止隧道内混凝土在火灾中迅速升温而降低强度,避免混凝土炸裂、衬内钢筋破坏失去支撑能力而导致隧道内垮塌,防止墙体内埋的电缆等设施烧坏。同时对墙体内的电缆还应用阻燃电缆或耐火电缆,各类电气线路均应穿管保护。 隧道内的消防设施:隧道是一个近似密闭状态的交通设施,为了能及时了解隧道的营运情况,应在隧道内安装电视监控系统。此外,为了使火灾或其他突法事件能及时得到解决,隧道内还应安装应急设施,主要包括报警设施(隧道内车辆多,排放的烟气多,不适合安装感烟探测器,宜采用感温探测器或火焰探测器)。在安装自动报警设施的同时还应安装手动报警装置,以便发现火情的人员能够迅速报警。另外,宜在每隔一定距离设置消防应急电话,手动报警设施和应急电话可设在消火栓箱旁。疏散设施,为了控制人员伤亡和财产损失,也为了是消防人员快速进入火灾现场扑救,必须尽可能快的疏散人员和车辆。短距离的隧道可用自然通风,如果隧道内采用纵向通风系统,火灾时烟气将会顺车道扩散,则应设置避难设施。隧道内应设置事故照明和安全疏散引导引导标志,以便火灾时指示人们的避难方向。灭火设施,在隧道内应配备必要的灭火器材,应设置消火栓系统以及便携式灭火器材。 隧道的消防管理:隧道的火灾主要是通过隧道内的车辆引起的,加强安全管理首先应从加强车辆管理入手,隧道管理部门通过监控系统对隧道内车辆进行监控,如果发生事故,隧道管理部门应立即派车进行疏散。公安交警应加强对进入隧道的车辆以及驾驶人员的检查,对酒后驾车和疲劳驾驶的驾驶员不许进入隧道。另外,隧道管理部门还应定期检查隧道内的消防设施、火灾隐患和消防安全工作等。 3.隧道火灾时各系统的控制 隧道通风系统的控制:正常交通情况:稀释隧道内汽车行驶时派出废气中以CO气体为主的有害物质和烟雾,为乘用人员、维修人员提供符合卫生标准的洞内空气环境,为安全行车提供良好的清晰视线。 火灾事故情况:通风系统具备双向排烟功能,在事故发生时能控制烟雾和热量的扩散,可根据消防及救援人员的现场要求控制和调节隧道洞内的风向和风量。火灾状态时,隧道内的风速应控制在3m/s以内。 控制的目的是保障隧道内环境指标处于标准允许范围内,即CO浓度低于标准要求的230ppm,烟雾透过率低于。 启动风机应首选累计启动时间最短的风机,以平衡各组风机的劳逸程度,延长风机寿命。 为了减缓风机启动瞬间的电流冲击,启动风机时各组风机之间要有足够的延时,如果改变送风方向,应确保先关停再启动反向运转。 启动一组风机5分钟或10分钟后,如果各项指标没有明显下降应再启动一组,直到全部风机启动。若还无法降至允许范围内,监控系统应立即向监控员发出报警信息,提示关闭隧道。 在隧道火灾时,风机启动和送风方向在火灾早期应以抑制或减缓洞内烟雾和有毒气体扩散速度和范围为目标,以确保受困人员有足够时间安全疏散。如果车行横洞没有安装防火卷帘门,可以通过横洞两侧前后两组风机互相对吹,在车行横洞内形成空气反压,来阻止火灾隧道有毒气体向另一侧扩散。 可变情报板信息的发布:隧道洞内外情报板和可变限速标志信息发布主要是配合隧道内事件的发生,及时向隧道内司乘人员和救助人员提供疏散路径、隧道环境状况、交通管制等信息,以便及时掌握隧道内情况,配合应急部门处理应急事件。 隧道的照明控制:隧道的照明控制确保车辆驾驶员在进出隧道时实现洞内外光线平稳过渡,避免因“黑洞”或“白洞”现象而影响车辆行驶安全。照明控制一般根据洞口光强检测值或人工设定的时序参数进行自动控制。但是在隧道发生火灾时,应与事件处理要求实现联动控制、为疏散人员和事件处理部门提供照明。 以上2个系统的控制在监控系统检测到火灾报警后,由监控中心下达命令,切断市电供电,由市电切换到配电柜处安装的应急电源EPS,同时熄灭隧道内的照明灯,由EPS供电,支持应急灯照明和风机的运行,在此期间,依照设计时定的方案,自动或手动控制发电机的启动,来供隧道内各个设施的用电。 隧道广播:隧道广播主要用于隧道突发事件时操作员指挥洞内受阻人员和车辆及时安全的按预定方案疏散,以及组织灭火等突发时间的处理。 交通信号控制:交通信号系统主要用于隧道正常交通指示以及隧道发生火灾、交通阻塞和事故等事件的交通控制。 高速公路隧道火灾的发生原因论文:《高速公路隧道火灾及应急措施》 摘 要:近年来,交通运输业的发展迅速,根据我国国土资源状况,公路隧道适应于地形复杂、运输量大、高效高速的运输要求,但其中也存在极大的安全隐患,隧道封闭式的构造不利于救援,因此 文章 就高速公路隧道火灾事故发生原因进行分析,为火灾事故预防体系以及应急预案提出建议。 关键词:高速公路;隧道火灾;预防措施;应急救援 1 概述 据统计,我国公路运输采用隧道的比重越来越大,呈现发展迅速、里程长、构造复杂的特点,公路隧道和城市越江隧道被广泛地建设使用,使用率在世界前列。但其较易引发火灾的通行环境存留安全隐患,若火灾发生将会带来不可估计的影响。 2 隧道火灾的起因 公路隧道里程长、交通运输量大,运载的危险品车辆选择隧道通行,在隧道环境长时间快速行驶容易造成爆炸、火灾事故,产生事故的原因存在多种,车辆自身设备以及隧道内环境是其中之一,如图1所示。 由于车辆配置设备自身问题造成的火灾占主体,还有因隧道内交通事故起火的占三成以上,另外还有车辆装载货物易燃易爆或者因放置不当造成火灾、电缆线路短路等原因并行。 3 高速公路隧道火灾发生原因、特征分析 高速公路隧道的基础环境与公路不同,封闭、长时间高速运行的状态,由于通风状态差,各种事故中以火灾所占比重较大,下文主要分析火灾发生的特征: 起火原因的多重性 据图1的比重图分析:隧道内通行车辆类型繁多,运载 物品类 型及危险等级不同,两种情况的不确定性叠加造成了起火原因的多重性,而具体火灾事故的影响程度不能估量,给预警机制构建提出了难题。 火灾蔓延速度快 据研究数据显示,隧道内如遇急速性的爆炸或者其他因素引起的火灾,在极短的时间内隧道里温度瞬间上升到1000℃以上,高温环境容易造成二次爆炸,随之形成浓烟及致命气体。隧道内密闭性强,空气不足造成不充分燃烧,有毒气体在出风口遇见易燃物又会重新引起火灾,影响应急出口的安全逃生及救援时间,形成内外大范围内的火势蔓延,拖延了宝贵的救援时间,对人民生命财产安全带来巨大的威胁,造成不可估计的影响。 救援难度高 公路隧道地处偏离市中心的地段或者地形复杂的山区等,发生事故时一方面高温、封闭环境不利于烟及易燃气体的扩散,集中在隧道内可视度降低,不能判断具体的起火原因,导致救援计划延后,不易于救援;另一方面,偏远的区位、复杂的现场环境阻碍了基本救援的进度,消防设施不到位,隧道内交通瘫痪加大了救援的难度,这也是公路隧道火灾事故影响大的原因之一。 4 高速公路隧道事故应急预案 前期宣传工作 针对行车安全常识、火灾引发原因印发相关的安全、急救措施,在公路入口处发放给司机,印制警示海报、定制安全警示牌时刻提醒驾驶员莫大意,在广播、电视中播放相关的宣传片。 设计防火建筑结构 隧道内的密闭环境很容易形成高温环境,建议设计者采用耐高温的建筑材料,施工时可以增加衬砌厚度,在外层涂抹耐火材料。做好隧道内埋线施工,减少内部环境对线缆的影响。选用安全性能高的基本器材,应采用不易造成有害物质的材料。隧道设计时应考虑救援通道等,能够缩短救援宝贵时间。 定期进行基本养护、检查 定期进行巡查能够排除基本的安全隐患,增强隧道的通行能力,以保证安全通畅的运营环境,例如循例进行路面坑洼的排查、及时补救开裂等状况,加大路面的摩擦力,确保车辆安全。同时严格把握车辆的准入机制,超载、违禁、运输危险物品的车辆要及时查扣,准许放行的车辆必须有相关的证件,同时要上报行车路线以及安全防护措施。多加排查以及养护能够减少事故的发生。 建立预警系统 隧道内应配备预警装置,能够及时发出警报,提高救援速度,根据高温、浓烟的事故特征可匹配以温度、烟雾、光为触发机制的警报器,及时监控隧道内情况。每个行车路段应设立手动的报警设备,提高危险环境下的应急性,设立专人岗位监察安全情况,增加隧道内的照明及预警标识。 5 高速公路隧道火灾事故的应急措施 迅速报警,加大救援速度 如收到报警信号时,首先判断信号来源,在根据报警信息查找事故发生点,调动监控录像及时更新事故情况,以便针对具体情况建立相应的应急、抢救措施,并及时联系相关救援单位,通过指挥中心协调消防、医疗等单位的联合行动,加大救援力度。 建立科学的救援预案 通风照明预案。火灾事故发生后,及时通风是救援的关键,通风能够减少可燃气体的二次爆炸,通风和照明配合能够降低现场事故蔓延的影响,为救援提供前提。在隧道内安装排风机能够有效控制火势,防止烟雾造成的二次伤害,加快人员的疏散速度,待人员疏散后、危险品得以控制后,开启排风系统为救火、根除火源提供准备。 人员疏散及就医措施。事故发生后由于危险的环境会给受困人员带来恐慌,危险环境内易造成踩踏等附带事故。若司机发现着火现象应停靠在一侧车道内,及时停止发动机,若情况在可控制范围内,先采取基本灭火措施,并及时报警,安排其他人员疏导交通。若发现隧道内有起火现象应先报告发生地点与情况,极度危险的情况下,要先考虑自身安全。事故发生时要保持镇定,配合消防及救护人员工作,先保证受伤人员能够得到及时救治,服从现场指挥。 交通控制预案。交通控制是为了及时疏散人员、车辆,为救援打开通道,在事故发生后要及时进行交通预警,减少该地区的前往车流量,为消防、医疗提供畅通的交通,及时在隧道设立关卡,避免车辆进入事故发生点。由于隧道建筑构造各有不同,交通控制预案应根据实际的隧道通行情况建立合理、科学的管制、疏导方案,应将救援、疏导放在第一位,规划救援和就医的路线。 消防灭火预案。隧道内的灭火方案应该根据具体的构造采取相应的控制措施,主要是根据火灾多发的原因分为两种:即隔绝氧气和控制温度 方法 。由于前期对事故现场情况掌握不足,应考虑足够的救援方案,对事故区域进行隔断。断氧窒息灭火法是采用断绝可燃环境的原理。使用防火材料对事故区域封闭,若是长距离的区域可以使用水幕带或防火门隔断。第二是通过降温处理灭火,采用化学、物理方法对环境降温,喷水或者使用灭火器以达到降温的效果。若是复杂的情况可交叉使用多种方法,目的在于缩短灭火时间,减少伤害。 6 结束语 综上所述,高速公路隧道火灾事故频发且危害重大,文章结合高速公路隧道事故预防及应急施救实践,分析了隧道火灾的起因、特点,并提出高速公路隧道火灾事故的预防对策,以期指导隧道火灾救援,提高我国高速公路隧道行车安全性。 参考文献 [1]杨高尚,彭立敏,安永林.公路隧道火灾起因及预防研究[J].灾害学,2008(03). [2]曹霄剑.浅谈高速公路隧道安全管理[J].黑龙江交通科技,2010(06). [3]邵景干,钱超.公路隧道突发事件应急救援管理机制研究[J].中国交通信息产业,2009(10). [4]吕将,徐建明.高速公路隧道工程消防设计探讨[J].安防科技,2008(04). [5]王瑚.隧道问安(下)―预防隧道灾难的现实问题[J].上海消防,2005(07). 高速公路隧道火灾的应急措施论文:《浅议高速公路隧道交通火灾扑救对策》 摘 要:随着经济的快速发展,交通网络越来越复杂,高速公路在交通运输中起到了中流砥柱的作用。本文介绍了高速公路隧道火灾发生的原因及危害性,对隧道火灾中烟气流动和火焰传播特性进行了理论分析,并且通过典型事件针对突发情况时通风、照明等各个系统的工作情况和隧道火灾的控制预案进行分析说明。 关键词:高速公路隧道;火灾扑救;对策 1隧道火灾的原因及隐患 1)隧道火灾的原因 从国内外隧道火灾事故案例可知,造成火灾事故的原因是多方面的。隧道火灾原因大致有以下几个方面。 1. 车辆本身故障引发的火灾:车辆故障引发汽车火灾的主要原因有机件摩擦起火、化油器回火、电气线路短路、车辆漏油等引发火灾。 2. 车辆撞击起火:由于隧道内车辆超速行驶和隧道能见度低,极易发生车辆之间、车辆与隧道及隧道设施相撞或擦挂,发生交通事故导致火灾的。 3. 车辆上的货物引起火灾的:隧道内有各种车辆通过,他们所载的货物有可燃的或易燃的物品,可能会因各种原因引发火灾。 另外还有隧道内的设施、设备着火而引起的隧道火灾等。 2) 隧道火灾的隐患 据国际消防技术委员会(CTIF)近期对多国隧道的检查中发现,当前不少隧道由于设计和管理差错,存在以下火灾隐患。 1.通风排气道少:隧道中经常运输化学物品和多种易燃易爆物品,由于隧道内通风排气道少,必然通风不畅,温度上升快,许多有害气体都滞留在隧道内,不但伤害人体健康,而且遇到高温和名火,及易发生火灾和爆炸,造成重大损失。 2.缺少紧急出口通道:当前各国隧道的外观比较优美,结构各不相同,高度和密度也各异,但都缺少紧急进出口道。不少公路只能从两端进出。有些隧道虽然有少量进出口道,但标志不醒目,一旦发生火灾,不但消防和救护车辆无法到现场,遇难者也难逃出,必然造成重大损失。 3.防火救护设备少:不少隧道内缺少灭火水源和灭火器,消火栓间隔太远,救护工具也很少。一旦发生火灾,现场人员无法及时灭火救灾。此外还有许多人们不重视或不了解的危险因素。如国际消防技术委员会多次火灾案例报告中所述,通过隧道运输的面粉、咖啡粉和牛奶粉等有机粉末与隧道中灰尘混合后,遇到高温或明火时同样会发生爆炸。隧道火灾危险性大于敞开空间火灾的危险性。 2 隧道火灾中烟气流动和火焰传播速度的特性 日本隧道火灾研究所在隧道火灾的研究中,建造了长21m、高、宽的隧道模型,研究表明,隧道内燃料的燃烧速度是敞开空间的3倍,隧道火灾中,隧道内温度可达到1000℃。当隧道发生火灾时,向隧道内送风,在一定程度的风速下,火焰的燃烧速度和敞开空间一致;如果风速减弱,火源正上方的隧道壁温度将很快升高,通过辐射热量的返回,燃烧速度将猛烈增加。隧道火灾烟气流动和火焰传播、扩散是十分复杂的现象。隧道火灾的危害主要来自于烟气和火势的蔓延,而烟气的扩散和火焰的传播速度完全被隧道气流控制。 无风隧道中烟气自由流动扩散的主要特性。其特征表现为缓慢而非稳定的流动扩散过程。火灾初期阶段烟气在隧道上部空间呈流束状的纵向延伸,同时逐渐向下部空间的空气区横向扩展。这种烟气和空气的分层作用将随着烟气扩散逐渐减弱以致消失,在一定距离处以全断面的烟气流状态继续扩散,已形成的流束状烟气也渐趋消失。其结果在隧道中形成大范围、高浓度的烟气危害区,在火灾初期阶段,利用烟雾和空气的分层现象和扩散,将对控制隧道火灾、防灾起到积极作用。但是,当自由扩散形成烟气危害区以后,将对防灾产生不利的影响。利用通风气流改变这一流动扩散形态,将对控制隧道火灾、防灾产生明显效果。在自然风控制下隧道中的烟气受限流动扩散特性表现为:在下部烟气区,燃烧生成的烟气即刻被气流裹携,并在强烈的混掺作用下很快扩散至整个流区空间。烟雾区位置和对烟雾的稀释程度,是与火灾的发生位置和强度密切相关的。在少数特定的条件下,直接利用自然风控制火灾烟雾可以获得良好的防灾效果,但大多数情况下将对防灾产生不利影响甚至严重后果。因此,利用风机对气流的调节作用,改变烟雾的扩散形态对于控制火灾是十分必要的。 利用风机改变隧道中的自然风状态(包括静止状态),这时的烟雾扩散完全被调控气流所控制,称为烟气的强制扩散。由于气流的调控不仅可以进行不同幅度的增速、减速调节,而且还能改变流动的方向。因此,被调控气流所控制的烟雾扩散浓度和扩散区域也随之变化,这种烟雾扩散特性更能适应隧道防灾的要求。从此意义上说,烟气的强制扩散是控制隧道火灾的一种主要扩散形式。通过气流的调控改变烟气和火焰传播扩散特性,不仅是必要的,而且也是可行的。 3 隧道火灾的防范 1)隧道的耐火等级 隧道内发生火灾时,隧道顶部的温度将会很高。而公路隧道墙体内一般埋有电缆等设施,如果墙体耐火等级太低火灾时极易将电缆烧坏,影响隧道内设备的使用。因而隧道所用的材料耐火极限应为 ,隧道内的拱顶和侧壁的表面应喷涂隧道防火涂料或其他措施予以保护,提高其耐火等级,使耐火极限达到2h以上,防止隧道内混凝土在火灾中迅速升温而降低强度,避免混凝土炸裂、衬内钢筋破坏失去支撑能力而导致隧道内垮塌,防止墙体内埋的电缆等设施烧坏。同时对墙体内的电缆还应用阻燃电缆或耐火电缆,各类电气线路均应穿管保护。 2)隧道内的消防设施 隧道是一个近似密闭状态的交通设施,为了能及时了解隧道的营运情况,应在隧道内安装电视监控系统。此外,为了使火灾或其他突法事件能及时得到解决,隧道内还应安装应急设施,主要包括报警设施(隧道内车辆多,排放的烟气多,不适合安装感烟探测器,宜采用感温探测器或火焰探测器)。在安装自动报警设施的同时还应安装手动报警装置,以便发现火情的人员能够迅速报警。另外,宜在每隔一定距离设置消防应急电话,手动报警设施和应急电话可设在消火栓箱旁。疏散设施,为了控制人员伤亡和财产损失,也为了是消防人员快速进入火灾现场扑救,必须尽可能快的疏散人员和车辆。短距离的隧道可用自然通风,如果隧道内采用纵向通风系统,火灾时烟气将会顺车道扩散,则应设置避难设施。隧道内应设置事故照明和安全疏散引导引导标志,以便火灾时指示人们的避难方向。灭火设施,在隧道内应配备必要的灭火器材,应设置消火栓系统以及便携式灭火器材。 3)隧道的消防管理 隧道的火灾主要是通过隧道内的车辆引起的,加强安全管理首先应从加强车辆管理入手,隧道管理部门通过监控系统对隧道内车辆进行监控,如果发生事故,隧道管理部门应立即派车进行疏散。公安交警应加强对进入隧道的车辆以及驾驶人员的检查,对酒后驾车和疲劳驾驶的驾驶员不许进入隧道。另外,隧道管理部门还应定期检查隧道内的消防设施、火灾隐患和消防安全工作等。 4 隧道火灾时各系统的控制 1)隧道的照明控制 隧道的照明控制确保车辆驾驶员在进出隧道时实现洞内外光线平稳过渡,避免因“黑洞”或“白洞”现象而影响车辆行驶安全。照明控制一般根据洞口光强检测值或人工设定的时序参数进行自动控制。但是在隧道发生火灾时,应与事件处理要求实现联动控制、为疏散人员和事件处理部门提供照明。 以上2个系统的控制在监控系统检测到火灾报警后,由监控中心下达命令,切断市电供电,由市电切换到配电柜处安装的应急电源EPS,同时熄灭隧道内的照明灯,由EPS供电,支持应急灯照明和风机的运行,在此期间,依照设计时定的方案,自动或手动控制发电机的启动,来供隧道内各个设施的用电。 2)可变情报板信息的发布 隧道洞内外情报板和可变限速标志信息发布主要是配合隧道内事件的发生,及时向隧道内司乘人员和救助人员提供疏散路径、隧道环境状况、交通管制等信息,以便及时掌握隧道内情况,配合应急部门处理应急事件。 3)隧道广播 隧道广播主要用于隧道突发事件时操作员指挥洞内受阻人员和车辆及时安全的按预定方案疏散,以及组织灭火等突发时间的处理。 4)交通信号控制 交通信号系统主要用于隧道正常交通指示以及隧道发生火灾、交通阻塞和事故等事件的交通控制。 5 结束语 随着社会的发展,高速公路建设越来越重要,隧道内的突发事件也同样得到越来越多的重视,可见一份火灾应急方案的制定对于高速公路的管理者来说是十分必要的。 从各个方面采取措施,可以最大程度地降低道路隧道火灾事故的危害,为人民造福,为社会造福。 参考文献: [1]刘万里《高速公路运营管理》[M],冶金出版社,2010. [2]刘剑安《道路运输安全》[M],冶金出版社,2011. 猜你喜欢: 1. 最新常见的车辆漏油原因 2. 火灾事故应急处置措施 3. 发生火灾应急处理方法 4. 火灾应急救援措施 5. 发生火灾事故后应如何应急 6. 发生火灾应采取哪些应急措施
论地下工程引起的地质问题及防治措施论文
摘要:随着城市建设的大力发展,地下工程建设越来越多,由此引发的各类工程地质问题也逐渐显现出来,根据城市地下工程的特点,对地下工程开挖引起的工程地质问题进行了分析并提出了预防措施。
关键词:地下工程;工程地质问题;预防
城市地下工程具有现场环境条件复杂、施工难度大、技术要求高、工期长、对环境影响控制要求高等特点,是一项相当复杂的高风险性系统工程。但是,地下工程建设一般都在市区内,在其施工过程中常常会引起周围地层的位移、变形、沉降与塌陷等环境地质效应,对周围地面建筑物及基础、地下早期人防和其他构筑物、公共地下管线和各种地下设施以及城市道路的路基、路面等都可能构成不同程度的危害,已经出现并且孕育诸多工程地质问题。
1地下工程开挖引起的工程地质问题
地面沉降
地层初始应力状态的改变引起的地表沉降:地下工程开挖是在存在初始应力场的地层中进行的,开挖引起地层初始应力状态的改变,即二次应力场,它是由地层初始应力场与开挖引起的附加应力场的叠加应力场,对应二次应力场开挖的位移场仅是由开挖引起的附加应力场。地表沉降的主要机理是由开挖面的应力释放,附加应力等引起地层的弹塑性变形。引起初始地应力状态改变的主要原因有:
(1)地下工程开挖引起的附加应力;
(2)地下工程施工对地层的扰动和地层损;
(3)地下水渗流引起的地下水位的变化。
土体的固结沉降:地下工程施工引起的地表沉降与时间有关。土体内部含水渗出,体积逐渐减少,这一现象成为土的“固结”。随着土体的固结,土体的压缩变形和强度逐渐增长。因此,土的固结所产生的沉降是城市地下工程施工中最值得注意的问题之一。根据地下工程施工的特点总结固结沉降的主要原因有:
(1)地下水位下降引起的固结沉降;
(2)土体空隙水压力变化,引起土体的固结沉降;
(3)土体扰动后,重新固结后产生沉降;
(4)土体的次固结和流变。
洞室围岩失稳
地下开挖后,洞壁围岩由于失去了原有的岩体的支持而向洞内产生松胀变形,如果变形超过了围岩所能承受的能力,围岩就会被破坏。围岩的变形破坏程度常取决于围岩的应力状态、岩体结构和洞室的断面形状等。洞室开挖使地下原来的应力状态被破坏,围岩应力重分布,产生变形位移。
均质岩土体中应力未达到或未超过其强度以前,在开挖过程中的变形,以弹性变形为主,变形速度快,变量小,瞬时完成,一般不易察觉;当应力达到或超过岩土体强度时,塑性变形十分明显,发生压碎、拉裂或剪破。当岩体强度主要由结构面控制时,与上述情况基本一样,但当结构面组合构成围岩不稳定条件时,岩体除了弹性变形外,塑性变形也比较明显,它表现为围岩分离体(岩块)的相互错动,围岩松动时围岩稳定性降低,为进一步松动创造了条件。
斜坡破坏
斜坡破坏主要发生在山区城市,除直接经济损失外,还可能造成人员伤亡,其原因主要是:由于自然地质作用和工程地质作用引发的,而工程地质作用造成的斜坡破坏较自然地质作用频率大。当然决非任何斜坡破坏都能称为地质灾害,但斜坡破坏确属重大的地质灾害类型之一。
斜坡破坏主要形式为滑坡,其影响因素主要有岩性、构造、地形、地震、降雨及人类活动等。其中,许多山体滑坡现象是由地下工程活动引发的,即主要是由于地下工程的开挖或采掘影响到了上部的山体,使岩体开裂,地面倾斜,并在一定条件的配合下,导致山体失稳形成滑坡。在隧道建设中,滑坡现象主要发生在浅埋、偏压及进出口等地段,其危害常常比较严重。为评价斜坡岩土的稳定性,预防斜坡破坏导致的地质灾害,认识引起斜坡破坏的内在原因与外部条件,掌握其运动发展规律显得非常重要,尤其是当前在城市这个人类经济活动的密集区,斜坡破坏造成的经济损失和人员伤亡都是巨大的`,都是由于工程活动不合理造成的。 地下水污染
在城市环境地质中地下水的不良作用主要表现为地下水的侵蚀。地下水的不良作用和地下水污染主要由人为引起。随着经济持续稳定发展,人类活动加剧,对地下水的污染越来越严重,主要表现为:多数城市垃圾随意堆放;工业废水和废液不经处理或初步处理后任意排放。首先污染地表水,经地表水补给地下水或渗入地下水,再污染地下水,使地下水具有侵蚀性,对城市的建筑物基础及地下工程不断侵蚀破坏。
2防治措施
开展详尽的工程地质勘察
工程地质勘察资料是地下工程施工的重要依据,通过详细的工程地质勘察,为设计施工提供需要的参数和指标,确定合理的开挖方案、开挖步骤,如果地下工程建设所涉及勘察资料不详细、不准确,势必给支护工程带来事故隐患。
做好开挖方案的优化选择
地下工程的开挖方法很多,以基坑工程为例,有分层全开挖、中心岛式开挖等等。开挖顺序不同,引起的位移不同,中心岛法的开挖顺序就比从一个方向按顺序向另一个方向的开挖方法,对基底隆起和桩后地面沉降有一定程度地减少。因此,基坑开挖时应做好开挖方案的优化选择。
实行科学的降水设计
水是影响基坑工程稳定的重要因素之一,从实际统计资料来看,约有70%的基坑事故与地下水有关,因此,地下工程建设中应特别注意地下水的影响。地下工程建设绝大多数都需要进行人工降低地下水。要降低地下水位,就要合理地选择降水方法,在此基础上进行人工降水的方案设计,以及进行降水方案的水位预测,通过预测进行降水方案的优化,从而达到最佳的降水方案。
做好现场监测,开展信息化施工技术
地下工程是土体与围护结构体相互共同作用的一个动态变化的复杂系统,仅依靠理论分析和经验估计是难以把握在复杂的开挖和降雨等条件下支护结构与土体的变形破坏,也难以完成可靠而经济的开挖设计。通过施工时对整个工程进行系统的监测,可以了解变化的态势,利用监测信息的反馈分析,就能较好地预测系统的变化趋势。当出现险情预兆时,可做出预警,及时采取措施,保证施工和环境的安全;当安全储备过大时,可及时修改设计,削减围护措施。
积极采用新技术、新方法
工程实践证明,采用基坑内降水、坑内侧土体加固(化学灌浆、石灰桩加固等)、及时支撑并预加轴力、增加挡墙的入土深度、墙外地层中筑帷幕、坑内降水坑外注水、分步开挖、逆作法施工、信息反馈施工法的采用等,对改善基坑变形、提高其稳定性有重要意义。计算机技术方法应广泛地应用到地下工程建设中,如进行数据分析与计算、计算机制图、计算机辅助深基坑设计、信息施工与管理等领域具有十分广阔的前景。
结语
地下空间资源正越来越多被开发利用于各种领域,如地下轨道交通工程、地下街、地下室、地下车库等各类地下工程,已经成为现代城市功能转入地下的重要载体。但是,地下工程建设一般都在市区内,在其施工过程中常常会引起周围地层的位移、变形、沉降与塌陷等环境地质效应,对周围地面建筑物及基础、地下早期人防和其他构筑物、公共地下管线和各种地下设施以及城市道路的路基、路面等都可能构成不同程度的危害。因此,研究城市地下建设工程引起的地质问题及其防治措施具有相当重要的现实意义。
大文豪分享关于隧道病害探讨的论?JI
大文豪分享关于隧道病害探讨的论?JI
土质隧道衬砌裂缝产生原因分析及预防措施有哪些呢,下面中达咨询招投标老师为你解答以供参考。1.前言近几十年来我国在各种工程中修建了数以千计的隧道工程,其中土质隧道占了很大的比重。本文所说的土质隧道包含公路、铁路、地下铁道工程中在土质围岩中修建的隧道工程。经过国家有关部门对运营隧道的调查,发现大部分已建成运营的土质隧道或多或少都存在衬砌开裂的现象,严重的经常影响到运营安全。许多工程刚刚完工还未交付使用就已经出现裂缝,这一现象在铁路隧道中尤为常见。如果是个别土质隧道出现一些衬砌开裂的现象,也不值得大惊小怪,问题是,近年来土质隧道衬砌发生衬砌裂缝几乎已成了普遍现象。神木至延安铁路的十几座土质隧道在施工过程中都曾出现大大小小的裂缝,陕西境内的多座公路隧道在投入使用后几年时间都曾进行过裂缝防水整治。全国其它地方关于土质隧道病害的事例更是不胜枚举,以上实例充分说明,土质隧道发生裂缝已不是个别现象,隧道工程技术人员对此应予以足够的重视。本文从土质隧道受力变化机理、及设计施工等方面谈一点看法,旨在抛砖引玉。2.土质围岩中开挖洞室后洞周应力演变土的认识土是岩石经风化作用(包括物理风化、化学风化及生物风化),然后以不同的搬运方式在不同的地点堆积下开的历史产物。土是多相介质的堆积物,它的种类繁多,按成因不同从大的方面可分为残积土、沉积土(沉积土可进一步细分为陆地流水沉积土、陆地静水沉积土、冰川沉积土、风成沉积土、海相沉积土)、土壤层。土的结构一般有单粒结构、蜂窝结构、絮状结构等,土的工程性质主要取决于土的结构构造、矿物成分、粒度成分及孔隙中水溶液的性质等,另一方面也取决于生成年代的长短、地理条件的变迁等。土体的固体颗粒之间及颗粒与水之间的相互作用,使土的物理力学性质很复杂。目前还没有一种严格的理论来表达土的力学性质,工程上还在把土当成简单的弹性体或理想的弹塑性体,在土力学中大量的应用弹性理论或弹塑性理论,这种近似的方法不能准确的反映实际情况。土层中开挖洞室后洞周应力的变化过程大量的隧道工程就修建在由各种不同结构不同性质的土层构成的土质围岩中,在地下洞室开挖以前,土层中的各点均处于三向受力的平衡状态,但这种平衡状态并不是一成不变的,随着自然界的地壳运动,随着风吹日晒,雨水渗透,地层中的应力变化无时无刻不在进行着。当地下洞室开挖后,地层中的应力平衡就遭到破坏,为了维持新的平衡,人们采取了各种各样的方法,在多种方法中,新奥法(NATM)的理论无非是最新颖,最科学的方法,它彻底改变了很久以来人们对地下洞室开挖支护的认识,把围岩作为受力结构的一部分,这是一个聪明而又科学的想法。在我们为这个科学的方法而欣喜,以为新奥法可以解决地下工程中的所有问题时,我们却不得不面对许多完全按新奥法原理设计施工的隧道工程出现许多裂缝的事实。为什么会出现这种问题呢?设计者们翻来覆去的检查了他们采用的原始数据及计算过程,都没有发现有什么差错,可就是按此方法设计的土质隧道越来越多的出现裂缝。其实,这其中最大的原因就在于我们把自然界动态的过程当成静态过程来进行设计。试想一想,我们在设计中采用的反映围岩特性的重要指标γ、C、φ值,是不是从我们设计隧道开始就不会再有变化?我们在浅埋隧道设计中采用的计算围岩压力的方程中的滑移面是否在我们设计完隧道后就不会再有变化?由此计算出的浅埋隧道的围岩压力是否就不会再有变化?我们在深埋隧道的设计中采用的坍落拱计算高度是否在我们设计后就不会再有变化?由此计算出的深埋隧道的围岩压力是否就不会再有变化?我们在隧道设计中采用的各种荷载形式是否就与实际一致?我们所采用的各种衬砌形式是否适应地层中的应力变化?如果我们对以上问题都能有明确肯定的回答,我想隧道衬砌肯定是不会产生裂缝的。土质围岩中修建的隧道自从洞室被开挖的那一刻起,围岩中的应力重分配就重新开始,如果是按新奥法原理设计,在初衬达到变形稳定后只能说是达到了一次暂时的平衡,二衬施工后,不论是设计者还是施工者都会确信工程已经高质量的完工了。实际并非如此,在大家毫不关心的情况下,在自然界降水的作用下,或在土层被扰动后进行的长期的固结作用下,洞周地层中的应力已经和隧道设计或刚建成时发生了很大的变化,初衬和二衬却还在努力的抵抗着不断变化的地层应力,如果初衬和二衬的强度足够大,能够应付后来发生的应力变化,那末这个工程在很长的时间内可以放心地使用。如果不能够抵抗后期发生的应力变化,隧道衬砌就会用各种各样的裂缝表现出它所遭受的各种无法承受的压力。以上主要是想说明,土质围岩中的洞室开挖后,应力的变化是一直在进行着的,施工过程中初衬的稳定并不表示围岩变形的完成及应力分配的终结。土层被扰动以后的再次固结是一个相当漫长的过程,洞室开挖后引起地层中水流路径的变化也是一个相当长的过程,在这个过程中,洞周地层中的应力时刻都在发生着变化。因此,对于许多土质隧道建成后多年才出现裂缝就不难理解了。3.土质隧道裂缝产生原因分析土质隧道中产生的裂缝、渗漏水现象,一方面是由设计原因造成的,另一方面是由于施工管理不当造成的。它是结构内部受到与设计状态不同的应力的反映,同时也与施工过程中由于人为的因素改变了洞室的受力状态有很大关系。结构设计计算与实际不符,后期变形应力在设计中未能反映在现在的公路铁路地铁隧道设计中,一般根据情况将隧道的设计分为浅埋隧道和深埋隧道两种情况。浅埋情况下以洞顶上所有覆土压力作为设计荷载;深埋隧道的设计考虑坍落拱效应,只计部分围岩压力。在荷载的计算中采用的是经过调查或试验得到的土的物理力学参数。这样的设计模式存在以下几个方面的问题,第一,人为确定的隧道洞室的荷载模式与实际的洞室受力状况有很大的区别,把受力复杂的地下工程简单的采用类似受力明确的框架进行计算,忽略了土质围岩的特殊性,而这些特殊性恰恰是引起地下洞室日后病害的主要原因。第二,设计中采用的许多土层的物理、力学指标在洞室开挖后都会发生变化,但设计计算的过程却无法反映出以后这方面的变化,以定态的参数设计的结构去适应动态的应力变化,是对结构受力的过程不全面的反映,同时也是对土层中洞室开挖后的应力变化过程认识不透彻的表现。结构设计中长期以来忽略了地下水的影响,在隧道的设计中仅仅是考虑在有水的情况下将围岩级别予以降低,在没有水的情况下则对水的因素不加考虑。先说有水时的情况,对土质隧道来说,地下水对工程的影响体现在以下方面,其一影响了土的物理力学指标,这点可从围岩级别的降低上得到部分的反映,其二影响了土层中洞室开挖后的应力状态。土质围岩中有水时,洞室开挖后将破坏原来的赋存环境及水力路径,在洞室完成后会重新形成新的水力路径,在这个过程中,由于水的影响,必然导致洞室周围土压力状态与设计时有很大的不同,而提高围岩级别却不能反映出这种影响,故从根本上说,设计时对土质围岩中水的因素是没有考虑的。在勘察未见地下水的情况下,修成的洞室却往往存在漏水的情况,这说明土质围岩中的水力路径会随着洞室的开挖而变化,从而使开挖时干燥的洞室在运营后数年出现漏水的现象。设计粗糙,结构形式与受力不协调由于土质围岩组成状态的不同,导致洞室周围各处受力状态的不同,而现在的设计却存在着设计粗糙、结构形式单一,盲目类比不加深究的现象。从土质隧道的病害情况看,公路隧道的病害比铁路隧道的病害少,病害的程度也比较轻。其中很重要的原因是,公路隧道的断面形式在受力方面比铁路隧道的断面合理。公路隧道的断面一般采用三心圆或割圆,而铁路隧道的断面一般采用马蹄形断面。三心圆或割圆的断面形式在围岩压力的作用下压力拱轴线一般比较接近于断面轴线,而马蹄形的断面在围岩压力作用下的压力拱轴线与衬砌断面的轴线相差较大,由此就会在衬砌断面上产生很大的附加应力。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:
iii 毕业设计(论文)题目:隧道病害整治方法探讨 一、 毕业设计论文内容 土工合成材料在铁道隧道病害整治中得到广泛的应用,起到排水反滤、防渗、加筋、隔离、防护和减载等作用。这些作用是以不同的形式的产品来实现的,土工织物用于滤层、隔离和防护;土工网和三维植被网垫用于排水和坡面的稳定;土工格栅、条带和有纺或编织土工织物用于加筋、土工膜用于防渗等。因此,首先要预防为主,必须在设计阶段就要采取预防措施,防止病害产生;另一方面,对出现的病害须查清病害原因、采取合理的措施进行整治,提高隧道病害整治的工程质量和经济效益。 二、 基本要求 ①选择沙害威胁最轻地段。 ②使线路通过起伏不大的沙丘地段、使线路由沙区内的古河道及山前平原的潜水带边缘通过。 ③力求使线路通过植被较好的固定沙丘及半固定沙丘。 ④将线路选择在沙丘体的上风一侧,将线路选择在沙区间沼泽地或草垫子地的下风侧。 ⑤使线路与当地主风向平行,尽量避免弯道。 三、 重点研究问题 铁路隧道在运营中会出现渗漏水、衬砌裂损、隧道冻害、衬砌腐蚀、震害和洞内空气污染等病害,还有火灾威胁。这些病害和危害对隧道的安全、舒适、正常运营有重要影响和威胁。因此、在隧道规划和设计阶段要预防可能的病害、危害、进行合理设计;在隧道施工阶段要采用合理的施工工艺、方法、措施和材料,以保证施工质量。在隧道运营阶段要及时检查、发现病害,分析病害成因,采用合理的整治设计和施工方法. 四、 主要技术指标 (1)增加土工合成材料生产原料的技术要求,分不同地区、不同的应用条件提出相应产品技术指标。对作为重要受力构件的材料(如加筋土挡土墙拉筋带),要增加蠕变强度等指标。
博士生即将毕业时,有论文要求,博士论文是学术论文中最高水平的论文之一。因此,在查重博士论文时,必须有较高的查重要求。博士后论文的查重率是多少?paperfree小编给大家讲解。 我们对博士论文查重非常感兴趣。博士论文的要求很高。博士论文的重复率一般不能高于5%。即使是一些不受欢迎的专业,博士论文的查重要求也是10%。因此,博士论文的查重难度很大。 博士论文一般在10万字左右,所以博士论文查重需要很长时间。博士论文查重时,我们可以在使用paperfree查重系统进行初稿检测,这是硕士研究生专门使用的查重系统。一般10-30分钟左右就能查重,整体非常快捷、方便、可靠。 该系统提供边查重边修改的功能,对于论文降重和纠错都挺方便。
不同的学校对博士论文的查重率有所不同,没有统一的标准。但是对于博士论文的查重率规定是不能超过百分之十的,更严格的博士院校甚至规定不能超过百分之五。如果小编是博士毕业生,我一定会抗议的。毕竟一个几万字数的论文查重率要低于百分之五。
长期从事碳纳米材料的生长合成、物理性质研究、纳米电子器件研发,以及纳米生物医学以及能源材料等方面的研究,在上述领域都取得了卓越的成就,并获得了广泛的影响,是国际碳纳米材料研究领域的领军人物之一。先后在哥伦比亚大学和哈佛大学跟随教授从事博士论文工作:●利用扫描隧道显微镜研究二维电荷密度波系统的结构和随机杂质钉扎效应●高Tc超导体中的磁通结构和缺陷钉扎效应●低维固体材料的化学合成在哈佛大学Charles Liber教授的科研组从事博士后研究工作:●纳米材料的合成与表征●导电原子力显微镜●单个纳米材料的电学性质在Rice大学跟随诺贝尔化学奖获得者 Smalley教授从事博士后研究工作:●富勒烯为基的纳米技术●富勒烯纳米管的合成、提纯、表征和应用●单根碳纳米管用作原子力和扫描隧道显微镜的探针斯坦福大学化学系助理教授,科研方向为:●新型纳米材料的化学●利用新型探针和新的成像机理的扫描探针显微技术及其应用●新型一维纳米材料与微米/纳米半导体结构的集成●发展新的纳米材料制备技术●纳米尺度的固体物理研究2009年当选美国科学与艺术学院院士(Fellow of American Academy of Arts and Sciences)。美国艺术与科学院成立于1780年,每年通过会员推荐和选举,接纳各界杰出人士成为新院士。作为一个独立的学术研究中心,该院当前的重点研究领域集中在科学技术、全球安全、公共政策与美国机构、人文和教育等方面。学院共有4600位院士,他们都是学术、艺术、商业和公共事务领域的带头人。