首页 > 论文发表知识库 > 车道线检测国内外发展论文

车道线检测国内外发展论文

发布时间:

车道线检测国内外发展论文

本文将对论文 Towards End-to-End Lane Detection: an Instance Segmentation Approach 进行解读。这篇论文是于2018年2月挂在arxiv上的。        文中提出了一种端到端的车道线检测算法,包括LaneNet和H-Net两个网络模型。其中,LaneNet是一种将 语义分割 和 对像素进行向量表示 结合起来的多任务模型,负责对图片中的车道线进行 实例分割 ;H-Net是由卷积层和全连接层组成的网络模型,负责预测转换矩阵H,使用转换矩阵H对属于同一车道线的像素点进行回归(我的理解是对使用坐标y对坐标x进行修正)。        根据论文中的实验结果,该算法在图森的车道线数据集上的准确率为,在NVIDIA 1080 TI上的处理速度为52FPS。        如图1所示,对于同一张输入图片,LaneNet输出实例分割的结果,为每个车道线像素分配一个车道线ID,H-Net输出一个转换矩阵H,使用转换矩阵H对车道线像素进行修正,并对修正的结果拟合出一个三阶的多项式作为预测得到的车道线。       论文中将实例分割任务拆解为 语义分割 和 聚类 两部分,如图2所示,LaneNet中decoder分为两个分支,Embedding branch对像素进行嵌入式表示,训练得到的embedding向量用于聚类,Segmentation branch负责对输入图像进行语义分割(对像素进行二分类,判断像素属于车道线还是背景)。最后将两个分支的结果进行结合得到实例分割的结果。 在设计语义分割模型时,论文主要考虑了以下两个方面: 1.在构建label时,为了处理遮挡问题,论文对被车辆遮挡的车道线和虚线进行了还原; 2. Loss使用 交叉熵 ,为了解决样本分布不均衡的问题(属于车道线的像素远少于属于背景的像素),参考论文 ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation  ,使用了boundedinverse class weight对loss进行加权: 其中,p为对应类别在总体样本中出现的概率,c是超参数(ENet论文中是,使得权重的取值区间为[1,50])。        为了区分车道线上的像素属于哪条车道,embedding_branch为每个像素初始化一个embedding向量,并且在设计loss时, 使得属于同一条车道线的像素向量距离很小,属于不同车道线的像素向量距离很大 。 这部分的loss函数是由两部分组成:方差loss(L_var)和距离loss(L_dist): 其中,x_i为像素向量,μ_c为车道线的均值向量,[x]+ = max(0,x)         为了方便在推理时对像素进行聚类,在图4中实例分割loss中设置δ_d > 6*δ_v。         在进行聚类时,首先使用mean shift聚类,使得簇中心沿着密度上升的方向移动,防止将离群点选入相同的簇中;之后对像素向量进行划分:以簇中心为圆心,以2δ_v为半径,选取圆中所有的像素归为同一车道线。重复该步骤,直到将所有的车道线像素分配给对应的车道。        LaneNet是基于 ENet 的encoder-decoder模型,如图5所示,ENet由5个stage组成,其中stage2和stage3基本相同,stage1,2,3属于encoder,stage4,5属于decoder。        如图2所示,在LaneNet中,语义分割和实例分割两个任务 共享stage1和stage2 ,并将stage3和后面的decoder层作为各自的分支(branch)进行训练;其中, 语义分割分支(branch)的输出shape为W*H*2,实例分割分支(branch)的输出shape为W*H*N,W,H分别为原图宽和高,N为embedding vector的维度;两个分支的loss权重相同。         LaneNet的输出是每条车道线的像素集合,还需要根据这些像素点回归出一条车道线。传统的做法是将图片投影到鸟瞰图中,然后使用2阶或者3阶多项式进行拟合。在这种方法中,转换矩阵H只被计算一次,所有的图片使用的是相同的转换矩阵,这会导致地平面(山地,丘陵)变化下的误差。         为了解决这个问题,论文训练了一个可以预测转置矩阵H的神经网络H-Net, 网络的输入是图片 , 输出是转置矩阵H :         由图6可以看出,转置矩阵H只有6个参数,因此H-Net的输出是一个6维的向量。H-Net由6层普通卷积网络和一层全连接网络构成,其网络结构如图7所示: Curve fitting的过程就是通过坐标y去重新预测坐标x的过程:LaneNet和H-Net是分别进行训练的。在论文的实验部分,两个模型的参数配置如下所示: •    Dataset : Tusimple •    Embedding dimension = 4 •    δ_v= •    δ_d=3 •    Image size = 512*256 •    Adam optimizer •    Learning rate = 5e-4 •    Batch size = 8 •    Dataset : Tusimple •    3rd-orderpolynomial •    Image size =128*64 •    Adam optimizer •    Learning rate = 5e-5 •    Batch size = 10

1、<> 2、<> 将pixel分割转换为grid分类的问题。对H*W的图像划分成h*(w+1)的网格,分割时需要处理H*W个点的进行分类,类别数目(C+1);现在只需要处理h*C个点的分类,类别数目(w+1)。 分类损失(交叉熵)+ “平滑”损失(相邻的两条anchor应该相似)+“二阶差分”损失(车道线为直的,斜率一致) 此外,在训练时,加入分割辅助支路,因此还有分割的交叉熵损失。 利用多项式进行道路建模(图中所示多项式系数a,每一条车道线有4个系数,即为3阶多项式)。 s为纵向方向车道线距图像底部的最小距离,h为纵向方向车道线距图像底部的最大距离(所有车道线共享一个h),c为车道线的置信度。 多项式损失的计算:取y坐标,通过多项式计算x坐标,计算MSE损失。如果某个点损失小于预设阈值,令损失为0,为了减少对于已经预测准确的点的关注。

蔡自兴教授已在国内外发表论文和科技报告等860多篇。2010年: Zixing. Research on navigation control and cooperation of mobile robots (Plenary Lecture 1). 2010 Chinese Control and Decision Conference, New Century Grand Hotel, Xuzhou, China, May 26- 28, Zixing. Research on navigation control and cooperation of mobile robots (Plenary Lecture 1). 2010 Chinese Control and Decision Conference, New Century Grand Hotel, Xuzhou, China, May 26-28, . Chen Baifan,Zi-Xing Cai, Zhi-Rong Zou. A Hybrid Data Association Approach for Mobile Robot SLAM. International Conference on Control, Automation and Systems, October 27-30, 2010, KINTEX, Gyeonggi-do, KOREA (Accepted).4. Guo Fan,Cai Zixing, Xie Bin, Tang Jin. Automatic Image Haze Removal Based on Luminance Component. The International conference on Signal and Image Processing (SIP 2010).May 2010 (Accepted).5. Linai. Kuang,Zixing. System based Redeployment Scheme for Wireless Sensor Networks[C].In proceeding of 1st IET International Conference on Wireless Sensor Network. Beijing, China, November,. Lingli YU,Zixing CAI, A Study of Multi-Robot Stochastic Increment Exploration Mission Planning [J]. Frontiers of Electrical and Electronic Engineering in China, (Received).7. Liu Hui,Cai Zixing, and Wang Yong. Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing, 2010,10(2): 629–. LIU Xian-ru,CAI Zi-xing. Advanced obstacles detection and tracking by using fusing radar and image sensor data. International Conference on Control, Automation and Systems,2010/10/27,. Liu Xianru,Cai zixing. Advanced obstacles detection and tracking by using fusing Radar and Image Sensor Data[C]. International Conference on Control, Automation and Systems. (October 27-30,2010, KINTEX, Gyeonggi-do, KOREA).10. Ren Xiaoping,Zixing Cai. Kinematics Model of Unmanned Driving Vehicle. Proceedings of the 8th World Congress on Intelligent Control and Automation, July 6-9 2010, Jinan, China, 2010: . Suqin Tang,Zixing Cai: Tourism Domain Ontology Construction from the Unstructured Text Documents. The 9th IEEE International Conference on Cognitive Informatics, Beijing, . Suqin Tang,Zixing Cai: Using the Format Concept Analysis to Construct the Tourism Information Ontology. The 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD'10),Yantian, , . Tan Ping,Zixing Cai. An Adaptive Particle Filter Based on Posterior Distribution. Proceedings of the 8th World Congress on Intelligent Control and Automation, July 6-9 2010, Jinan, China, 2010: . Wang Yong,Cai Zixing, Zhang Qingfu. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation, Accept, regular . Wang Yong,Cai Zixing. Constrained evolutionary optimization by means of (mu+lambda)-differential evolution and improved adaptive trade-off model. Evolutionary Computation, in . Wang Yong, Combining multiobjective optimization with differential evolution to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation, (regular paper, Accepted).17. Xianru Liu,Zixing Obstacles Detection and tracking by Fusing Millimeter Wave Radar and Image Sensor Data,International IEEE Intl Coference on Control,Automation and Systems , Korea, 2010, 22:. Xie Bin, Fan Guo,Zixing Cai. Improved Single Image Dehazing Using Dark Channel Prior and Multi-Scale Retinex. 2010 International Conference on Intelligent System Design and Engineering Application, Changsha, China, 2010. (Accepted) .19. YU Ling-li,CAI Zi-xing, GAO Ping-an, LIU Xiao-ying. A spatial orthogonal allocation and heterogeneous cultural hybrid algorithm for multi-robot exploration mission planning. Journal of control theory and applications (Received) .20.蔡自兴,陈白帆,刘丽珏. 智能科学基础系列课程国家级教学团队的改革与建设. 计算机教育,2010,(127):40-44 .21.蔡自兴,任孝平,李昭.一种基于GPS/INS组合导航系统的车辆状态估计方法. , .蔡自兴。智能科学技术课程教学纵横谈. 计算机教育,2010,(127):.蔡自兴,蒋冬冬,谭平,安基程。中快速运动估计算法的一种改进方案;计算机应用研究2010,27(4):.蔡自兴; 任孝平; 邹磊; 匡林爱. 一种簇结构下的多移动机器人通信方法.小型微型计算机系统,2010,31(3):. 陈爱斌,蔡自兴.一种基于目标和背景加权的目标跟踪方法,控制与决策,2010,25(8):. 陈爱斌;蔡自兴; 文志强; 董德毅. 一种基于预测模型的均值偏移加速算法. 信息与控制 2010,39(2): . 陈爱斌; 董德毅;杨勇;蔡自兴. 基于目标中心定位和NMI特征的跟踪算法.计算机应用与软件,2010,27(4):. 陈白帆,蔡自兴,刘丽珏. 人工智能课程的创新性教学探索——人工智能精品课程建设与改革. 计算机教育,2010,(127):. 官东,蔡自兴,孔志周. 一种基于推荐证据理论的网格信任模型.系统仿真学报,2010,22(8):.郭璠,蔡自兴,谢斌, 唐琎. 图像去雾技术研究综述与展望. 计算机应用, 2010, 30(9):. 郭璠,蔡自兴, 谢斌, 唐琎. 一种基于亮度分量的自动图像去雾方法. 中国图象图形学报. 2010年3月(录用).32. 江中央,蔡自兴,王勇. 一种新的基于正交实验设计的约束优化进化算法. 计算机学报, 2010,33(5):. 江中央,蔡自兴,王勇.求解全局优化问题的混合自适应正交遗传算法.软件学报, 2010,21(6):. 匡林爱,蔡自兴. 基于遗传算法的无线传感器网络重新部署方法. 控制与决策,2010,25(9):. 匡林爱,蔡自兴.一种簇机构下的多移动机器人通讯方法.小型微型计算机系统.,2010,31(3):. 匡林爱,蔡自兴.一种带宽约束的无线传感器网络节点调度算法.高技术通讯,2010,20(3):. 刘丽珏,蔡自兴,唐琎. 人工智能双语教学建设. 计算机教育,2010,(127):. 刘献如,蔡自兴. 基于SAD与UKF-Mean shift的主动目标跟踪. 模式识别与人工智能,2010,23(5):. 刘献如,蔡自兴. 结构化道路车道线的鲁棒检测与跟踪. 光电子.激光,2010,21(12):. 刘献如,蔡自兴.UKF 与Mean shift 相结合的实时目标跟踪.中南大学学报,2009年录用.41. 刘晓莹;蔡自兴; 余伶俐; 高平安. 一种正交混沌蚁群算法在群机器人任务规划中的应用研究. 小型微型计算机系统, 2010,31(1):. 蒙祖强,蔡自兴,黄柏雄. 课程交叉教学在应用型人才培养中的实践探索. 计算机教育,2010,(127):. 潘薇;蔡自兴; 陈白帆. 复杂环境下多机器人协作构建地图的方法;四川大学学报(工程科学版) . 任孝平,蔡自兴,邹磊,匡林爱.“中南移动二号”多移动机器人通信系统.中南大学学报(自然科学版),2010,41(4):. 任孝平,蔡自兴.四种虚拟力模型在传感器网络覆盖中的性能分析.信息与控制,2010,39(4):. 任孝平;蔡自兴; 陈爱斌. 多移动机器人通信系统研究进展. 控制与决策 2010,(3): .唐素勤,蔡自兴,王驹,蒋运承: 基于gfp语义的描述逻辑系统FLE的有穷基,计算机研究与发展,2010,47(9):. 唐素勤,蔡自兴,王驹,蒋运承: 描述逻辑非标准推理, 模式识别与人工智能,2010,23(4):. 肖赤心,蔡自兴,王勇. 字典序进化算法用于组合优化问题. 控制理论与应用,2010,27(4):. 谢斌,蔡自兴. 基于MATLAB Robotics Toolbox的机器人学仿真实验教学. 计算机教育,2010,(127):. 余伶俐,蔡自兴,谭平,段琢华.基于多模态Rao-Blackwellized进化粒子滤波器的移动机器人航迹推算系统的故障诊断. 控制与决策,2010,25(12):. 余伶俐,蔡自兴,谭平,进化粒子滤波器对比研究及其在移动机器人故障诊断的应用. 信息与控制,2010,39(5):. 余伶俐,蔡自兴,肖晓明. 智能控制精品课程建设与教学改革研究. 计算机教育,2010,(127):. 余伶俐,焦继乐,蔡自兴. 一种多机器人任务规划算法及其系统实现. 计算机科学,2010,37(6):.周涛;蔡自兴。 信息审计中短消息中心实验环境的仿真[J].科学技术与工程 2010,10(6): . 邹磊,蔡自兴,任孝平.一种基于虚拟力的自组织覆盖算法.计算机工程,2010,36(14):93-95 .2009年:57. Gao Ping-an,Cai Zi-xing. Evolutionary Computation Approach to Decentralized Multi-robot Task Allocation. Proc. of the 5th International Conference on Natural Computation, IEEE Computer Society, 2009,. Wang Yong,Cai Zixing, Zhou Yuren. Accelerating adaptive trade-off model using shrinking space technique for constrained evolutionary optimization, International Journal for Numerical Methods in Engineering, 2009, 77(11):. Wang Yong,Cai Zixing, Zhou Yuren, Fan Zhun. Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique, Structural and Multidisciplinary Optimization, 2009, 37(1): . Wang Yong,Cai Zixing. A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems, Frontiers of Computer Science in China, 2009,3(1):. Wang Yong,Cai Zixing. Constrained evolutionary optimization by applying (mu+lambda)-differential evolution and improved adaptive trade-off model. Evolutionary Computation, . Liu Hui,Cai Zixing, and Wang Yong. Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering Soft Computing, 2010,10(2):629–. Liu Limei,Cai Zixing. An Improvement of Hough Transform for Building Feature . Limei Liu, Zixing Cai, Method Based on Uncertain Information of Sonar Sensor[C]. The 9th International Conference for Young Computer Scientists,2009,. YU Ling-li,CAI Zi-xing. Robot Detection Mission Planning Based on Heterogeneous Interactive Cultural Hybrid Algorithm. Proc. of the 5th International Conference on Natural . Ren Xiaoping,Cai Distributed Actor Deployment Algorithm for Maximum Connected Coverage in WSAN. Proc. of the 2009 Fifth International Conference on Natural Computation, 2009,. 王勇,蔡自兴,周育人,肖赤心.约束优化进化算法.软件学报, 2009,20(1): . 陈白帆,蔡自兴, 潘薇. 基于声纳和摄像头的动态环境地图创建方法.高技术通讯, 2009, 19(4): . 陈白帆,蔡自兴, 袁成. 基于粒子群优化的移动机器人SLAM方法研究.机器人, 2009, 31(6):. 高平安,蔡自兴. 多移动机器人任务负载均衡分组规划方法.高技术通讯,2009, 19(5):. 高平安,蔡自兴. 一种基于多子群的动态优化算法.中南大学学报(自然科学版) 2009, 40(3): . 刘献如,;蔡自兴. 一种基于Integral Imaging和与模拟退火相结合的深度测量方法研究. 系统仿真学报. 2009,21(8):2303~. 刘利枚,蔡自兴,潘薇.一种基于声纳信息的地图创建方法.计算机工程,2009,35(7):. 余伶俐,蔡自兴. 基于异质交互式文化混合算法的机器人探测任务规划.机器人.2009, 31(2):. 余伶俐,蔡自兴,刘晓莹,高平安. 均分点蚁群算法在群集机器人任务规划中的应用研究[J].高技术通讯. 2009,19(10),. 余伶俐,蔡自兴. 改进混合离散粒子群的多种优化策略算法.中南大学学报,2009, 40(4): . 余伶俐,蔡自兴,高平安,刘晓莹. 当代学习自适应混合离散粒子群算法研究. 小型微型计算机系统. 2009, 30(9):. 余伶俐,蔡自兴. 基于当代学习离散粒子群的多机器人高效任务分配算法研究. 计算机应用研究. 2009, 26(5):.蔡自兴; 谢斌; 魏世勇; 陈白帆. 《机器人学》教材建设的体会. 2009年全国人工智能大会(CAAI-13),北京:北京邮电大学出版社,252-255,2009年9月.80.蔡自兴,郭璠. 密码学虚拟实验平台的设计与实现.中国人工智能进展(2009),中国人工智能大会(CAAI-13)论文集,北京:北京邮电大学出版社,432-438,2009年9月.81.蔡自兴,任孝平,邹磊.分布式多机器人通信仿真系统.智能系统学报,2009,4(4): . 任孝平,蔡自兴.基于阿克曼原理的车式移动机器人运动学建模.智能系统学报, 2009,4(6);.蔡自兴; 任孝平; 邹磊. 分布式多机器人通信仿真系统.智能系统学报, 2009,4(4);. 文志强;蔡自兴. 一种目标跟踪中的模糊核直方图. 高技术通讯, 2009,19(2):.刘星宝;蔡自兴. 种子检测器刺激-应答变异算法研究. 高技术通讯, 2009,19(3):. 刘星宝;蔡自兴. 负选择算法中的检测器快速生成策略. 小型微型计算机系统, . 刘星宝;蔡自兴. 异常检测系统的漏洞分析.中南大学学报(自然科学版), . 潘薇;蔡自兴; 陈白帆. 一种非结构环境下多机器人构建地图的方法. 高技术通讯, . 孔志周;蔡自兴; 官东. 两种模糊密度确定方法的实验比较. 小型微型计算机系统, . 江中央;蔡自兴; 王勇. 用于全局优化的混合正交遗传算法. 计算机工程, . 肖赤心;蔡自兴; 王勇; 周经野. 一种基于佳点集原理的约束优化进化算法. 控制与决策, 2009-02-15 .92. 官东;蔡自兴; 孔志周. 一种基于网格技术的HLA分布仿真实现方法. 系统仿真学报, 2009,21(5):.刘慧;蔡自兴; 王勇. 基于佳点集的约束优化进化算法. 系统仿真学报, 2009-03-20 .94. 潘薇;蔡自兴; 陈白帆. 基于遗传算法的多机器人协作建图方法. 计算机应用研究, . 任孝平;蔡自兴; 卢薇薇. 一种基于扫描相关度的LSB算法. 计算机应用, .胡强;蔡自兴. 一种基于改造时钟系统的Linux实时化方案. 计算机工程, . 袁成;蔡自兴; 陈白帆. 粒子群优化的同时定位与建图方法. 计算机工程, . 王勇;蔡自兴. “智能优化算法及其应用”课程教学的实践与探索. 计算机教育, . 任孝平;蔡自兴; 卢薇薇. 网络可重构的多机器人仿真系统. 计算机应用研究, . 袁湘鹏;蔡自兴; 刘利枚. 基于声纳的移动机器人环境建图的设计与实现. 计算机应用研究, . 官东;蔡自兴; 孔志周.网格服务本体匹配算法研究. 小型微型计算机系统, 2009,30(8):. 邹磊;蔡自兴; 任孝平. 基于簇的多移动机器人通信系统. 计算机应用研究, .蔡自兴. 从严施教,精心育才,培养高素质人才. 计算机教育, . 肖晓明; 旷东林;蔡自兴. 单亲遗传算法种群初始化方法分析. 电脑与信息技术, . 刘丽珏; 陈白帆; 王勇; 余伶俐;蔡自兴. 精益求精建设人工智能精品课程. 计算机教育, . 陈爱斌;蔡自兴; 安基程. 一种基于摄像机视角的立体视觉定位方法.中南大学学报(自然科学版), . 唐素勤;蔡自兴; 江中央; 肖赤心. 用于求解约束优化问题的自适应佳点集进化算法. 小型微型计算机系统,2009,第9期,.胡扬;桂卫华;蔡自兴. 多元智能算法控制结构综述. 计算机科学, .蔡自兴. 《混沌系统的模糊神经网络控制理论与方法》评介. 计算技术与自动化, . 陈爱斌;蔡自兴; 安基程. 一种基于摄像机视角的立体视觉定位方法. 2009年中国智能自动化会议论文集(第六分册)[中南大学学报(增刊)], . 于金霞;蔡自兴; 段琢华. 复杂地形下移动机器人运动学建模研究. 2009中国控制与决策会议论文集(1), . 刘献如,蔡自兴,杨欣荣. Integral Imaging与模拟退火相结合的深度测量方法研究. 系统仿真学报,2009,21(8):2303-2307.

matlab车道线检测论文

本文将对论文 Towards End-to-End Lane Detection: an Instance Segmentation Approach 进行解读。这篇论文是于2018年2月挂在arxiv上的。        文中提出了一种端到端的车道线检测算法,包括LaneNet和H-Net两个网络模型。其中,LaneNet是一种将 语义分割 和 对像素进行向量表示 结合起来的多任务模型,负责对图片中的车道线进行 实例分割 ;H-Net是由卷积层和全连接层组成的网络模型,负责预测转换矩阵H,使用转换矩阵H对属于同一车道线的像素点进行回归(我的理解是对使用坐标y对坐标x进行修正)。        根据论文中的实验结果,该算法在图森的车道线数据集上的准确率为,在NVIDIA 1080 TI上的处理速度为52FPS。        如图1所示,对于同一张输入图片,LaneNet输出实例分割的结果,为每个车道线像素分配一个车道线ID,H-Net输出一个转换矩阵H,使用转换矩阵H对车道线像素进行修正,并对修正的结果拟合出一个三阶的多项式作为预测得到的车道线。       论文中将实例分割任务拆解为 语义分割 和 聚类 两部分,如图2所示,LaneNet中decoder分为两个分支,Embedding branch对像素进行嵌入式表示,训练得到的embedding向量用于聚类,Segmentation branch负责对输入图像进行语义分割(对像素进行二分类,判断像素属于车道线还是背景)。最后将两个分支的结果进行结合得到实例分割的结果。 在设计语义分割模型时,论文主要考虑了以下两个方面: 1.在构建label时,为了处理遮挡问题,论文对被车辆遮挡的车道线和虚线进行了还原; 2. Loss使用 交叉熵 ,为了解决样本分布不均衡的问题(属于车道线的像素远少于属于背景的像素),参考论文 ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation  ,使用了boundedinverse class weight对loss进行加权: 其中,p为对应类别在总体样本中出现的概率,c是超参数(ENet论文中是,使得权重的取值区间为[1,50])。        为了区分车道线上的像素属于哪条车道,embedding_branch为每个像素初始化一个embedding向量,并且在设计loss时, 使得属于同一条车道线的像素向量距离很小,属于不同车道线的像素向量距离很大 。 这部分的loss函数是由两部分组成:方差loss(L_var)和距离loss(L_dist): 其中,x_i为像素向量,μ_c为车道线的均值向量,[x]+ = max(0,x)         为了方便在推理时对像素进行聚类,在图4中实例分割loss中设置δ_d > 6*δ_v。         在进行聚类时,首先使用mean shift聚类,使得簇中心沿着密度上升的方向移动,防止将离群点选入相同的簇中;之后对像素向量进行划分:以簇中心为圆心,以2δ_v为半径,选取圆中所有的像素归为同一车道线。重复该步骤,直到将所有的车道线像素分配给对应的车道。        LaneNet是基于 ENet 的encoder-decoder模型,如图5所示,ENet由5个stage组成,其中stage2和stage3基本相同,stage1,2,3属于encoder,stage4,5属于decoder。        如图2所示,在LaneNet中,语义分割和实例分割两个任务 共享stage1和stage2 ,并将stage3和后面的decoder层作为各自的分支(branch)进行训练;其中, 语义分割分支(branch)的输出shape为W*H*2,实例分割分支(branch)的输出shape为W*H*N,W,H分别为原图宽和高,N为embedding vector的维度;两个分支的loss权重相同。         LaneNet的输出是每条车道线的像素集合,还需要根据这些像素点回归出一条车道线。传统的做法是将图片投影到鸟瞰图中,然后使用2阶或者3阶多项式进行拟合。在这种方法中,转换矩阵H只被计算一次,所有的图片使用的是相同的转换矩阵,这会导致地平面(山地,丘陵)变化下的误差。         为了解决这个问题,论文训练了一个可以预测转置矩阵H的神经网络H-Net, 网络的输入是图片 , 输出是转置矩阵H :         由图6可以看出,转置矩阵H只有6个参数,因此H-Net的输出是一个6维的向量。H-Net由6层普通卷积网络和一层全连接网络构成,其网络结构如图7所示: Curve fitting的过程就是通过坐标y去重新预测坐标x的过程:LaneNet和H-Net是分别进行训练的。在论文的实验部分,两个模型的参数配置如下所示: •    Dataset : Tusimple •    Embedding dimension = 4 •    δ_v= •    δ_d=3 •    Image size = 512*256 •    Adam optimizer •    Learning rate = 5e-4 •    Batch size = 8 •    Dataset : Tusimple •    3rd-orderpolynomial •    Image size =128*64 •    Adam optimizer •    Learning rate = 5e-5 •    Batch size = 10

车道线检测论文推荐

车道线检测算法通常分为两种类型:一种是基于基于视觉特征来做语义分割或者实例分割,例如 LaneNet 和 SCNN ;另一种是通过视觉特征来预测车道线所在位置的点,以此来解决 no-visual-clue 问题的模型,比如本文提到的 Ultra-Fast-Lane-Detection 。

offical github : paper : Ultra Fast Structure-aware Deep Lane Detection

下图展示了整个模型的结构,基本可以分为三个部分: Backbone 、 Auxiliary 部分和用于车道线候选点选择的 Group Classification 部分。可以看出,由于整个 pipeline 中参与最终 inference 的部分只进行了下采样而不像分割模型还进行了多轮的上采样,因此模型整体的计算量是相当低的,根据论文给出的结果可以达到 300FPS 。

Backbone 部分采用了较小的 ResNet18 或者 ResNet34 ,下采样到 4X 的部分作为最终的特征,这里其实是较为浅层的特征,一般分割模型要下采样到 16x 或者 32x 。论文里也提到了使用较大的感受野就可以达到不错的检测效果,这样就可以极大的提高模型的推理速度。

Auxiliary 部分对三层浅层特征进行了 concat 和上采样,用来进行实例分割。其目的是在训练过程中增强视觉特征,不参与推理。

Group Classification 部分如下所示,论文称之为 row-based selecting method based on global image features ,即在全局特征上进行行索引来计算候选点,这样的方法将先验假设融入到了车道线检测的任务中。

在分割任务上,最终的特征图的大小是 HxWxC 。分类是要沿着 C 方向的, C 方向的向量代表一个像素位置的特征向量属于哪一个类别;在本方法中,最终的特征图的大小是 hx(w+1)xC 。 h 是要在垂直方向上采样的行的数量( row anchor ), h

文章中使用的 Loss 函数分为三部分,分别是多分类损失 L_cls , 分割损失 L_seg 和车道结构化损失 L_str 。其中 L_cls 和 L_seg 是常用的分类、分割任务中常用的两种损失。

结构损失的目的是利用车道结构的先验知识来约束预测出来的车道线的形状。其中 L_sim 为相似度损失, L_shp 为形状损失。

相似度损失的出发点是同一个车道中,相邻的两个点之间的距离应该尽可能的近,这里使用 L1 范式来进行距离的约束。

形状损失的出发点是基于大多的的车道线都是直线,即使是曲线其大部分也是近似的直线。对于同一条车道线,在相邻 row achor 上的车道线的候选点的位置的选择应该尽可能的相近。理想的状况下它的值应该为 0 。

Loc 函数的含义是第 i 条车道的第 j 个 row anchor 中车道点的期望。 Prob 代表的是第 i 条车道的第 j 个 row anchor 中,第 k 个位置是车道点的概率。因为背景不被计算在内,因此 k 的取值从 1 开始。

论文给出 metric 结果如下所示,其评估硬件应该为 NVIDIA GTX 1080TI 。该方法在保证精度接近的情况下,极大的提升了推理速度,很适合实时检测的任务。

为了测试其真实的推理性能,我在 NVIDIA RTX 3070+CUDA11+ 的环境性进行了测试。模型的 backbone 为 resnet18 ,输入尺寸为 (288, 800, 3) 的情况下, Ultra-Fast-Lane-Detection 的推理性能如下所示,单 batch 推理速度约为 350FPS ,其性能与论文给出的结果基本一致。

本文将对论文 Towards End-to-End Lane Detection: an Instance Segmentation Approach 进行解读。这篇论文是于2018年2月挂在arxiv上的。        文中提出了一种端到端的车道线检测算法,包括LaneNet和H-Net两个网络模型。其中,LaneNet是一种将 语义分割 和 对像素进行向量表示 结合起来的多任务模型,负责对图片中的车道线进行 实例分割 ;H-Net是由卷积层和全连接层组成的网络模型,负责预测转换矩阵H,使用转换矩阵H对属于同一车道线的像素点进行回归(我的理解是对使用坐标y对坐标x进行修正)。        根据论文中的实验结果,该算法在图森的车道线数据集上的准确率为,在NVIDIA 1080 TI上的处理速度为52FPS。        如图1所示,对于同一张输入图片,LaneNet输出实例分割的结果,为每个车道线像素分配一个车道线ID,H-Net输出一个转换矩阵H,使用转换矩阵H对车道线像素进行修正,并对修正的结果拟合出一个三阶的多项式作为预测得到的车道线。       论文中将实例分割任务拆解为 语义分割 和 聚类 两部分,如图2所示,LaneNet中decoder分为两个分支,Embedding branch对像素进行嵌入式表示,训练得到的embedding向量用于聚类,Segmentation branch负责对输入图像进行语义分割(对像素进行二分类,判断像素属于车道线还是背景)。最后将两个分支的结果进行结合得到实例分割的结果。 在设计语义分割模型时,论文主要考虑了以下两个方面: 1.在构建label时,为了处理遮挡问题,论文对被车辆遮挡的车道线和虚线进行了还原; 2. Loss使用 交叉熵 ,为了解决样本分布不均衡的问题(属于车道线的像素远少于属于背景的像素),参考论文 ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation  ,使用了boundedinverse class weight对loss进行加权: 其中,p为对应类别在总体样本中出现的概率,c是超参数(ENet论文中是,使得权重的取值区间为[1,50])。        为了区分车道线上的像素属于哪条车道,embedding_branch为每个像素初始化一个embedding向量,并且在设计loss时, 使得属于同一条车道线的像素向量距离很小,属于不同车道线的像素向量距离很大 。 这部分的loss函数是由两部分组成:方差loss(L_var)和距离loss(L_dist): 其中,x_i为像素向量,μ_c为车道线的均值向量,[x]+ = max(0,x)         为了方便在推理时对像素进行聚类,在图4中实例分割loss中设置δ_d > 6*δ_v。         在进行聚类时,首先使用mean shift聚类,使得簇中心沿着密度上升的方向移动,防止将离群点选入相同的簇中;之后对像素向量进行划分:以簇中心为圆心,以2δ_v为半径,选取圆中所有的像素归为同一车道线。重复该步骤,直到将所有的车道线像素分配给对应的车道。        LaneNet是基于 ENet 的encoder-decoder模型,如图5所示,ENet由5个stage组成,其中stage2和stage3基本相同,stage1,2,3属于encoder,stage4,5属于decoder。        如图2所示,在LaneNet中,语义分割和实例分割两个任务 共享stage1和stage2 ,并将stage3和后面的decoder层作为各自的分支(branch)进行训练;其中, 语义分割分支(branch)的输出shape为W*H*2,实例分割分支(branch)的输出shape为W*H*N,W,H分别为原图宽和高,N为embedding vector的维度;两个分支的loss权重相同。         LaneNet的输出是每条车道线的像素集合,还需要根据这些像素点回归出一条车道线。传统的做法是将图片投影到鸟瞰图中,然后使用2阶或者3阶多项式进行拟合。在这种方法中,转换矩阵H只被计算一次,所有的图片使用的是相同的转换矩阵,这会导致地平面(山地,丘陵)变化下的误差。         为了解决这个问题,论文训练了一个可以预测转置矩阵H的神经网络H-Net, 网络的输入是图片 , 输出是转置矩阵H :         由图6可以看出,转置矩阵H只有6个参数,因此H-Net的输出是一个6维的向量。H-Net由6层普通卷积网络和一层全连接网络构成,其网络结构如图7所示: Curve fitting的过程就是通过坐标y去重新预测坐标x的过程:LaneNet和H-Net是分别进行训练的。在论文的实验部分,两个模型的参数配置如下所示: •    Dataset : Tusimple •    Embedding dimension = 4 •    δ_v= •    δ_d=3 •    Image size = 512*256 •    Adam optimizer •    Learning rate = 5e-4 •    Batch size = 8 •    Dataset : Tusimple •    3rd-orderpolynomial •    Image size =128*64 •    Adam optimizer •    Learning rate = 5e-5 •    Batch size = 10

国内外检测技术的发展现状论文

现在测温的前沿产品应该就是五星光纤出的旋转反射式光纤测温

这是俺论文的第一部分,希望对你用!!!!! 国内外温度检测技术研究现状温度是在工业、农业、国防和科研等部门中应用最普遍的被测物理量。有资料表明,温度传感器的数量在各种传感器中位居首位,约占50%左右。因此,温度测量在保证产品质量,提高生产效率,节约能源,安全生产,促进国民经济发展等诸多方面起到了至关重要的作用。 常用的温度测量方法根据测温方式的不同,温度测量通常可分为接触式和非接触式测温两大类。接触式测温的特点是感温元件直接与被测对象相接触,两者进行充分的热交换,最后达到热平衡,此时感温元件的温度与被测对象的温度必然相等,温度计就可据此测出被测对象的温度。因此,接触式测温一方面有测温精度相对较高,直观可靠及测温仪表价格相对较低等优点;另一方面也存在由于感温元件与被测介质直接接触,从而影响被测介质热平衡状态,而接触不良则会增加测温误差;被测介质具有腐蚀性及温度太高亦将严重影响感温元件性能和寿命等缺点。根据测温转换的原理,接触式测温又可分为膨胀式、热阻式、热电式等多种形式。非接触式测温的特点是感温元件不与被测对象直接接触,而是通过接受被测物体的热辐射能实现热交换,据此测出被测对象的温度。因此,非接触式测温具有不改变被测物体的温度分布,热惯性小,测温上限可设计的很高,便于测量运动物体的温度和快速变化的温度等优点。两类测温方法的主要特点如下表所示。表 两种测温方法的主要特点方式 接触式 非接触式测量条件 感温元件要与被测对象良好接触;感温元件的加入几乎不改变对象的温度;被测温度不超过感温元件能承受的上限温度;被测对象不对感温元件产生腐蚀。 需准确知道被测对象表面发射率;被测对象的辐射能充分照射到检测元件上。测量范围 特别适合1200度、热容大、无腐蚀性对象的连续在线测温,对高于1300度以上的温度测量比较困难。 原理上测量范围可以从超高温到超低温。但1000度以下,测量误差比较大,能测运动物体或热容小的物体温度精度 工业用表通常为、、、级,实验室用表可达级。 通常为、、级响应速度 慢,通常为几十秒到几分钟 快,通常为2-3秒钟其他特点 整个测温系统结构简单、体积小、可靠、维护方便、价格低廉。仪表读数直接反映被测物体温度,可方便的组成多路集中测量与控制系统。 整个测量系统结构复杂、体积大、调整麻烦、价格昂贵;仪表读数通常反映被测物体表面温度(需进一步转换);不易组成测温控温一体化的温度控制装置。从温度检测使用的温度计来看,主要包括以下几种:1.利用物体热胀冷缩原理制成的温度计利用物体热胀冷缩制成的温度计分为如下三大类:(1)玻璃温度计:利用玻璃感温包内的测温物质(水银、酒精、甲苯、油等)受热膨胀、遇冷收缩的原理进行温度测量。(2)双金属温度计:采用膨胀系数不同的两种金属牢固粘合在上一起制的双金属片作为感温元件,当温度变化时,一端固定的双金属片,由于两种金属膨胀系数不同而产生弯曲,自由端的位移通过传动机构带动指针指示出相应温度。(3)压力式温度计:由感温物质(氮气、水银、二甲苯、甲苯、甘油和沸点液体如氯甲烷、氯乙烷等)随温度变化,压力发生相应变化,用弹簧管压力表测出它的压力值,经换算得出被测物质的温度值。2.利用热电效应技术制成的温度检测元件利用此技术制成的温度检测元件主要是热电偶。热电偶发展较早,比较成熟,至今仍为应用最广泛的温度检测元件。热电偶具有结构简单、制作方便、测量范围宽、精度高、热惯性小等特点。常用的热电偶有以下几种。(1)镍铬一镍硅,型号为WRN,分度号为K,测温范围0-900℃,短期可测1200℃。(2)镍铬—康铜,型号为WRK,分度号为F,测温范围0-600℃,短期可测800℃。(3)铂铑一铂,型号为WRP,分度号为S,在1300℃以下的使用,短期可测1600℃。(4)铂铑3旺铂铐6,型号为WRR,分度号为B,测温范围300-1600℃,短期可测1800℃。3.利用热阻效应技术制成的温度计用热阻效应技术制成的温度计可分成以下几种:(1)电阻测温元件,它是利用感温元件(导体)的电阻随温度变化的性质,将电阻的变化值用显示仪表反映出来,从而达到测温的目的。目前常用的有铂热电阻和铜热电阻。(2)半导体测温元件,它与热电阻的温阻特性刚好相反,即有很大负温度系数,也就是说温度升高时,其阻值降低。(3)陶瓷热敏元件,它的实质是利用半导体电阻的正温特性,用半导体陶瓷材料制作而成的热敏元件,常称为PCT或NCT热敏元件。PCT热敏分为突变型及缓变型二类。突变型PCT元件的温阻特性是当温度达到顶点时,它的阻值突然变大,有限流功能,多数用于保护电器。缓变型PCT元件的温阻特性基本上随温度升高阻值慢慢增大,起温度补偿作用。NCT元件特性与PCT元件的突变特性刚好相反,即随温度升高,它的阻值减小。4.利用热辐射原理制成的高温计热辐射高温计通常分为两种。一种是单色辐射高温计,一般称光学高温计;另一种是全辐射高温计,它的原理是物体受热辐射后,视物体本身的性质,能将其吸收、透过或反射。而受热物体放出的辐射能的多少,与它的温度有一定的关系。热辐射式高温计就是根据这种热辐射原理制成的。 国内外温度检测技术现状及发展趋势近年来,在温度检测技术领域,多种新的检测原理与技术的开发应用,已经取得了重大进展。新一代温度检测元件正在不断出现和完善,它们主要有以下几种:1.晶体管温度检测元件半导体温度检测元件是具有代表性的温度检测元件。半导体的电阻温度系数比金属大l~2个数量级,二极管和三极管的PN结电压、电容对温度灵敏度很高。基于上述测温原理己研制了各种温度检测元件。2.集成电路温度检测元件利用硅晶体管基极一发射极间电压与温度关系(即半导体PN结的温度特性)进行温度检测,并把测温、激励、信号处理电路和放大电路集成一体,封装于小型管壳内,即构成了集成电路温度检测元件。目前,国内外也进行了生产。3.核磁共振温度检测器 所谓核磁共振现象是指具有核自旋的物质置于静磁场中时,当与静磁场垂直方向加以电磁波,会发生对某频率电磁的吸收现象。利用共振吸收频率随温度上升而减少的原理研制成的温度检测器,称为核磁共振温度检测器。这种检测器精度极高,可以测量出千分之一开尔文,而且输出的频率信号适于数字化运算处理,故是一种性能十分良好的温度检测器。在常温下,可作理想的标准温度计之用。4.热噪声温度检测器它的原理是利用热电阻元件产生的噪声电压与温度的相关性。其特点如下:(1)输出噪声电压大小与温度是比例关系;(2)不受压力影响;(3)感温元件的阻值几乎不影响测量精确度;因此,它是可以直接读出绝对温度值而不受材料和环境条件限制的温度检测器。5.石英晶体温度检测器它采用LC或Y型切割的石英晶片的共振频率随温度变化的特性来制的。它可以自动补偿石英晶片的非线性,测量精度较高,一般可检测到℃,所以可作标准检测之用。6.光纤温度检测器光纤温度检测器是目前光纤传感器中发展较快的一种,己开发了开关式温度检测器、辐射式温度检测器等多种实用型的品种。它是利用双折射光纤的传输光信号滞后量随温度变化的原理制成的双折射光纤温度检测器,检测精度在士1℃以内,测温范围可以从绝对0℃到2000℃。7.激光温度检测器激光测温特别适于远程测量和特殊环境下的温度测量,用氮氖激光源的激光作反射计可测得很高的温度,精度达l%;用激光干涉和散射原理制作的温度检测器可测量更高的温度,上限可达3000℃,专门用于核聚变研究但在工业上应用还需进一步开发和实验。8.微波温度检测器采用微波测温可以达到快速测量高温的目的。它是利用在不同温度下,温度与控制电压成线性关系的原理制成的。这种检测器的灵敏度为250kHZ/℃,精度为1%左右,检测范围为20~1400℃。从以上材料可以看出,当前温度检测的发展趋势组合要集中在以下几个方面:a.扩展检测范围现在工业上通用的温度检测范围为一200~3000℃,而今后要求能测超高温与超低温。尤其是液化气体的极低温度检测更为迫切,如10K以下的度检测是当前重点研究课题。b.扩大测温对象温度检测技术将会由点测温发展到线、面,甚至立体的测量。应用范围己经从工业领域延伸到环境保护、家用电器、汽车工业及航天工业领域。C.新产品的开发利用以前的检测技术生产出适应于不同场合、不同工况要求的新型产品,以满足用户需要。同时利用新的检测技术制造出新的产品。d.加强新原理、新材料、新加工工艺的开发。如近来已经开发的炭化硅薄膜热敏电阻温度检测器,厚膜、薄膜铂电阻温度检测器,硅单晶热敏电阻温度检测器等。e.向智能化、集成化、适用化方向发展。新产品不仅要具有检测功能,又要具有判断和指令等多功能,采用微机向智能化方向发展。向机电一体化方向发展。课题的工程背景在工业领域,温度、压力、流量是最常见的三大被检测的物理参数,其中最广泛的还是温度量的测量,随着电子技术、计算机技术的飞速发展,对现场温度的测量也由过去的刻度温度计、指针温度计向数字显示的智能温度计发展,而且,对测量的精度要求也越来越高。当然,对不同的工艺要求,其测量的精度要求不尽相同,这些是显而易见的,譬如,在测量电机的轴温时,可能测量的允许差达l℃以上,但在某些场合,温度的检测与控制需要达到很高的精度。以化工生产中联碱行业为例,联碱外冷器液氨致冷技术作为80年代中期化工部重点推广的技改项目之一,已被各联碱厂相继采用,并在生产实践中得到不断改进,已成为业内公认的一项成熟、有效的节能降耗技术。但至今仍存在外冷器生产能力偏低、运行周期短和节能效果不理想等问题。而外冷器进出口母液温差是影响外冷器生产能力和运行周期的一个重要因素,从长期的生产经验看,混合溶液每次流经外冷器时,进、出口温差以℃为宜。因此,精确测量与控制通过外冷器混合溶液的进、出口温差是指导该生产工艺的一个重要环节。事实上,由于精度要求较高,在实际生产中该环节的温差测控问题一直没能得到很好解决。经调研知,在全国范围内几乎所有化工集团的联碱行业的生产情况都如此,他们迫切希望能解决这一问题。在其它许多场合(如发酵工艺)中,温度的准确测量与控制同样具有相当强的实践指导作用。目前,虽然国内外已有很多温度测控装置,但温度测量的精度达到℃,并能适用于类似制碱工艺要求的外冷器低温差的精确检测与控制在国内尚属空白。该课题的研究能实现外冷器温差的高精度检测与控制,可推广应用到其它化工生产过程及其相关领域中需要对温差与温度进行高精度实时测控的场合。因此,研发高精度温度与温差测控系统具有很好的应用前景。

汽车检测是指为了确定汽车技术状况是否达到标准或工作能力是否正常而进行的检查和测量。下面是我为大家精心推荐的汽车检测技术论文,希望能够对您有所帮助。

国内汽车检测技术概况

[摘 要]本文通过了解我国国内汽车检测技术的概念及其分类,介绍了我国一些先进前沿的汽车检测技术,阐述了我国汽车检测技术的发展概况,针对我国汽车检测技术中的不足之处,结合我国汽车检测技术的具体发展形势,提出了我国汽车检测技术的发展方向,这对我国汽车检测技术的发展具有一定的现实指导意义。

[关键词]汽车检测;检测技术;国内现状;发展概况

中图分类号: 文献标识码:A 文章 编号:1009-914X(2015)03-0056-01

1.汽车检测的概念

汽车检测是指为了确定汽车技术状况是否达到标准或工作能力是否正常而进行的检查和测量。汽车检测技术则是指在汽车检测这一过程中所有与之相关的检测硬件和检测软件的研发和使用技术。

2.汽车检测技术的分类

安全环保检测

安全环保检测主要是针对汽车的安全运行和环境保护方面的检测,这种检测又分为定期检测和不定期检测。该检测的目的是为了确定车辆是否具备符合要求的外观容貌以及良好的安全性能,同时对汽车的环境污染程度进行有效控制。在汽车不解体的情况下,对汽车建立安全监控体系,确保汽车能高效、安全和低污染的运行。

综合性能检测

综合性能检测是指对汽车的综合性能实行定期或者不定期的检测。该检测的目的是为了确定汽车是否具有良好的动力性、可靠性、安全性、噪声污染性以及排气净化性。该检测主要针对汽车的故障及其原因或隐患部位实行质量监督和检测,从而建立汽车质量监控体系,来达到该检测技术的目的。

3.国内汽车检测技术的发展情况

国内汽车检测技术的发展历程

(1)20世纪60年代,我国汽车检测技术处于起步阶段。我国开始研究汽车检测技术开始于20世纪60年代,为了满足当时的汽车维修需要,我国交通部门研究和开发了发动机汽缸漏气量检测仪以及点火正时灯等一些基本的检测仪器。

(2)20世纪70年代,我国汽车检测技术进入发力发展阶段。随着我国汽车生产技术以及人们汽车使用率的飞速增长,我国交通部门开始进入大力发展汽车检测技术的阶段。汽车检测的仪器设备增多,检测项目增多,检测标准和规则也得到进一步的完善,建立了汽车性能综合检验台。

(3)20世纪80年代,我国汽车检测技术进入快速发展阶段。随着我国科学技术和国民经济的飞速发展,我国汽车制造业和交通运输业也得到了飞速发展。因此,对汽车检测技术和设备的需求也日益增涨。我国汽车检测技术因此进入其发展的蓬勃向上时期。

(4)20世纪90年代至今,我国汽车检测技术已经发展相对成熟。迈入90年代后,我国汽车检测技术从其设备的研制、开发以及生产都有了自身的一套运作体系。90年代是我国汽车检测技术的发展高潮时期。虽然目前我国的汽车检测技术与外国仍存在一定的差距,其发展的过程中也存在有一些问题和不足,但我国汽车检测技术也在不断的吸收借鉴完善自己,保证自身良好的发展态势,努力为其创造广阔的发展前景。

目前国内具有代表性的先进前沿的汽车检测技术

(1)虚拟仪器检测技术

虚拟仪器检测技术是指通过自由增减测试系统配置,利用系统配置单元器件,按照每一个项目测试的要求标准,可以直观和有效的得出监测结果,从而提高测试技术的效率。

(2)将GPS技术与车辆检测相结合

该技术主要是利用了能够接受卫星定位信号的GPS系统,将其与汽车检测技术系统相结合,从而达到快捷有效的检测过程。

(3)利用汽车四轮定位进行检测

四轮定位仪主要是依据车轮定位得到检测数据,它利用图像显示并记录汽车四轮的运作情况,与汽车检测数据结果分析相结合,从而达到检测目的。

4.国内汽车检测技术发展过程中存在的问题

国内汽车检测站的经营管理过程中存在行政干预问题

在我国,安全检测是由公安部门来建立管理的。因此我国的综合性能检测站都由交通部门直接建立并管理或者由地方企业建立但仍由交通部门管理。这种行政管理形式,往往造成了检测结果的不真实、检测过程的不规范或者检测项目不完善的情况,甚至是伪造一些监测数据。

我国汽车检测存在重复检测的问题

目前,我国有权对汽车进行检测的机构至少有三种,即安检站、机动车尾气排放检测站以及汽车综合性能检测站。这三个机构又分别归隶属于公安、环保、和交通管理部门。这些部门从各自的职能要求出发对车辆进行必要的检查和监测,容易造成车辆的重复检查,在加大汽车检测工作量的同时,给车主也带来不便。

检测技术有待进一步完善

目前,我国的进口汽车检测标准体系主要依赖于外国检测标准,因此针对我国汽车具体发展情况,我国的汽车检测技术有待进一步提高和完善。例如,我国目前的技术可以对车辆的正面、侧面、追尾等事故进行检测,但对侧面碰撞、追尾碰撞等事故却缺乏相关的检测标准。这也急需我国汽车检测技术的提高和完善。

我国汽车检测人员的整体专业能力和专业素质有待提高

一方面,我国的汽车检测人员的专业检测能力有待提高。一些检测人员本身缺乏基本的汽车知识,检测操作不规范,对检测结果的分析能力不够,不能很好的判断汽车是否达到检测标准。另一方面,我国汽车检测人员的自身素质不够,一些检测人员故意抬高检测收费标准,为了个人利益不顾集体利益,甚至为一些没有达到标准的车辆伪造数据。这些都是造成安全隐患的个人因素,也不利于我国检测技术的研发和推广。

5.解决国内汽车检测技术发展过程中的问题的有效 措施

汽车检测技术基础实现规范化

在我国汽车检测技术的发展过程中,汽车检测的硬件技术一直以来都比汽车检测技术中的软件技术更受重视。这种想法往往会导致对一些基础性技术研究的忽略。因此,我国汽车检测技术的发展方向应该注重与硬件配套的软件检测技术的完善和提高。这方面主要做到三点:一,制定并完善汽车检测项目的限值标准和检测 方法 ;二,完善汽车技术状况检测的评定细则,将全国各地的检测要求和具 体操 作技术进行统一和规范化;三,严格执行综合性能检测站对大型检测设备的认证规则,确保综合性能检测站有能力胜任并履行其检测职责。

汽车检测设备实现智能化

虽然目前我国的汽车检测技术以及检测设备的智能化与国外的检测存在一定的差距,但是我国汽车检测设备正积极学习并通过进口一些外国先进检测设备来提高并完善我国汽车检测设备的智能化。检测设备的智能化使检测设备具有专家检测和诊断系统以及智能化的功能,可以在较短时间较快较准确的对汽车状况进行检测,并诊断出汽车发生故障的部位以及故障原因,从而让维修人员能够迅速解除故障。节约了劳动成本,提高了劳动效率。

汽车检测管理实现网络化

随着计算机和 网络技术 的飞速发展,我国各个行业都在逐步实现其管理的网络化,汽车检测行业也不例外。目前,虽然我国的部分汽车综合性能检测站已经实现了计算机管理系统检测,但计算机监控系统并不完善,而且各个检测站之间采用的计算机检测方式也都一致。为了逐步实现我国汽车检测管理的一致性和有效性,我国汽车检测应该积极推进其管理的网络化。

6. 总结

随着我国经济和社会的进步以及汽车工业的发展,我国汽车检测技术也必须不断的提高和完善。为了使汽车维修人员的工作越来越轻松,提高汽车检测结果准确性,我国汽车检测技术的发展越来越趋向于自动化、网络化和智能化。汽车检测技术的完善和提高有利于我国交通事业以及环保事业的发展,从而为我国经济和社会的发展提供良好的外在环境。

参考文献

[1] 初君浩;浅析汽车检测技术的发展[J];科技致富向导;2014(08)25.

[2] 王洪亮;汽车检测技术的若干问题的思考[J];无线互联科技;2013(12)15.

作者简介

张彦(1975-)女,汉族,山东菏泽人,助理工程师,大学学历, 毕业 于山东省委党校经济管理专业,研究方向为车辆检测、维修。

点击下页还有更多>>>汽车检测技术论文

食品快速检验检测技术以其简捷性和便携性两大优势得到了快速发展。 下面是我为大家整理的食品快速检测技术论文,希望你们喜欢。

食品的快速检验检测技术

摘要:食品安全已成为社会关注的焦点问题。文章介绍了目前常用的食品安全快检技术,并展望了其发展方向。

关键词:食品安全 快检 技术综述

引言

食品安全(food safety)是指食品无毒、无害,符合应当有的营养要求,对人体健康不造成任何急性、亚急性或者慢性危害。俗话说“民以食为天”,食品安全关系到人民群众的身体健康和生命安全,关系到社会和谐稳定,而近年来食品安全问题层出不穷,加了吊白块的面粉,有毒的大米,注了水的鸡肉,掺了石蜡的火锅底料,硫酸泡过的荔枝,以及假酒假烟假蜂蜜劣质奶粉充斥着市场,真让老百姓担心起这片“天”。因此,对食品的生产、加工和销售环节实施监测监控势在必行,食品安全分析检测技术应运而生。

传统的食品安全分析检测技术主要是指化学分析法和大型仪器检测法,相对成熟。但它们的操作只能局限于实验室,操作复杂,耗时长,不能满足对食品质量安全实时监督掌控的需求,尤其在突发事件时,快速检验检测技术以其简捷性和便携性两大优势得到了快速发展。

1、食品快速检验检测技术的研究现状

化学速测技术

化学速测技术主要是根据待测成分的某些化学性质,将样品与特定试剂发生水解、氧化、磺酸化或络合等化学反应,通过与标准品的颜色比较或特定波长下的吸光度比较,以获得检测结果,通常也成为化学比色分析法。

利用普通化学原理的速测法主要包括检测试剂和试纸,随着检测仪器的不断发展,国内外均已有与测试剂相配套的微型光电比色计。针对试纸检测的仪器也有报道,如硝酸盐试纸条[1],主要是将硝酸盐还原为亚硝酸盐,在弱酸性条件下与对氨基苯磺酸重氮化后,和N-1-盐酸萘乙二胺偶合形成紫红色染料,试纸变色,插入检测仪读数即可。德国默克公司生产的与试纸联用的光反射仪技术相对成熟,国内尚无商品化仪器问世。

利用生物化学原理的速测法主要应用于微生物的检测,商品化成品以美国3M公司的PerrifilmTM Plate系列微生物测试片为代表,在检测金黄色葡萄球菌时,只需要测试片与确认片配套使用即可。测试片有上下两层薄膜组成,下层的聚乙烯薄膜上印有网格,便于计数,同时覆盖着含有特异性显色物质和抗生素的培养基,若样品中含有金黄色葡萄球菌,无须增菌,直接接种纸片培养24h后便可观察到显示出特殊颜色的菌落;确认片与测试片相似,只是含有不同的特异性显色物质,将有疑似菌落的测试片影印到确认片后,培养1-3h即可观察,不需进行繁琐的生理生化鉴定。而常规的Baird-Parker平板计数法耗时长达78h。

酶抑制速测技术

酶抑制速测技术主要用于食品中农药残留和重金属的快速检测。这些物质可通过键合作用造成酶的化学性质和结构的改变,产生的酶-底物结合体会发生颜色、吸光度或者pH值的变化,通过测定这些变化以达到定性或定量检测的目的。根据检测方式的不同,可分为试纸法、pH计法和光度法。相比而言,试纸法成本低、操作简单,更易于推广。它主要是将酶和底物分别固定在两张试纸片上,当样品中有待测组分时,会对酶产生抑制作用,两张试纸片接触后,酶和底物结合便会发生显著地颜色变化,比较适合农贸市场和超市等一些食品集散地的实时安全监管。由于该方法的检出限和保存性等方面的局限,只适用于初筛检测[2]。

生物传感器速测技术

生物传感器技术是利用生物感应元件的专一性,按照一定的规律将被测量转换成可用信号,使这种信号强度与待测物浓度形成一定的比例关系,具有快速、灵敏、高效的特点,是目前食品安全检测技术的研究热点,广泛应用于食品中农药残留、兽药残留等方面的检测,与传统的离线分析技术相比,它更适应于在复杂的体系内进行快速在线连续监测,在现场快速检测领域有着不可逾越的优势,按照传感器类型又可分为免疫传感器、酶传感器、细胞传感器、组织传感器、微生物传感器等等。

免疫传感器是在抗原抗体结合免疫反应的基础上发展起来的生物传感器。利用压电免疫传感器检测食品中常见肠道细菌时,通过葡萄球菌蛋白A将肠道菌共同抗原的单克隆抗体宝贝在10MHz的石英晶体表面,以大肠菌群为例,响应值可达10-6-10-9。

免疫速测技术

免疫速测是利用抗原抗体的专一、特异性反应建立起来的方法,根据选用的标记物可分为放射免疫检测、酶免疫检测、荧光免疫检测、发光免疫检测、胶体金免疫检测等。酶联免疫吸附检测法是应用较为广泛的一种免疫速测技术。它将酶标记在抗体/抗原分子上,形成酶标抗体/抗原即酶结合物,抗原抗体反应信号放大后,作用于能呈现出颜色的底物上,可通过仪器或肉眼进行辨别。目前,黄曲霉毒素酶联免疫试剂盒已广泛应用于食品检测中。

分子生物学速测技术

聚合酶链式反应(PCR)是近年来分子生物学领域中迅速发展并运用的一种技术,在食品检测中主要用于微生物的检测。它利用是否能从待测样品所提取的DNA序列中扩增出与目标菌种同源性的核酸序列来判定是否为阳性,该方法从富集菌体、提取遗传物质、PCR扩增到电泳、测序鉴定,可控制在24h,而致病菌的传统培养检测至少需要4-5天。

随着研究的逐深入,由PCR技术派生出的实时荧光PCR法、DNA指纹图谱法、免疫捕获PCR法、基因芯片法等也逐步得到了应用。基因芯片技术可以在很小的面积内预置千万个核酸分子的微阵列,利用细菌的共有基因作为靶基因,选用通用引物进行扩增,利用特异性探针检测这些共有基因的独特性碱基,从而区分出不同的细菌微生物。该法特异性强、敏感性高,可实现微生物检测的高通量和并行性检测。

2、食品快速检验检测技术的发展方向

食品安全快检法以其简捷性和便携性两大优势得到了快速发展,但缺点也显而易见,需要完善的地方依然很多:

简单 速检验检测技术往往是由一些非专业技术人员使用,因此,检测方法采样、处理、检测、分析等各个环节简单、易行是该方法的一大发展趋势。

准确 检法前处理简单,势必导致待测样品纯度不高,基体干扰大。因此,在今后方法的研究中,应更多关注与如何避免假阳性结果,尤其是在分子生物学速测法中,增强靶基因的特异性、引物的特异性、排除死菌体造成的假阳性应得到进一步探索。

便携 着微电子技术、智能制造技术、芯片技术的发展,检测仪器应向微型化、集约化、便携化方向发展,以满足更多的现场、实时、动态的检测要求。

经济 测成本的高低直接决定着检测技术能否得到广泛的推广和应用,如何在确保又好又快的检测基础上,尽最大可能的降低成本也是今后的研究方向。

标准化前,我国尚未制定出与食品安全快速检测技术相关的标准和规范,这也阻碍了快检法的推广和应用。随着技术的提高和检测中对快检法的需要,应及时制定出相关标准规范以增强快检结果的认可性和权威性。

参考文献

[1]房彦军,周焕英,杨伟群。试纸-光电检测仪快速测定食品中亚硝酸盐的研究【J】解放军预防医学杂志,2004,22(17):18-21

[2]易良键。食品安全快速检测方法的应用和研究【J】中国信息科技,2012,3:46

点击下页还有更多>>>食品快速检测技术论文

车道线检测相关论文极简笔记

1、传感器技术:自动驾驶汽车上,前后左右装有认识周围环境、道路、交通状况的各种传感器。光学摄像头包括单摄像头、多摄像头,多普勒雷达包括短距离雷达、远距离雷达,还有激光雷达就是车顶上那个旋转的机器,GPS定位装置,等等,构成汽车认识环境的眼睛。2、芯片技术:也就是能够处理多个传感器采集的数据,并能整合的类似小计算机的超级芯片,使汽车的“总计算机”体积、成本大为减小,并能应用于汽车成为可能。否则汽车里将没有人坐的地方、老百姓也买不起这些庞大计算机群的汽车。3、操作系统:计算机控制系统将处理结果与操作硬件结合起来,实现加速减速、刹车停车、变向避让,以及人机对话等等。无人驾驶汽车具备了替代人工操纵的能力。4、网络技术:无人驾驶汽车要能上路,必须具备与互联网、局域网联络和识别功能,包括车与车的联络对话、车与卫星通讯、车与天气预报的联络、车与交通指挥网的联络,才能正确识别和选择道路、正确服从交通警察的指挥、正确决定通过交叉路口、正确避让危险和安全行车。总之,万里长征刚走了第一步,距离进入百姓家庭,还相当遥远。比如,那个车顶上老是旋转的东西就让人感到很不雅观。汽车制造商真的搞无人驾驶,自己把自己推给了芯片公司、计算机公司、网络公司,沦为装配厂的一员,也是很不情愿的事。

车道线检测算法通常分为两种类型:一种是基于基于视觉特征来做语义分割或者实例分割,例如 LaneNet 和 SCNN ;另一种是通过视觉特征来预测车道线所在位置的点,以此来解决 no-visual-clue 问题的模型,比如本文提到的 Ultra-Fast-Lane-Detection 。

offical github : paper : Ultra Fast Structure-aware Deep Lane Detection

下图展示了整个模型的结构,基本可以分为三个部分: Backbone 、 Auxiliary 部分和用于车道线候选点选择的 Group Classification 部分。可以看出,由于整个 pipeline 中参与最终 inference 的部分只进行了下采样而不像分割模型还进行了多轮的上采样,因此模型整体的计算量是相当低的,根据论文给出的结果可以达到 300FPS 。

Backbone 部分采用了较小的 ResNet18 或者 ResNet34 ,下采样到 4X 的部分作为最终的特征,这里其实是较为浅层的特征,一般分割模型要下采样到 16x 或者 32x 。论文里也提到了使用较大的感受野就可以达到不错的检测效果,这样就可以极大的提高模型的推理速度。

Auxiliary 部分对三层浅层特征进行了 concat 和上采样,用来进行实例分割。其目的是在训练过程中增强视觉特征,不参与推理。

Group Classification 部分如下所示,论文称之为 row-based selecting method based on global image features ,即在全局特征上进行行索引来计算候选点,这样的方法将先验假设融入到了车道线检测的任务中。

在分割任务上,最终的特征图的大小是 HxWxC 。分类是要沿着 C 方向的, C 方向的向量代表一个像素位置的特征向量属于哪一个类别;在本方法中,最终的特征图的大小是 hx(w+1)xC 。 h 是要在垂直方向上采样的行的数量( row anchor ), h

文章中使用的 Loss 函数分为三部分,分别是多分类损失 L_cls , 分割损失 L_seg 和车道结构化损失 L_str 。其中 L_cls 和 L_seg 是常用的分类、分割任务中常用的两种损失。

结构损失的目的是利用车道结构的先验知识来约束预测出来的车道线的形状。其中 L_sim 为相似度损失, L_shp 为形状损失。

相似度损失的出发点是同一个车道中,相邻的两个点之间的距离应该尽可能的近,这里使用 L1 范式来进行距离的约束。

形状损失的出发点是基于大多的的车道线都是直线,即使是曲线其大部分也是近似的直线。对于同一条车道线,在相邻 row achor 上的车道线的候选点的位置的选择应该尽可能的相近。理想的状况下它的值应该为 0 。

Loc 函数的含义是第 i 条车道的第 j 个 row anchor 中车道点的期望。 Prob 代表的是第 i 条车道的第 j 个 row anchor 中,第 k 个位置是车道点的概率。因为背景不被计算在内,因此 k 的取值从 1 开始。

论文给出 metric 结果如下所示,其评估硬件应该为 NVIDIA GTX 1080TI 。该方法在保证精度接近的情况下,极大的提升了推理速度,很适合实时检测的任务。

为了测试其真实的推理性能,我在 NVIDIA RTX 3070+CUDA11+ 的环境性进行了测试。模型的 backbone 为 resnet18 ,输入尺寸为 (288, 800, 3) 的情况下, Ultra-Fast-Lane-Detection 的推理性能如下所示,单 batch 推理速度约为 350FPS ,其性能与论文给出的结果基本一致。

  • 索引序列
  • 车道线检测国内外发展论文
  • matlab车道线检测论文
  • 车道线检测论文推荐
  • 国内外检测技术的发展现状论文
  • 车道线检测相关论文极简笔记
  • 返回顶部