首页 > 论文发表知识库 > 函数的应用毕业论文

函数的应用毕业论文

发布时间:

函数的应用毕业论文

哥们是二中的吧~你去找一个高二的借一下就行了,因为高一和高二的作业是完全相同的!

数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文

随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序模拟系统单圈图的一般Randic指标的极值问题模糊数学在公平评奖问题中的应用模糊矩阵在环境评估中的初步应用模糊评判在电脑中的初步应用数学家的数学思想Riemann积分定义的网收敛表述微积分思想在不等式证明中的应用用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义微积分思想在几何问题中的应用齐次平衡法求KdV-Burgers方程的Backlund变换Painleve分析法判定MKdV-Burgers方程的可积性直接法求KdV-Burgers方程的对称及精确解行波求解KdV-Burgers方程因子有向图的矩阵刻划简单图上的lit-only sigma-game半正则图及其线图的特征多项式与谱分数有向图的代数表示WWW网络的拓扑分析作者合作网络等的拓扑分析古诺模型价格歧视用数学软件做计算微分方程的计算器用数学软件做矩阵计算的计算器弹簧-质点系统的反问题用线性代数理论做隐含语义搜索对矩阵若当标准型理论中变换阵求法的探讨对矩阵分解理论的探讨对矩阵不等式理论的探讨(1)对矩阵不等式理论的探讨(2)函数连续性概念及其在现代数学理论中的延伸从有限维空间到无限维空间Banach空间中脉冲泛函微分方程解的存在性高阶脉冲微分方程的振动性具有积分边界条件的分数阶微分方程解的存在唯一性分数阶微分方程的正则摄动一个形态形成模型的摄动解一个免疫系统常微分方程模型的渐近解前列腺肿瘤连续性激素抑制治疗的数学模型前列腺肿瘤间歇性激素抑制治疗的数学模型病毒动力学数学模型肿瘤浸润数学模型耗散热方程初边值问题解的正则性耗散波方程初边值问题解的正则性耗散Schrodinger方程初边值问题解的正则性非线性发展方程解得稳定性消费需求的鲁棒调节生产函数的计量分析企业的成本形态分析的研究分数阶Logistic方程的数值计算分数阶捕食与被捕食模型的数值计算AIDS传播模型的全局性分析HIV感染模型的全局性分析风险度量方法的比较及其应用具有区间值损益的未定权益定价分析模糊规划及其在金融分析中的应用长依赖型金融市场股票价格与长相依性分数布朗运动下的外汇期权定价不确定性与资产定价加油站点的分布与出租车行业的关系

人还贷理财中Excel财务函数的功能与运用论文

在个人成长的多个环节中,大家最不陌生的就是论文了吧,论文是学术界进行成果交流的工具。那么你知道一篇好的论文该怎么写吗?下面是我整理的人还贷理财中Excel财务函数的功能与运用论文,仅供参考,大家一起来看看吧。

摘要:

现代社会,按揭贷款购房、买车越来越普遍,作为还贷者,必须明确每期的还款额、本金和利息。文章利用Excel中的财务函数,计算和分析当前购房、买车者的还贷问题,并从个人理财的角度提出看法。

关键词:

Excel财务函数;偿还贷款;个人理财;

引言:

现今社会,对收入相对稳定的工薪一族而言,购房、买车时若资金不足,大多会选择向银行贷款,每月定期还款,即可如愿拥有自己的房屋和车辆。还贷者虽然每月按银行要求定期还款,却并不清楚还款额如何计算,还款额中的本金和利息为多少,还款过程中如何选择还款方式、合理安排每月还款额、还款总期限等。这些问题都和还贷者的利益息息相关,但多数情况下人们都是被动接受。文章利用财务函数计算和分析银行还贷表,使还贷者清楚还贷的具体情况,并在个人经济承范围内合理制订还款计划,达到个人理财和节省资金的目的。

1、财务函数的功能

在计算银行还贷额、本金和利息时,利用了Excel中以下几种财务函数。

、年金(等额还款)函数—PMT

函数PMT的功能:在已知利率、期数及现值或终值的条件下,计算投资或贷款的每期付款额,此函数中所使用的还款总期数是指总月份数。

函数PMT语法公式:=PMT(rate,nper,pv,fv,type)

、年金中的本金函数—PPMT

函数PPMT的功能:返回在定期偿还、固定利率条件下给定期限内某项投资回报(或贷款偿还)的本金部分。

函数PPMT语法公式:=PPMT(rate,per,nper,pv,fv,type)

、年金中的利息函数—IPMT

函数IPMT的功能:返回在定期偿还、固定利率条件下给定期次内某项投资回报(或贷款偿还)的利息部分。

函数IPMT语法公式:=IPMT(rate,per,nper,pv,fv,type)

各参数的含义如下:Rate为每期利率,是一个固定值;Nper为投资(或货款)的付款总期数;pv为现值,或一系列未来付款当前值的累积和,也称本金,如果省略pv,则假设其值为0;fv为终值,或在最后一次支付后希望得到的现金余额,如果省略fv,则假设其值为0;per为计算其本金数额的期次,它必须介于1和付款总次数nper之间,其他参数的含义与函数PMT的参数含义相同;Type为数字0或1,用以指定各期的付款时间是期初还是期末,0表示期末,1表示期初,如果此参数省略,则假设其值为0。

在所有参数中,凡是收益(或收入)的金额以正数形式表示,投资(或支出)的金额都以负数形式表示。在参数的使用中应注意rate、nper、PMT三者的单位要统一,如果按月支付,单位就统一为月,如果按年支付,单位就统一为年。

2、还贷方式及财务函数的应用

银行贷款最常见的还款方式有以下两种:

(1)等额本息还款式:即贷款的本金和利息之和采用按月等额还款的一种方式。该种还款方式的特点是每月的还款额相同,借款人每月月供不变,因每月承担相同的款项,方便借款人安排收支。

(2)等额本金还款:即借款人将贷款额平均分摊到整个还款期内每期归还,同时付清上一交易日到本次还款日间的贷款利息的一种还款方式,该种方式每月的还款额逐月减少,借款人在开始还贷时,每月负担会较大,但随着还款时间的推移,还款负担会逐渐减轻,最后总的利息支出较低[1]。

目前,多数银行的商业性个人还贷和住房公积金贷款都采用等额本息这种方式还贷,下面以等额本息这种还贷方式为例,利用Excel财务函数进行计算分析[2]。

例如,张先生欲按揭购买一套住房,该住房总售价为360000元,首付款为120000元,如果银行贷款月利率为,还款期限为10年,那么张先生每月月末应偿还的贷款额为多少元?

要计算每月还款额可以使用函数PMT,输入公式“=PMT(×12,360000-120000)=2664(元)”,即可得到张先生每月应偿还的住房贷款额为2664元。

要计算张先生第1个月偿还的贷款的本金,应使用函数PPMT。

如果张先生每月月末偿还住房贷款,则其第1个月还款中的本金如下:

如果张先生每月月初偿还住房贷款,则其第1个月还款中的本金如下:

要计算张先生第1个月偿还的贷款的利息,应使用函数IPMT。

如果张先生每月月末偿还住房贷款,则他第1个月偿还的贷款的利息如下:

如果张先生每月月初偿还住房贷款,则他第1个月应偿还的贷款利息如下:

3、个人还贷理财分析

还贷者从还款的第一个月起到最后一个月,每月还款额相同,还款额里包含了部分本金和利息,利用Excel财务函数可以算出每月还给银行的还贷额、本金和利息,并分析数据,合理安排还款计划,达到个人理财的目的[3]。

例如,购买一套100万元的房子,首付30%后,向银行贷款本金是70万元,10年按揭付清,按目前银行商业贷款利率,10年期月利率是,那么每月偿还额是多少?其中本金和利息又是多少呢?

利用函数PMT计算每期的还款额,利用函数PPMT计算各月偿还的本金额,利用函数IPMT计算各月偿还的利息额。具体操作如下图所示,在B4单元格中输入公式:“=PMT($D$2,$F$2*12,$B$2)”,可得到第一个月应偿还的金额;在C4单元格中输入公式“=PPMT($D$2,A4,$F$2*12,$B$2)”,可得到第一个月应偿还的本金额;在D4单元格中输入公式“=IPMT($D$2,A4,$F$2*12,$B$2)”,可得到第一个月应偿还的利息额,然后选中B4:D4单元格区域,拖动D4右下角的填充柄向下复制到最后一期,即可得到全部偿还期各月的还款额、本金和利息。

从第1个月至第120个月,每月要偿还的利息和本金之和每月等额都是元,但每个月支出的利息和本金不一样,如第一个月的利息支出为3500元,本金偿还额是元,而最后一个月的利息支出只有元,而本金偿还为元。换言之,在偿还银行贷款时,虽然每个月的偿还额一样,但其实偿还的本金不同,本金的偿还额逐月递增,利息的偿还额逐月在递减,如果有偿还能力,可以在还贷的中前期提前偿还部分贷款,减少利息的支付,当还款进行到中后期,由于本金的偿还额递增,利息支付逐渐减少,提前还款意义不大。

参考文献

[1]雷虹.EXCEL财务函数在偿还贷款个人理财中的应用[J].会计之友(B),2005(4):54-55.

[2]牟小兵.EXCEL财务函数在财务管理的应用分析[J].财经界(学术版),2020(14):129-130.

[3]王兆连.运用EXCEL函数进行会计核算[J].吕梁教育学院学报,2004(3):47-49.

(is,fs,s,r,p,f,b)

该函数返回定期付息有价证券的应计利息。其中is为有价证券的发行日,fs为有价证券的起息日,s为有价证券的成交日,即在发行日之后,有价证券卖给购买者的.日期,r为有价证券的年息票利率,p为有价证券的票面价值,如果省略p,函数ACCRINT就会自动将p设置为¥1000,f为年付息次数,b为日计数基准类型。

例如,某国库券的交易情况为:发行日为95年1月31日;起息日为95年7月30日;成交日为95年5月1日,息票利率为;票面价值为¥3,000;按半年期付息;日计数基准为30/360,那么应计利息为:=ACCRINT("95/1/31","95/7/30","95/5/1",)计算结果为:。

(is,m,r,p,b)

该函数返回到期一次性付息有价证券的应计利息。其中i为有价证券的发行日,m为有价证券的到期日,r为有价证券的年息票利率,p为有价证券的票面价值,如果省略p,函数ACCRINTM就会自动将p为¥1000,b为日计数基准类型。

例如,一个短期债券的交易情况如下:发行日为95年5月1日;到期日为95年7月18日;息票利息为;票面价值为¥1,000;日计数基准为实际天数/365。那么应计利息为:=ACCRINTM("95/5/1","95/7/18",)计算结果为:。

(r,np,pv,st,en,t)

该函数返回一笔货款在给定的st到en期间累计偿还的本金数额。其中r为利率,np为总付款期数,pv为现值,st为计算中的首期,付款期数从1开始计数,en为计算中的末期,t为付款时间类型,如果为期末,则t=0,如果为期初,则t=1。

例如,一笔住房抵押贷款的交易情况如下:年利率为;期限为25年;现值为¥110,000。由上述已知条件可以计算出:r=,np=30*12=360。那么该笔贷款在第下半年偿还的全部本金之中(第7期到第12期)为: CUMPRINC()计算结果为:。该笔贷款在第一个月偿还的本金为: =CUMPRINC()计算结果为:。

(s,m,pr,r,b)

该函数返回有价证券的贴现率。其中s为有价证券的成交日,即在发行日之后,有价证券卖给购买者的日期,m为有价证券的到日期,到期日是有价证券有效期截止时的日期,pr为面值为“¥100”的有价证券的价格,r为面值为“¥100”的有价证券的清偿价格,b为日计数基准类型。

例如:某债券的交易情况如下:成交日为95年3月18日,到期日为95年8月7日,价格为¥,清偿价格为¥48,日计数基准为实际天数/360。那么该债券的贴现率为:DISC("95/3/18","95/8/7",)计算结果为:。

(nr,np)

该函数利用给定的名义年利率和一年中的复利期次,计算实际年利率。其中nr为名义利率,np为每年的复利期数。

例如:EFFECT()的计算结果为或

(r,np,p,pv,t)

该函数基于固定利率及等额分期付款方式,返回某项投资的未来值。其中r为各期利率,是一固定值,np为总投资(或贷款)期,即该项投资(或贷款)的付款期总数,p为各期所应付给(或得到)的金额,其数值在整个年金期间(或投资期内)保持不变,通常P包括本金和利息,但不包括其它费用及税款,pv为现值,或一系列未来付款当前值的累积和,也称为本金,如果省略pv,则假设其值为零,t为数字0或1,用以指定各期的付款时间是在期初还是期末,如果省略t,则假设其值为零。

例如:FV()的计算结果为¥3,;FV()的计算结果为¥10,; FV()的计算结果为¥69,。

又如,假设需要为一年后的一项工程预筹资金,现在将¥2000以年利,按月计息(月利为)存入储蓄存款帐户中,并在以后十二个月的每个月初存入¥200。那么一年后该帐户的存款额为:FV()计算结果为¥4,。

(p,s)

该函数基于一系列复利返回本金的未来值,它用于计算某项投资在变动或可调利率下的未来值。其中p为现值,s为利率数组。

例如:FVSCHEDULE(1,{})的计算结果为。

(v,g)

该函数返回由数值代表的一组现金流的内部收益率。这些现金流不一定必须为均衡的,但作为年金,它们必须按固定的间隔发生,如按月或按年。内部收益率为投资的回收利率,其中包含定期支付(负值)和收入(正值)。其中v为数组或单元格的引用,包含用来计算内部收益率的数字,v必须包含至少一个正值和一个负值,以计算内部收益率,函数IRR根据数值的顺序来解释现金流的顺序,故应确定按需要的顺序输入了支付和收入的数值,如果数组或引用包含文本、逻辑值或空白单元格,这些数值将被忽略;g为对函数IRR计算结果的估计值,excel使用迭代法计算函数IRR从g开始,函数IRR不断修正收益率,直至结果的精度达到,如果函数IRR经过20次迭代,仍未找到结果,则返回错误值#NUM!,在大多数情况下,并不需要为函数IRR的计算提供g值,如果省略g,假设它为(10%)。如果函数IRR返回错误值#NUM!,或结果没有靠近期望值,可以给g换一个值再试一下。

例如,如果要开办一家服装商店,预计投资为¥110,000,并预期为今后五年的净收益为:¥15,000、¥21,000、¥28,000、¥36,000和¥45,000。

在工作表的B1:B6输入数据“函数.xls”所示,计算此项投资四年后的内部收益率IRR(B1:B5)为;计算此项投资五年后的内部收益率IRR(B1:B6)为;计算两年后的内部收益率时必须在函数中包含g,即IRR(B1:B3,-10%)为。

(r,v1,v2,...)

该函数基于一系列现金流和固定的各期贴现率,返回一项投资的净现值。投资的净现值是指未来各期支出(负值)和收入(正值)的当前值的总和。其中,r为各期贴现率,是一固定值;v1,v2,...代表1到29笔支出及收入的参数值,v1,v2,...所属各期间的长度必须相等,而且支付及收入的时间都发生在期末,NPV按次序使用v1,v2,来注释现金流的次序。所以一定要保证支出和收入的数额按正确的顺序输入。如果参数是数值、空白单元格、逻辑值或表示数值的文字表示式,则都会计算在内;如果参数是错误值或不能转化为数值的文字,则被忽略,如果参数是一个数组或引用,只有其中的数值部分计算在内。忽略数组或引用中的空白单元格、逻辑值、文字及错误值。

例如,假设第一年投资¥8,000,而未来三年中各年的收入分别为¥2,000,¥3,300和¥5,100。假定每年的贴现率是10%,则投资的净现值是:NPV(10%,-8000,2000,3300,5800)计算结果为:¥。该例中,将开始投资的¥8,000作为v参数的一部分,这是因为付款发生在第一期的期末。(“函数.xls”文件)下面考虑在第一个周期的期初投资的计算方式。又如,假设要购买一家书店,投资成本为¥80,000,并且希望前五年的营业收入如下:¥16,000,¥18,000,¥22,000,¥25,000,和¥30,000。每年的贴现率为8%(相当于通贷膨胀率或竞争投资的利率),如果书店的成本及收入分别存储在B1到B6中,下面的公式可以计算出书店投资的净现值:NPV(8%,B2:B6)+B1计算结果为:¥6,。在该例中,一开始投资的¥80,000并不包含在v参数中,因为此项付款发生在第一期的期初。假设该书店的营业到第六年时,要重新装修门面,估计要付出¥11,000,则六年后书店投资的净现值为: NPV(8%,B2:B6,-15000)+B1计算结果为:-¥2,

(r,np,p,f,t)

该函数基于固定利率及等额分期付款方式,返回投资或贷款的每期付款额。其中,r为各期利率,是一固定值,np为总投资(或贷款)期,即该项投资(或贷款)的付款期总数,pv为现值,或一系列未来付款当前值的累积和,也称为本金,fv为未来值,或在最后一次付款后希望得到的现金余额,如果省略fv,则假设其值为零(例如,一笔贷款的未来值即为零),t为0或1,用以指定各期的付款时间是在期初还是期末。如果省略t,则假设其值为零。

例如,需要10个月付清的年利率为8%的¥10,000贷款的月支额为:PMT(8%/12,10,10000)计算结果为:-¥1,。

又如,对于同一笔贷款,如果支付期限在每期的期初,支付额应为:PMT(8%/12,10,10000,0,1)计算结果为:-¥1,。

再如:如果以12%的利率贷出¥5,000,并希望对方在5个月内还清,那么每月所得款数为:PMT(12%/12,5,-5000)计算结果为:¥1,。

(r,n,p,fv,t)

计算某项投资的现值。年金现值就是未来各期年金现在的价值的总和。如果投资回收的当前价值大于投资的价值,则这项投资是有收益的。

例如,借入方的借入款即为贷出方贷款的现值。其中r(rage)为各期利率。如果按10%的年利率借入一笔贷款来购买住房,并按月偿还贷款,则月利率为10%/12(即)。可以在公式中输入10%/12、或作为r的值;n(nper)为总投资(或贷款)期,即该项投资(或贷款)的付款期总数。对于一笔4年期按月偿还的住房贷款,共有4*12(即48)个偿还期次。可以在公式中输入48作为n的值;p(pmt)为各期所应付给(或得到)的金额,其数值在整个年金期间(或投资期内)保持不变,通常p包括本金和利息,但不包括其他费用及税款。例如,¥10,000的年利率为12%的四年期住房贷款的月偿还额为¥,可以在公式中输入作为p的值;fv为未来值,或在最后一次支付后希望得到的现金余额,如果省略fv,则假设其值为零(一笔贷款的未来值即为零)。

例如,如果需要在18年后支付¥50,000,则50,000就是未来值。可以根据保守估计的利率来决定每月的存款额;t(type)为数字0或1,用以指定各期的付款时间是在期初还是期末,如果省略t,则假设其值为零。

例如,假设要购买一项保险年金,该保险可以在今后二十年内于每月末回报¥500。此项年金的购买成本为60,000,假定投资回报率为8%。那么该项年金的现值为:PV(*20,500,,0)计算结果为:-¥59,。负值表示这是一笔付款,也就是支出现金流。年金(¥59,)的现值小于实际支付的(¥60,000)。因此,这不是一项合算的投资。在计算中要注意优质t和n所使用单位的致性。

(c,s,l)

该函数返回一项资产每期的直线折旧费。其中c为资产原值,s为资产在折旧期末的价值(也称为资产残值),1为折旧期限(有时也称作资产的生命周期)。

例如,假设购买了一辆价值¥30,000的卡车,其折旧年限为10年,残值为¥7,500,那么每年的折旧额为: SLN(30000,7500,10)计算结果为:¥2,250。

凸函数应用的毕业论文

凸函数的性质及其应用如下:

性质:定义在某个开区间C内的凸函数f在C内连续,且在除可数个点之外的所有点可微。如果C是闭区间,那么f有可能在C的端点不连续。

凸函数是指一类定义在实线性空间上的函数。

注意:中国大陆数学界某些机构关于函数凹凸性定义和国外的定义是相反的。Convex Function在某些中国大陆的数学书中指凹函数。Concave Function指凸函数。但在中国大陆涉及经济学的很多书中,凹凸性的提法和其他国家的提法是一致的,也就是和数学教材是反的。

举个例子,同济大学高等数学教材对函数的凹凸性定义与本条目相反,本条目的凹凸性是指其上方图是凹集或凸集,而同济大学高等数学教材则是指其下方图是凹集或凸集,两者定义正好相反。

另外,也有些教材会把凸定义为上凸,凹定义为下凸。碰到的时候应该以教材中的那些定义为准。

判定方法可利用定义法、已知结论法以及函数的二阶导数,对于实数集上的凸函数,一般的判别方法是求它的二阶导数,如果其二阶导数在区间上大于等于零,就称为凸函数。如果其二阶导数在区间上恒大于0,就称为严格凸函数。

大概方向能在稍微具体点么?数学教学这方面的话省级的《教育界》可以考虑,性价比不错,同类期刊也算比较不错的,白杜输入壹品优,我发过教育界的稿子的,有编辑邮箱的。

毕业论文研究方法怎么写,为什么很难下笔

论文的研究方法主要有以下几种:

1、调查法

它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解。

2、观察法

观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。

3、实验法

实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性和控制性。

4、文献研究法

文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。

5、实证研究法

在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。

多元函数应用毕业论文

数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文

我觉得LS回答得太随意了,我不是学数学专业的,所有帮不了你!

这个真的不难,多看课本,然后总结一下,加上自己的一些思考,可以写函数最值的一些求法,以及存在的条件,在实际生活中的应用,无论多元函数,还是一元函数,书上都有具体的求法,公式,好好总结一下,真的很容易写好的.

数学领域中的一些著名悖论及其产生背景

函数的性质及其应用毕业论文

看完图片你就会知道捷径的!

数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文

函数单调性、极值、最值,在生话中求最优、最省等问题时有体现和名用。比如说一边靠墙,围栏的长度一定,怎么围别三边才能使所围面最大?这是一个求最值的问题————条件最值,组决这一问题要用到函数的最值,运算过程要考虑函数的单调性。

您好。每一种类型的函数都有自己的图像和性质,函数在生活中的应用:会涉及到两个变量,一个是自变量,一个是因变量

数学与应用数学函授毕业论文

楼主 、放心吧 这东西不会有人给你写的

数学及应用数学的毕业论文,首先,毕业论文的所有导师会给出论文题目供大家选择。一般论文的题目和方向比写论文的人数还多一些,然后大家分别选题。如果出现了两个人都选择同一个题目,那就协商,让其中一个换题目。这种还没写的东西,也不会有太大差别。然后就是根据题目要求开始写你的论文,如果有不懂的,就查阅资料,寻求导师帮助数学的方向很多,选一项你自认为学的还可以的项目,再进一步。加油吧

应该先选一个题目做研究,有了研究成果,才可能产生论文。论文不是随心所欲编出来的。

数学及应用数学毕业论文应该怎么写?首先写数学及应用数学得一些特性,然后学习说说自己学习的心得方法体会,最后告诉人们数学及应用数学的一个方向。

  • 索引序列
  • 函数的应用毕业论文
  • 凸函数应用的毕业论文
  • 多元函数应用毕业论文
  • 函数的性质及其应用毕业论文
  • 数学与应用数学函授毕业论文
  • 返回顶部