父母为了孩子的荣誉玩过火了,把一些高大上的名头加在孩子身上自然会遭到社会的质疑。
癌症的发生,归根结底还是一个基因突变的过程。人类在生长的过程中,有一些细胞还会持续的分裂,在细胞分裂的过程中就是涉及一个前期的复制,基因的复制然后再分裂的一个过程。复制和分裂的过程中,就有可能出现基因的错配,也就是相当于我们的这个剧本在编的过程中,在抄剧本的过程中,抄错了然后后边演员在演的过程中这个内容就完全南辕北辙了,在这种情况下会导致这样一个基因之后编辑的蛋白发生了质的变化。这样的一种错配的积累,这种基因突变积累,就导致了一个新的这样的形态的细胞的出现,而这种细胞多半是以这种永生花就持续分裂,为最主要的表现,这个也就是我们通常说的癌细胞。
肿瘤是基因与环境共同作用的结果。在这个过程中,基因决定了患者的易感性。
7. 新生儿DNA快速解码
当宝宝在刚出生时就患有特殊疾病,就会转至产后重症监护病房(neonatal intensive care unit, NICU)接受特殊照护,必须先做新生儿的DNA解码过程,才能确定婴儿基因上的缺陷,然此项工作过去必须历时数周甚至数月,对于严重病症的婴儿来说,短短几天内对生命的威胁都十分大,过去就有许多因未能及时正确处理而让婴儿夭折的案例。
新研发的基因测序仪可大幅缩短基因解码分析的时间,排序30亿个碱基对的基因组过去需耗费数周,如今只需要27小时,另外还须加上解码基因的程序,才能有效判别其中资讯,整个过程加起来如今只需50小时,甚至不到3天。
8. 孩童体内肿瘤治疗
近年来,儿童癌症的存活率已提高至80%~90%,主要是因为现今医学技术可早期诊断出肿瘤,以及透过外科手术、化疗等方式降低死亡率。而就在2012年,耗资6500万美元的「小儿癌症基因组计画」( Pediatric Cancer Genome Project),预期能够提供更多新的疗法,旨在了解小儿癌症的基因组序列,并进一步研究癌症的发病机制。
此外,如果能发现不同癌症之间的共同途径,可以让医师在治疗相关癌症时更顺利,基因研究也将推动研发抑制细胞异常生长的药物。
父母为了孩子的荣誉玩过火了,把一些高大上的名头加在孩子身上自然会遭到社会的质疑。
我觉得应当被撤销,毕竟不是完完全全靠自己做的,这对其他人来说也是不公平的,但是我们也不应该过多的去苛责,评价。
据央视新闻报道,北京时间7月9日凌晨,美国加利福尼亚大学洛杉矶分校(UCLA)副教授吴梦婷获得美国国家科学院年度科学家奖(MNP Grimes),这是该奖项设立以来,首位中国女性获奖者。奖金100万美元,以表彰其在该领域的杰出贡献。获奖人吴梦婷获得一项新的科学成就。据介绍,获奖理由为“她是在利用 DNA序列鉴定疾病机制上做出贡献的女性”。
这些论文主要研究了什么?与我们生活息息相关呢?目前已知的三种肿瘤类型分别为:前列腺癌、乳腺癌)、肺癌。这是因为它们都与人体中的 DNA被翻译后发生改变从而导致疾病。但最近的研究发现:癌症的病理机制仍然不清楚,因为它们会“沉默”。此外,癌症和遗传也有关系。”吴梦婷介绍说,她做过研究发现细胞对人体非常重要。
细胞是由多种类型的细胞组成的,在分化过程中,不同模式的细胞会形成不同样子的膜结构、核质结构和功能,也会发生形态和其他变化。例如干细胞会有一些不一样的形态,有的可以是单核一样多细胞也有多个细胞核。当身体出现问题的时候,肿瘤就会生长。吴梦婷说:“因为你把它想象成一棵树没有叶子、没有花骨朵和果实的样子。
因为在这种环境下不可能长出任何一棵树和树木来帮助生长或为你治病,所以它会影响什么。但现在有一个奇怪的现象,因为每个人的身体中都存在不同大小的细胞,它们共同组成了一个生态系统。如果有错误,那么健康就会受到影响:例如吸烟会影响到肺功能以及心血管系统等等。”从一开始她就意识到需要多个方面保护细胞,它们才能维持正常发育等各个方面。。这是一个细胞分化过程中发生一些改变的问题。
主要研究了剪接体和RNA剪接的分子机理。白蕊是世界上唯一一个捕获全部类型剪接体团队的核心人员,她曾凭借自己的学习和研究发了6篇Science,还有3篇Cell,含金量满满的顶刊论文真令人佩服。
细胞生长的调节
要说到这两个基因的功能,不得不先提到细胞的生长。
构成人体的细胞并不是永生不老的,都具有一定的生命周期。机体在生命活动中,其细胞的生长、增殖、分化和死亡都是受到相应调控的,这种调控能使细胞在种类和数量上保持平衡。而肿瘤细胞则是打破了平衡,其具有无限增殖的特点,成为了“不死”的细胞。
机体对细胞生长的调控主要由谁来完成呢?即 原癌基因 和 抑癌基因 。
原癌基因
别一听原癌基因就觉得它一定是个坏基因。它是在细胞内的一类正常基因,在机体生长发育过程中起到至关重要的作用。
在正常细胞中,原癌基因的表达量一般较低,其表达主要与细胞分化阶段、类型和所处周期有关。如果原癌基因的结构或调控区发生变异,基因产物增多,则会使细胞过度生长,最坏的结果就是形成肿瘤。
抑癌基因 tumor suppressor genes
即抗癌基因,也是细胞内的正常基因。和原癌基因相反,其主要作用为抑制细胞的生长、增殖和分化过程。当该基因突变或者失活,则无法起到抑制细胞生长的作用,即无法维持细胞种类和数量上的平衡,导致肿瘤发生。
抑癌基因中,明星基因当属TP53,它是目前我们研究得最多也是最透彻的基因,50%的恶性肿瘤会出现该基因的突变。
抑癌基因或肿瘤抑制基因(tumor suppressor gene)又称抗癌基因(anti-onco—gene),是指能够抑制细胞癌基因活性的一类基因,其功能是抑制细胞周期,阻止细胞数目增多以及促使细胞死亡。通常是一对等位基因均告缺失或都因突变而失去活性时,细胞发生癌变,此时缺失或突变的基因一般就是抑癌基因。因此,抑癌基因反映了基因的功能丢失(loSS of function)。抑癌基因原先有对细胞分裂周期或细胞生长设置限制的功能,当抑癌基因的一对等位基因都缺失或都失去活性时,这种限制功能也就随之丢失,于是出现了细胞癌变。抑癌基因与癌基因之间的区别在于癌基因只要有一个等位基因发生突变时就可引起癌变,而抑癌基因只要有一个等位基因是野生型时,就可抑制癌变。目前已发现的抑癌基因有10多种。例如,P53基因是于1979年发现的第一个肿瘤抑制基因,开始时被认为是一种癌基因,因为它能加快细胞分裂的周期,以后的研究发现只有在pJ3的失活或突变时才会导致细胞癌变,才认识到它是一个肿瘤抑制基因。(一)视网膜母细瘤基因(Rb基因)Rb 基因是最早发现的肿瘤抑制基因,最早发现于儿童的视网膜母细胞瘤,因此称为Rb基因。当Rb基因一旦丧失功能或先天性缺乏,视网膜母细胞则出现异常增殖,形成视网膜母细胞瘤。Rb基因失活还见于多种肿瘤,具有一定的广泛性。Rb基因比较大,编码蛋白质为P105,定位于核内,有磷酸化和非磷酸化两种形式,非磷酸化形式称活性型,能促进细胞分化,抑制细胞增殖。Rb基因对肿瘤的抑制作用与转录因子(E-2F)有关。E-2F是一类激活转录作用的活性蛋白,在G 0、G 1期,低磷酸化型的Rb蛋白与E-2F结合成复合物,使E-2F处于非活化状态;在S期,Rb蛋白被磷酸化而与E-2F解离,结合状态的E-2F变成游离状态,细胞立即进入增殖阶段。当Rb基因发生缺失或突变,丧失结合、抑制E-2F的能力,于是细胞增殖活跃,导致肿瘤发生。二P53 基因野生型 P53蛋白在维持细胞正常生长、抑制恶性增殖中起着重要作用,P53基因时刻监控着基因的完整性,一旦细胞DNA遭到损害,P53蛋白与相应基因的DNA部位结合,起特殊转录因子作用,活化P21基因转录,使细胞停滞于G 1期;抑制解链酶活性;并与复制因子A相互作用参与DNA的复制与修复;如果修复失败,P53蛋白即启动程序性死亡过程诱导细胞自杀,阻止有癌变倾向突变细胞的生成,从而防止细胞恶变。当P53发生突变后,不单失去野生型P53抑制肿瘤增殖的作用,而且突变本身又使该基因具备癌基因功能。
随着年龄的增长,人的抵抗力以及身体功能在不断衰退,身体器官也在慢慢趋向衰竭,逐渐出现各种疾病或者不适症状。通过研究发现,近几年来,患上癌症的人数在急剧升高,治愈率较低,而且偏向年轻化。但是,六十岁以上的老年人更加容易患上癌症。为什么六十岁以上是癌症的高发年龄?具体分析如下:1、癌症是非常可怕的疾病,目前医学界还找不到根治癌症的办法,正常情况下癌症不会再短期内出现,需要经过一个漫长的过程。从接触了致癌因素到癌细胞慢慢分裂扩散,需要一定的时间,至少需要十年以上。人体早期出现细胞癌变时,可以通过免疫系统清除。一般到了五十岁左右,许多癌症才会显现出来,有些人的自身抵抗力较强,直到六十岁依旧可以抑制癌细胞的生长。2、除了身体自身条件之外,许多人因为工作或者生活,缺乏定期检查身体的观念,直到六十岁之后开始注重养生以及身体调节。这时候检查出已经演变成癌症的疾病,例如胃癌、肝癌、肺癌等,一般在六十岁左右才容易被发现,一定程度上属于老年病。3、吸烟十分容易导致患上肺癌,患上肺癌的人年龄都较大的原因就在于香烟中的致癌物质并不会短时间内导致癌变,是一个日积月累的过程。长期吸烟之后,肺部损伤严重,导致癌细胞大量转移以及分裂,自身免疫细胞无法清除,才会患上肺癌,呈现老龄化状态。所以,才会出现六十岁以上老人容易发生癌症的错觉,许多癌症都是致癌物质积累后引起的。4、不良的饮食习惯会导致身体出现癌变,年轻时喜欢吃烧烤、吸烟、喝酒等都会摄入大量的致癌物质。这些物质对身体器官造成损伤,日积月累之后肠胃变得十分脆弱,到了老年阶段一一显现出来。患上胃癌和肠癌的概率大大提高,因此,老年人比较容易患上癌症。5、年轻时过度劳累,打拼容易导致身体出现损伤,特别是经常熬夜的人,疾病会趁虚而入。反复发作之后,到了老年阶段十分容易患上淋巴癌或者肝癌。
一般来说年龄是癌症的最大风险因素流行病学用发病率(incidence rate)来表示某个人群中新发疾病的概率。我们查询了美国癌症发病率在各个年龄层的数据,得到以下图片。可以看出,癌症发病率随着年龄的增长而增长,只有在85岁以上时似乎有轻微下降,但也比中年高出许多。美国癌症发病率与年龄来自英国癌症研究(Cancer Research UK)的数据也表现出了类似的趋势。图中柱状代表每年诊断的癌症新病例的平均数量,曲线则表示每十万人里癌症的发病率。癌症新病例的诊断数在65-69岁达到最高,但发病率的高峰却在更大的年龄。中国的情况又如何呢?可能有人会想,中国与英美两国在社会、文化、医疗系统等方面存在差异。癌症与年龄三个国家的数据都表现出了非常相似的趋势,我们不难看出:癌症可发生于各个年龄癌症发病率和年龄的关系不是简单的线性增长20岁之前,癌症发病率很低,且男性与女性接近40多岁开始,癌症发病率有明显的上升(曲线突然变陡)20岁到50多岁,女性比男性的癌症发病率稍高50多岁之后,男性癌症发病率超过女性,且差距逐渐增大癌症新诊断的病例里,以60、70多岁最多癌症发病率一般随年龄增长而升高,在80多岁达到最高,大约为每十万人里有1000-3000左右的人被诊断癌症癌症发病率在80多岁后轻微下降,但也大幅高于中年为什么实际发病率会与我们平常的感觉不一样?我们猜测,或是因为(1)中年后癌症发病率陡然开始升高,与之前对比强烈,似乎短短几年时间身边就出现了很多癌症患者;(2)中年人基数大,癌症诊断的绝对数目比其他年龄多;(3)对老年患癌更容易接受和习以为常,对中年患癌印象深刻;(4)媒体或网络对中年危机、谈癌色变的渲染等,比如患癌去世的苹果创始人乔布斯(享年56岁)、去年因癌症离开的著名主持人李咏(享年50岁)。癌症类型与年龄上面几张图展示的都是所有癌症的发病率,也就是把各种不同类型的癌症放在一起。其实,这种不考虑癌症类型而一慨而论的数据参考意义可能不是很大,每个年龄面临的风险和应该注意的筛查或预防也不同。比如,脑癌是儿童癌症里最常见的癌症之一,宫颈癌发病率峰值在中年,再比如,这几张图片都显示80多岁后癌症总的发病率有所下降,实际上某些特定癌症的发病率仍在上升,包括结肠直肠癌、胃癌、胰腺癌等。各个年龄最容易得什么癌症?我们在下一篇相关文章里介绍。总结癌症可发生于各个年龄。总的发病率一般随年龄增长而增长,在80多岁达到最高。进入中年后癌症发病率有明显的上升,健康驿站建议适当地进行癌症筛查。不同年龄面临着不同类型的癌症风险,将所有癌症放在一起分析可能不是很有参考意义,比如脑癌是儿童癌症里最常见的癌症之一,宫颈癌发病率峰值在中年,结肠直肠癌、胃癌等癌症的发病率在80多岁的年龄段里仍然在升高。
您好,总的来说,不同年龄阶段,不同的性别,不同的习惯有不同的高发癌症.白血病比较常见于儿童,乳腺癌比较常见于更年期女性,肺癌常见于40岁以上的男性,尤其是吸烟的.如果曾经得过肝炎,那么肝癌的发病率就会提高.在中国40-70岁是癌症高发年龄段,男性发病率高于女性.20-30岁是比较安全的年龄段,这个阶段主要的癌症就是淋巴癌(何杰金病)和白血病两种,而岁数大的人可能患肺癌,肝癌,鼻咽癌,胃癌,乳腺癌,肠癌,皮肤癌,骨癌……等等.癌症的发生跟身体抵抗力下降有关.如果注意饮食和锻炼,养成良好习惯,戒烟限酒,生活规律,增强体质,癌症的发病率应该会有所下降.但是癌症的发生总的说来是一个很复杂的过程,影响因素很多.所以,如何预防,这个要针对具体的病情来说.
根据相关流行病学调查发现,癌症高发年龄在80岁左右,同时存在地区差异性。而城市当中高发年龄段在80左右,在农村其高发年龄在75岁左右。而相关研究也同时指出,在40岁以后癌症的发病率,会有明显的增加。同时从男性和女性来区分,男性当中肺癌是第一发病率最高,而其次是胃癌、肝癌、结直肠癌和食管癌。在女性当中,发病第一位的是乳腺癌,其次则为肺癌、结直肠癌、甲状腺癌和胃癌,所以建议健康的人群,要根据个人的生活史、家族史等情况,来找专业的医生进行规范的癌症的体检,同时也要预防癌症,建立健康的生活饮食习惯。
癌症(cancer),医学术语亦称恶性肿瘤(malignant neoplasm),中医学中称岩,为由控制细胞生长增殖机制失常而引起的疾病。癌细胞除了生长失控外,还会局部侵入周遭正常组织甚至经由体内循环系统或淋巴系统转移到身体其他部分。命名癌症一般亦可根据组织来源命名,来源于上皮组织的统称为“癌”,如鳞状细胞癌、腺癌。来源于间叶组织称为肉瘤,如平滑肌肉瘤、纤维肉瘤。有少数肿瘤不按上述原则进行命名,如有些来源于幼稚组织和神经组织的恶性肿瘤称为母细胞瘤,如神经母细胞瘤、髓母细胞瘤、肾母细胞瘤等。但少数情况则为良性,如肌母细胞瘤、软骨母细胞瘤和骨母细胞瘤。有些恶性肿瘤由于成分复杂或由于习惯沿袭,在肿瘤的名称前加恶性,如恶性畸胎瘤、恶性脑膜瘤、恶性神经鞘瘤等。有些肿瘤冠以人名,如尤文瘤、何杰金淋巴瘤。或按肿瘤细胞的形态命名,如骨巨细胞瘤、肺燕麦细胞癌。病因人体可通过免疫系统抑制来消灭癌细胞,但是当人体内防癌能力减弱或被抑制,癌细胞就会继续增殖下去,形成临床可见的癌症。 国内外医学界已经证实,人类80%~90%以上的癌症与外部环境因素相关,也就是人类生活环境中的物理、化学和生物因素与癌症的发生密切相关。环境的不良侵害会受到人体防护系统的缓冲或抵抗,其作用能被消除或减弱。当致癌因素过强或累积效应过大,而人体存在免疫功能不足或身体修复功能有缺欠情况下,就有可能发生癌症。 当前环境污染日趋加剧,人类的生活环境不断恶化,与致癌因素的接触越来越紧密。人体细胞的稳定性只能是相对的,人体细胞基因的改变是必然的和难以避免的,但这并不意味着癌症无法克服和人们对癌症无能为力。事实上,我们每个人体内都存在着数量不一的部分癌变细胞,但是只有极少的癌变细胞能够发展成癌症,大部分癌变细胞或被机体及时清除,或没有自主分裂能力而长期潜伏,不会危害人体健康。随着医学的进步与发展,以及对癌症研究的深入,人们对癌症的病因已有空前的了解,职业性肿瘤已经基本能够预防,某些普通人群的癌症也已能预防和治愈。 现代医学已经认识到肿瘤、癌症是一种基因病,所有的细胞中都含有能够导致细胞癌变的基因,这些癌症基因代代相传。但在通常情况下它们处于被阻遏状态,只有当细胞内有关的调节机制遭到破坏的时候下,癌症基因才会“作恶”,导致癌变的发生。“激酶”的基因家族包括500多种不同的基因,它们功能的丧失是癌症的一个常见诱因,这些基因就像开关一样,控制着细胞的生长和死亡以及变异进程。
m6A RNA甲基化是最常见、最丰富的真核生物mRNA转录后修饰。研究表明,m6A 在不同组织,细胞系中是一个复杂的调控网路,m6A RNA 甲基化参与 RNA 的代谢过程,并与肿瘤的发生和发展密切相关。本期着重解读两篇癌症中的 m6A 研究,看一下 m6A RNA 甲基化如何玩转高分期刊。 2020年10月,南京医科大学汪秀星课题组和美国 UCSD Jeremy Rich 等课题组在Cancer Discovery上发表题为“The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells”的研究论文。该研究为靶向治疗胶质母细胞瘤提供了新的治疗机会。 研究背景 胶质母细胞瘤(GBM)代表了最常见的原发性,内在性脑肿瘤,患者的平均生存期限制在一年以上。鉴于胶质母细胞瘤干细胞(GSC)在治疗抗性,血管生成,免疫逃逸和侵袭中的作用,临床和临床前观察表明,靶向GSC可以改善肿瘤预后神经肿瘤学上的精准医学研究。 研究方法 研究结果 1. 在 GSC 中上调的致癌转录本以 RNA m6A 修饰为标志 作者利用 MeRIP-seq 对 GSC 和神经干细胞(NSC)进行 m6A 标记的检测,结果发现,与非肿瘤对应物相比,GSCs 的m6A 分布发生了改变。通过38个 GSCs 和5个 NSCs 的队列中的 RNA-seq 数据进行 GSEA 分析,具有 m6A 峰的基因在GSC 高度富集,而且在 GSC 中获得的具有 m6A 峰的基因均被上调。相反,相对于 NSC、GSC 中丢失 m6A 峰的基因通常在 GSC 中被下调。而且,在 GSC 中,与癌症干细胞相关的重要基因上获得了 m6A 峰,包括表达增加的 OLIG2 和 MYC 。 2. YTHDF2 在 GSC 中表达上调,对 GSC 的维持至关重要 作者为研究 m6A YTHDF 在胶质母细胞瘤中的功能作用,利用 CRIPR 技术检测了 YTHDF2 ,相对于对照 sgRNA,敲除 YTHDF2 会降低细胞活力及减少 GSCs 中细胞球形成。为研究了 YTHDF2 耗竭是否会诱导 GSC 分化,正交实验发现,shRNA 介导的 YTHDF2 敲低会降低 GSC 的活性,过表达的 YTHDF2 可以挽救 GSC 的活性。结果表明, YTHDF2 是胶质母细胞瘤维持的一个特异性和有效的调节因子。 3. YTHDF2 通过 m6A RNA 修饰支持 GSCs 中的基因表达 作者利用 RNA-seq 检测 YTHDF2 的下游靶点,敲除 YTHDF2 可引起 GSCs 中广泛基因表达的改变, MYC 靶点显著富集,而且,GSCs 中获得 m6A 峰的基因更频繁地下调。通过 qPCR 也验证了 YTHDF2 敲除对 MYC、VEGFA mRNA 水平降低的作用。为了预测 YTHDF2 在 GSCs 中的作用,作者结合 TCGA 胶质母细胞瘤基因表达数据,发现 YTHDF2 相关基因 MYC 和 E2F 靶点以及 G2M 调节因子和氧化磷酸化介质高度富集。这些数据表明 YTHDF2 作为与 m6A 差异修饰相关的转录程序的调节因子。 4. YTHDF2 通过保持 MYC 转录稳定发挥 GSC 特异性依赖作用 为了确定 YTHDF2 介导作用于 GSCs 中 MYC 的特异性,作者比较了在 NSCs 和 GSCs 之间 YTHDF2 缺失的影响。NSCs 中 YTHDF2 敲低并不影响 MYC mRNA 水平,但降低了 GSCs 中 MYC mRNA 水平。而且, YTHDF2 耗竭降低了GSC 的活性,而不影响 NSCs。因此, YTHDF2 代表了一种 GSC 特异性依赖,通过 MYC 基因的特异性稳定支持胶质母细胞瘤的生存。 5. IGFBP3 是 GSCs 中 YTHDF2-MYC 轴的下游靶点 因为 IGFBP3 是 YTHDF2 耗尽后最高下调基因之一,作者研究了 IGFBP3 是否调控 YTHDF2-MYC 轴下游的细胞活力。 IGFBP3 的缺失降低了 GSC 的活性和细胞球形成。 IGFBP3 过表达挽救了 GSCs 免于 YTHDF2 下调介导的细胞死亡。最后,作者利用20个胶质母细胞瘤和20个非肿瘤脑组织中 IGFBP3 的表达进行验证,观察到 GSC 中 IGFBP3 mRNA 表达升高。结果表明, IGFBP3 是 GSCs 中 YTHDF2-MYC 信号轴的关键下游效应子。 6. YTHDF2-MYC-IGFBP3 轴促进体内肿瘤生长 为了探讨在体内靶向 YTHDF2 治疗的潜在益处,作者利用 CRISPR 敲除技术对原位异种移植物的小鼠进行检测。结果表明,与携带对照 sgRNA 的 GSCs 的小鼠相比,敲除 YTHDF2 延长了肿瘤潜伏期并减少了肿瘤体积。 IGFBP3 过 表达恢复了 YTHDF2 缺失的 GSCs 体内成瘤能力。 研究结论 通过结合体外和体内的 GSCs 研究,该研究阐明了 m6A 介质在 GSCs 中的功能,并确定 YTHDF2 是 GSCs 特异性依赖,通过稳定 MYC 转录物调控 GSCs 中的葡萄糖代谢。这些发现为靶向治疗胶质母细胞瘤提供了新的治疗机会。 2020年4月,上海交通大学医学院附属仁济医院洪洁团队在 Molecular Cancer 上发表了题为“m6A-dependent glycolysis enhances colorectal cancer progression”的研究论文。研究表明,靶向 METTL3 及其通路为高糖代谢的 CRC 患者提供了另一种合理的治疗靶点。 研究背景 结直肠癌 (CRC) 是全球第四大常见恶性肿瘤和第三大癌症死亡原因,而以乳酸作为糖酵解的最终产物,被认为是治疗癌症的一种有前途的方法。m6A 调控基因的改变在多种人类疾病的发病机制中起着重要的作用,但 m6A 修饰是否在 CRC 的葡萄糖代谢中起作用尚不清楚。 研究方法 研究结果 1. METTL3 与结直肠癌糖酵解密切相关 为了探讨结直肠癌(CRC)中 m6A 修饰与糖酵解代谢之间的相关性,作者对47例 CRC 患者进行 RT-PCR分析,CRC患者中FDG 摄取与 METTL3 表达之间存在最显着的相关性。进一步分析发现 CRC 患者中 FDG 摄取与 METTL3 免疫组化染色存在显著相关性。最后,作者利用 RNA-seq 比较 METTL 3 敲除和野生型(WT) HCT116 CRC 细胞的基因表达谱, METTL3 敲除细胞表现出更高的 METTL3 表达。这些结果表明 METTL3 可能介导 CRC 患者糖溶解代谢和癌变。 2. METTL3 在结直肠癌中促进糖酵解代谢 为了弄清 METTL3 的改变是否直接影响糖酵解代谢,研究发现敲除 METTL3 可显著降低 HCT116 和 SW480 细胞的胞外酸化速率(ECAR)水平,过表达 METTL3 显著提高了 DLD1 细胞的乳酸生成、葡萄糖吸收和 ECAR 水平。为了阐明 Mettl3 诱导的 CRC 糖酵解是否依赖于其甲基转移酶功能,作者通过 Mettl3 野生型和突变型的研究,发现 Mettl3 的 MTase 结构域的缺失阻断了 Mettl3 诱导的糖酵解过程。这些数据表明 Mettl3 通过其甲基转移酶结构域调控结直肠癌糖酵解代谢。 3. 在结直肠癌中, METLC3 诱导的增殖依赖于糖酵解的激活 METLC3 的敲除消除了 HCT116 细胞的细胞增殖和集落形成,并且降低了 HCT116 肿瘤的生长和异种移植小鼠模型中的肿瘤重量。在功能分析中, METTL3 的过表达增加细胞增殖、集落形成、肿瘤的生长和肿瘤的重量。2-DG(糖酵解途径的抑制剂)处理在体外和体内显着阻断了 METTL3 诱导的细胞增殖和菌落形成,这些结果表明 Mettl3 通过调控结直肠癌糖代谢促进 CRC 进展。 4. METTL3 在结直肠癌中的潜在靶点 为了鉴定 METTL 3 的潜在靶标,作者选择了 METTL3 敲除和 WT HCT116 细胞进行 MeRIP-seq和RNA-seq,最常见的motif ' GGAC '在 m6a 峰中显著富集,大部 分 METTL3 结合位点位于 CDS区,在 5'UTR 和 3'UTR 高度富集,并且 m6A在转录水平上发生了全局低甲基化。联合RNA-seq数据,确定了429个低甲基化的 m6A 基因,其 mRNA 转录被下调,595个低甲基化的 m6A 基因,其 mRNA 转录被上调。基于甲基化水平与 mRNA 表达水平都下降,找到与糖酵解密切相关的靶基因 HK2 和 SLC2A1(GLUT1) 。 6. HK2 和 SLC2A1 是 METTL3 在 CRC 中重要的功能靶基因 作者通过 HCT116 WT 和 mettl3 敲除细胞转染 control、 HK2 或 SLC2A1 过表达实验发现, HK2 或 SLC2A1 的异位表达部分恢复了敲除 mettl3 细胞的增殖、集落形成能力和肿瘤生长,而且,也能恢复 HCT116 mettl3 敲除细胞中乳酸产量的下降。同时,在体外和体内,过表达 SLC2A1 显著恢复了 HCT116 mettl3 敲除细胞葡萄糖摄取下降的趋势。因此, HK2 和 SLC2A1 介导了 CRC 细胞中 METLL3 的调节功能。 研究结论 METTL3 是 CRC 的一种功能性和临床致癌基因。 METTL3 通过 m6A- IGF2BP2/3— 依赖机制稳定 CRC 中 HK2 和 SLC2A1 的表达。靶向 METTL3 及其通路为高糖代谢的 CRC 患者提供了另一种合理的治疗靶点。 参考文献 [1] Dixit D, Prager B, GimpleShen R, et al. The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells[J]. Cancer Discovery, 2020. [2] Shen C, Xuan B, Yan T, et al. M6A-dependent glycolysis enhances colorectal cancer progression[J]. Molecular Cancer, 2020, 19(1).
在一项新的研究中,来自美国普林斯顿大学的研究人员惊奇地发现,他们以为是对癌症如何在体内扩散---癌症转移---的直接调查却发现了液-液相分离的证据:这个生物学研究的新领域研究生物物质的液体团块如何相互融合,类似于在熔岩灯或液态水银中看到的运动。相关研究结果作为封面文章发表在2021年3月的Nature Cell Biology期刊上,论文标题为“TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis”。
论文通讯作者、普林斯顿大学分子生物学教授Yibin Kang说,“我们相信这是首次发现相分离与癌症转移有关。”
他们的研究不仅将相分离与癌症研究联系在一起,而且融合后的液体团块产生了比它们的部分之和更多的东西,自组装成一种以前未知的细胞器(本质上是细胞的一个器官)。
Kang说,发现一种新的细胞器是革命性的。他将其比作在太阳系内发现一颗新的星球。“有些细胞器我们已经认识了100年或更久,然后突然间,我们发现了一种新的细胞器!”
论文第一作者、Kang实验室博士后研究员Mark Esposito说,这将改变人们对细胞是什么和做什么的一些基本看法,“每个人上学,他们都会学到‘线粒体是细胞的能量工厂’,以及其他一些有关细胞器的知识,但是如今,我们对细胞内部的经典定义,对细胞如何自我组装和控制自己的行为的经典定义开始出现转变。我们的研究标志着在这方面迈出了非常具体的一步。”
这项研究源于普林斯顿大学三位教授实验室的研究人员之间的合作。这三位教授是Kang、Ileana Cristea(分子生物学教授,活体组织质谱学的领先专家);Cliff Brangwynne(普林斯顿大学生物工程计划主任,生物过程中相分离研究的先驱)。
Kang说,“Ileana是一名生物化学者,Cliff 是一名生物物理学者和工程师,而我是一名癌症生物学家和细胞生物学者。普林斯顿大学刚好是一个让人们联系和合作的美妙地方。我们有一个非常小的校园。所有的科研部门都紧挨着。Ileana实验室实际上与我的实验室在Lewis Thomas的同一层楼! 这些非常紧密的关系存在于非常不同的研究领域之间,让我们能够从很多不同的角度引入技术,让我们能够突破性地理解癌症的代谢机制--它的进展、转移和免疫反应--也能想出新的方法来靶向它。”
这项最新的突破性研究,以这种尚未命名的细胞器为特色,为Wnt信号通路的作用增加了新的理解。Wnt通路的发现导致普林斯顿大学分子生物学教授Eric Wieschaus于1995年获得诺贝尔奖。Wnt通路对无数有机体的胚胎发育至关重要,从微小的无脊椎动物昆虫到人类。Wieschaus已发现,癌症可以利用这个通路,从本质上破坏了它的能力,使其以胚胎必须的速度生长,从而使肿瘤生长。
随后的研究揭示,Wnt信号通路在 健康 的骨骼生长以及癌症转移到骨骼的过程中发挥着多重作用。Kang和他的同事们在研究Wnt、一种名为TGF-b的信号分子和一个名为DACT1的相对未知的基因之间的复杂相互作用时,他们发现了这种新的细胞器。
Esposito说,把它想象成风暴前的恐慌购物。事实证明,在暴风雪前购买面包和牛奶,或者在大流行病即将到来时囤积洗手液和卫生纸,这不仅仅是人类的特征。它们也发生在细胞水平上。
下面是它的作用机制:惊慌失措的购物者是DACT1,暴风雪(或大流行病)是TGF-ß,面包和洗手液是酪蛋白激酶2(CK2),在暴风雪面前,DACT1尽可能多地抓取它们,而这种新发现的细胞器则把它们囤积起来。通过囤积CK2,购物者阻止了其他人制作三明治和消毒双手,即阻止了Wnt通路的 健康 运行。
通过一系列详细而复杂的实验,这些研究人员拼凑出了整个故事:骨肿瘤最初会诱导Wnt信号,在骨骼中传播(扩散)。然后,骨骼中含量丰富的TGF-b激发了恐慌性购物,抑制了Wnt信号传导。肿瘤随后刺激破骨细胞的生长,擦去旧的骨组织。( 健康 的骨骼是在一个两部分的过程中不断补充的:破骨细胞擦去一层骨,然后破骨细胞用新的材料重建骨骼)。这进一步增加了TGF-b的浓度,促使更多的DACT1囤积和随后的Wnt抑制,这已被证明在进一步转移中很重要。
通过发现DACT1和这种细胞器的作用,Kang和他的团队找到了新的可能的癌症药物靶点。Kang说,“比如,如果我们有办法破坏DACT1复合物,也许肿瘤会扩散,但它永远无法‘长大’成为危及生命的转移瘤。这就是我们的希望。”
Kang和Esposito最近共同创立了KayoThera公司,以他们在Kang实验室的合作为基础,寻求开发治疗晚期或转移性癌症患者的药物。Kang说,“Mark所做的那类基础研究既呈现了突破性的科学发现,也能带来医学上的突破。”
这些研究人员发现,DACT1还发挥着许多他们才开始 探索 的其他作用。Cristea团队的质谱分析揭示了这种神秘细胞器中600多种不同的蛋白。质谱分析可以让科学家们找出在显微镜玻片上成像的几乎任何物质的确切成分。
Esposito说,“这是一个比控制Wnt和TGF-b更动态的信号转导节点。这只是生物学新领域的冰山一角。”
Brangwynne说,相分离和癌症研究之间的桥梁仍处于起步阶段,但它已经显示出巨大的潜力。
他说,“生物分子凝聚物在癌症---它的生物发生,特别是它通过转移进行扩散---中发挥的作用仍然不甚了解。这项研究为癌症信号转导通路和凝聚物生物物理学之间的相互作用提供了新的见解,它将开辟新的治疗途径。”(生物谷 Bioon.com)
参考资料: 1.Mark Esposito et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nature Cell Biology, 2021, doi:10.1038/s41556-021-00641-w. 2.Kiran D. Patel et al. Condensing and constraining WNT by TGF-β. Nature Cell Biology, 2021, doi:10.1038/s41556-021-00649-2.