我有,但没有电子版,怎么给你呀
计一台组合机床动力滑台液压系统1、机床要求工作循环:实现工件快进、工进、快速退回、原位停止等功能,动力滑台采用平导轨,往复运动的加速、减速时间为0.2s2、机床参数如下1)、工作负载FL=28000N2)、采用平导轨,静摩擦系数为0.1,动摩擦系数为0.2等三、要求1、按机床要求设计液压系统,绘出液压系统图2、确定液压缸参数3、列出电磁铁动作顺序表
不知道你这个是花钱找人做,还是就是给点分就完事了。
题 目 设计一台卧式单面多轴钻孔组合机床液压传动系统摘要组合机床以其独特的优点在机械设计中占有比较重要的地位;它以通用部件为基础,根据工件加工需要,配以少量专用部件组成的一种机床。它具有低成本、高效率的特点。本次论文主要以单面多轴钻孔组合机床为研究对象,根据主机的用途,主要结构及其工作循环确定液压执行元件的运动方式、工作范围,并确定液压执行元件的负载和运动速度的大小及其变化范围。根据这些工况确定液压执行元件的主要参数,再依据液压设计的基本原理,确定系统类型、泵的选择和选择液压回路,将所选的基本回路组合起来,再检查系统在工作中还存在的问题进行修改和整理,最后拟出合理的液压系统原理图。根据验算液压系统性能,即回路压力损失验算和发热温升验算,并概括液压系统可能出现的故障和分析。关键词:组合机床、液压系统、性能、回路压力损失、发热温升、系统故障分析与诊断 目 录第一章、设计要求及工况分析.............................................51.1设计要求........................................................51.2负载运动分析....................................................51.2.1工作负载…………………………………………………………………51.2.2摩擦负载..................................................51.2.3各负载……………………………………………………………………51.2.4运动时间…………………………………………………………………5第二章、确定液压系统主要参数………………………………………………………72.1初选液压缸工作压力……………………………………………………………72.2计算液压缸主要尺寸……………………………………………………………7第三章、确定液压系统原理图...........................................113.1选择基本回路…………………………………………………………………113.2组成液压系统…………………………………………………………………12第四章、计算和选择液压件..............................................134.1确定液压缸的规格和电动机功率……………………………………………134.1.1计算液压泵的最大工作压力…………………………………………134.1.2计算液压泵的流量及电动机功率……………………………………134.2确定其它元件…………………………………………………………………144.2.1确定阀类元件及辅件…………………………………………………144.2.2确定油管………………………………………………………………144.2.3确定油箱………………………………………………………………15第五章、液压缸设计基础…………………………………………………………….165.1液压缸的轴向尺寸……………………………………………………………165.2主要零件强度校核……………………………………………………………165.2.1缸筒厚度4mm……………………………………………………………165.2.2缸底厚度11mm…………………………………………………………165.2.3杆径d……………………………………………………………………175.2.4缸盖和缸筒连接螺栓的底径d…………………………………………175.2.5液压缸稳定性计算…………………………………………………….175.2.6液压缸缓冲压力……………………………………………………….18第六章、验算液压系统性能……………………………………………………………196.1验算系统压力………………………………………………………………….186.1.1判断流动状态………………………………………………………….196.1.2计算系统压力损失…………………………………………………….196.2验算系统发热与温升.............................................21第七章、典型液压元件的故障分析与诊断……………………………………………237.1液压泵常见的故障分析与诊断………………………………………………237.2液压缸常见的故障分析与诊断………………………………………………28结论…………………………………………………………………………………….32参考文献……………………………………………………………………………….33致谢…………………………………………………………………………………….34结论本篇论文主要根据论文要求进行目录分析、参数计算、原理图绘画、故障分析。主要目的是提高即将毕业的学生分析问题,并自己解决问题的综合能力。完成本本篇论文是学生在学完<<液压技术与应用>>、《机械设计》、CAD软件等课程后进行一个综合实践独立完成论文要求的过程,完成本篇论文首先要了解本篇论文题目的要求,通过分析目的要求,逐步逐层的解决问题以求达到论文设计要求。论文设计关键要进行目录编排即要有个轮廓,一个规划。在参数计算的过程中,我们要根据题目提供的数据进行分析,利用有关论文提供的参数按要求全部计算出来,以求真实性、理论性;数据分析、计算即提高我们的计算能力,又提高我们的思维能力;而原理图绘画,主要是通过我们学过的CAD软件来完成,这样一来让我们再次学习并掌握软件绘画技巧。故障分析则是要求我们了解并掌握论文设计内容可能出现的问题,只有掌握液压系统可能出现的故障,才能到时候及时的处理液压系统出现的故障问题;这就做到了分析问题解决问题的能力,实现了理论指导实践,实践反馈并证明理论的可靠性。虽然完成整篇论文时间长,且复杂,但通过一定的时间去努力,还是顺利的完成了,从中让我明白做任何事,坚持不懈、集思广益很关键,只有在学习中、努力中、进步中自己才是充实的,才是快乐的。参考文献(1) 雷天觉. 新编液压工程手册. 北京:北京理工大学出版社,1998.(2) 中国机械工程学会中国机械设计大典编委会.李壮云主编.中国机械设计大典第5卷机械控制系统设计.南昌:江西科学技术出版社,2002.(3) 日本液压气动协会.液压气动手册.北京:机械工业出版社,1984.(4) 黎启柏.液压元件手册.北京:冶金工业出版社,机械工业出版社,2000.(5) 章宏甲.金属切削机床液压传动.南京:江苏科学技术出版社,1984.(6) 何存兴,张铁华.液压传动与气压传动.武汉:华中科技大学出版社,2000.(7) 王宝和.流动传动与控制.长沙:国防科技大学出版社,2001.(8) 姜继海.液压传动.哈尔滨:哈尔滨工业大学出版社,1997.(9) 明仁雄.王会雄.液压与气压传动,北京:国防工业大学出版社,2003.(10) 卢光贤.机床液压传动与控制.西安:西北工业大学出版社,1993.(11) 张磊等.实用液压技术300题.北京:机械工业出版社,1998.(12) 官忠范.液压传动系统.北京:机械工业出版社,1998.(13) 李壮云,葛宜远.液压元件与系统.北京:机械工业出版社,2000.(14) H.E.梅里特著,陈燕庆译.液压控制系统.北京:科学出版社,1976.致谢通过近四个月的时间终于将本篇论文写好,在这篇论文的过程中遇到了各种各样的困难和障碍,都在同学和老师的帮助下写好的。本论文在编写过程中,得到了指导老师的辅导,非常感谢老师不厌其烦的进行论文的修改和改进。感谢这篇论文所涉及到的各位学者。本文引用了数位学者的研究文献,如果没有各位学者的研究成果的帮助和启发,我将很难完成本篇论文的写作。感谢我的同学和朋友,在我写论文的过程中给予我了很多有关液压系统素材,还在论文的撰写和排版的过程中提供热情的帮助和良好的意见。此外,还通过跟不少写本篇论文的同学相互交流写作思路和一起收集有关本篇论文资料等,从中领悟到了一些道理。他们不但帮我如何运用所提供的参数进行合理计算,还为我反复修改了论文提纲和论文草稿,他们给我提供了许多简便性计算方法以及从一些实际工作中得到的经验、技巧等,是他们让我明确写作的要点、方向,也是他们在学习和工作中给予莫大的帮助,帮助我顺利的完成本次论文,在此我由衷的感谢他们热情的帮助!同时也衷心祝愿母校蓬勃发展! 此致敬礼评 语指导老师(签字) 答辩小组意见答辩委员会负 责 人(签字) 成绩 院系(盖章)20 年 月 日
数控机床发展史摘要:机械系以机械为主,所以必须掌握好各种机械的专业知识,从这学期开始,开始接触机械专业基础课。我会本着认真的态度对待专业课的学习,提高自己的专业素养.接下来我将介绍一下我对数控机床发展史的认识。20世纪中期,随着电子技术的发展,自动信息处理、数据处理以及电子计算机的出现,给自动化技术带来了新的概念,用数字化信号对机床运动及其加工过程进行控制,推动了机床自动化的发展。采用数字技术进行机械加工,最早是在40年代初,由美国北密支安的一个小型飞机工业承包商派尔逊斯公司(ParsonsCorporation)实现的。他们在制造飞机的框架及直升飞机的转动机翼时,利用全数字电子计算机对机翼加工路径进行数据处理,并考虑到刀具直径对加工路线的影响,使得加工精度达到±0.0381mm(±0.0015in),达到了当时的最高水平。1952年,麻省理工学院在一台立式铣床上,装上了一套试验性的数控系统,成功地实现了同时控制三轴的运动。这台数控机床被大家称为世界上第一台数控机床。这台机床是一台试验性机床,到了1954年11月,在派尔逊斯专利的基础上,第一台工业用的数控机床由美国本迪克斯公司(Bendix-Cooperation)正式生产出来。在此以后,从1960年开始,其他一些工业国家,如德国、日本都陆续开发、生产及使用了数控机床。数控机床中最初出现并获得使用的是数控铣床,因为数控机床能够解决普通机床难于胜任的、需要进行轮廓加工的曲线或曲面零件。然而,由于当时的数控系统采用的是电子管,体积庞大,功耗高,因此除了在军事部门使用外,在其他行业没有得到推广使用。到了1960年以后,点位控制的数控机床得到了迅速的发展。因为点位控制的数控系统比起轮廓控制的数控系统要简单得多。因此,数控铣床、冲床、坐标镗床大量发展,据统计资料表明,到1966年实际使用的约6000台数控机床中,85%是点位控制的机床。数控机床的发展中,值得一提的是加工中心。这是一种具有自动换刀装置的数控机床,它能实现工件一次装卡而进行多工序的加工。这种产品最初是在1959年3月,由美国卡耐·;特雷克公司(Keaney&TreckerCorp.)开发出来的。这种机床在刀库中装有丝锥、钻头、铰刀、铣刀等刀具,根据穿孔带的指令自动选择刀具,并通过机械手将刀具装在主轴上,对工件进行加工。它可缩短机床上零件的装卸时间和更换刀具的时间。加工中心现在已经成为数控机床中一种非常重要的品种,不仅有立式、卧式等用于箱体零件加工的镗铣类加工中心,还有用于回转整体零件加工的车削中心、磨削中心等。1967年,英国首先把几台数控机床连接成具有柔性的加工系统,这就是所谓的柔性制造系统(FlexibleManufacturingSystem——FMS)之后,美、欧、日等也相继进行开发及应用。 1974年以后,随着微电子技术的迅速发展,微处理器直接用于数控机床,使数控的软件功能加强,发展成计算机数字控制机床(简称为CNC机床),进一步推动了数控机床的普及应用和大力发展。80年代,国际上出现了1~4台加工中心或车削中心为主体,再配上工件自动装卸和监控检验装置的柔性制造单元(FlexibleManufacturingCell——FMC)。这种单元投资少,见效快,既可单独长时间少人看管运行,也可集成到FMS或更高级的集成制造系统中使用。目前,FMS也从切削加工向板材冷作、焊接、装配等领域扩展,从中小批量加工向大批量加工发展。所以机床数控技术,被认为是现代机械自动化的基础技术。那什么是车床呢?据资料所载,所谓车床,是主要用车刀对旋转的工件进行车削加工的机床。在车床上还可用钻头、扩孔钻、铰刀、丝锥、板牙和滚花工具等进行相应的加工。车床主要用于加工轴、盘、套和其他具有回转表面的工件,是机械制造和修配工厂中使用最广的一类机床。古代的车床是靠手拉或脚踏,通过绳索使工件旋转,并手持刀具而进行切削的。1797年,英国机械发明家莫兹利创制了用丝杠传动刀架的现代车床,并于1800年采用交换齿轮,可改变进给速度和被加工螺纹的螺距。1817年,另一位英国人罗伯茨采用了四级带轮和背轮机构来改变主轴转速。为了提高机械化自动化程度,1845年,美国的菲奇发明转塔车床;1848年,美国又出现回轮车床;1873年,美国的斯潘塞制成一台单轴自动车床,不久他又制成三轴自动车床;20世纪初出现了由单独电机驱动的带有齿轮变速箱的车床。第一次世界大战后,由于军火、汽车和其他机械工业的需要,各种高效自动车床和专门化车床迅速发展。为了提高小批量工件的生产率,40年代末,带液压仿形装置的车床得到推广,与此同时,多刀车床也得到发展。50年代中,发展了带穿孔卡、插销板和拨码盘等的程序控制车床。数控技术于60年代开始用于车床,70年代后得到迅速发展。车床依用途和功能区分为多种类型。普通车床的加工对象广,主轴转速和进给量的调整范围大,能加工工件的内外表面、端面和内外螺纹。这种车床主要由工人手工操作,生产效率低,适用于单件、小批生产和修配车间。转塔车床和回转车床具有能装多把刀具的转塔刀架或回轮刀架,能在工件的一次装夹中由工人依次使用不同刀具完成多种工序,适用于成批生产。自动车床能按一定程序自动完成中小型工件的多工序加工,能自动上下料,重复加工一批同样的工件,适用于大批、大量生产。多刀半自动车床有单轴、多轴、卧式和立式之分。单轴卧式的布局形式与普通车床相似,但两组刀架分别装在主轴的前后或上下,用于加工盘、环和轴类工件,其生产率比普通车床提高3~5倍。仿形车床能仿照样板或样件的形状尺寸,自动完成工件的加工循环,适用于形状较复杂的工件的小批和成批生产,生产率比普通车床高10~15倍。有多刀架、多轴、卡盘式、立式等类型立式车床的主轴垂直于水平面,工件装夹在水平的回转工作台上,刀架在横粱或立柱上移动。适用于加工较大、较重、难于在普通车床上安装的工件,一般分为单柱和双柱两大类。铲齿车床在车削的同时,刀架周期地作径向往复运动,用于铲车铣刀、滚刀等的成形齿面。通常带有铲磨附件,由单独电动机驱动的小砂轮铲磨齿面。专门车床是用于加工某类工件的特定表面的车床,如曲轴车床、凸轮轴车床、车轮车床、车轴车床、轧辊车床和钢锭车床等。联合车床主要用于车削加工,但附加一些特殊部件和附件后,还可进行镗、铣、钻、插、磨等加工,具有“一机多能”的特点,适用于工程车、船舶或移动修理站看机床的水平主要看金属切削机床,其他机床技术和复杂性不高,就是近几年很流行的电加工机床,也只是方法的改变,没什么复杂性和科技含量。我国的数控磨床水平不错,每年都有大量出口,因为它简单,基本属于劳动密集型。金属加工主要是去除材料,得到想得到的金属形状。去除材料,主要靠车和铣,车床发展为数控车床,铣床发展为加工中心。高精度多轴机床,可以让复杂零件在精度和形状上一次到位,例如,飞机上的一个复杂零件,以前由很多种工人:车工、铣工、磨床工、画线工、热处理工用好几个月干,其中还有报废的,最新的复合数控机床几天甚至几个小时就全干好了,而且精度比你设计的还高。零件精度高就意味着寿命长,可靠性好。由普通发展到数控,一个人顶原来的十个,在精度上,更是没法说,适应性上,零件变了,换个程序就行。把人的因素也降为最低,以前在工厂,谁要时会车涡轮、蜗杆,没个10年8年的不行,要是谁掌握了,那牛得很。现在用数控设备,只要你会编程,把参数输进去就可以了,很简单,刚毕业的技校学生都会,而且批量的产品质量也有保证。自美国在50年代末搞出世界一台数控车床后,机床制造业就进入了数控时代,中国在六十年代也搞出了第一代数控机床,但后来中国进入了什么年代,大家都知道。等80年代我们再去看世界的数控机床水平,差距就是20年了,其实奋起直追还有希望,但国营工厂不思进取,到了90年代,我们再去看世界水平,已有30年的差距了。中国改革开放前走的是苏联的路子,什么叫苏联的路子,举个例子来讲:比如,生产一根轴,苏联的方式是建一个专用生产线,用多台专用机床,好处是批量很容易上去,但一旦这根轴的参数发生了变化,这条线就报废了,生产人员也就没事做了。在1960-1980年代,国营工厂一个产品生产几十年不变样。到了1980年代后,当时搞商品经济,这些厂不能迅速适应市场,经营就困难了,到了90年代就大量破产,大量职工下岗。现代的生产也有大批量生产,但主要是单件小批量,不管是那种,只要你的设备是数控的,适应起来就快。专业机床的路子已经到头了, ;西方走的路和前苏联不一样,当年的“东芝”事件,就是日本东芝卖给苏联了几台五轴联动的数控铣床,让苏联在潜艇的推进螺旋桨上的制造,上了一个档次,让美国的声纳听不到潜艇声音了,所以美国要惩处东芝公司。由此也可见,前苏联的机床制造业也落后了,他们落后,我们就更不用说了。虽然,美国搞出了世界第一台数控机床,但数控机床的发展,还是要数德国。德国本来在机械方面就是世界第一,数控机床无非就是搞机电一体化,机械方面德国已没问题,剩下的就是电子系统方面,德国的电子系统工业本来就强大,所以在上世纪六、七十年代,德国就执机床界的牛耳了。但日本人的强项就是仿造,从上世纪70年代起,日本大量从德国引进技术,消化后大量仿造,经过努力,日本在90年代起,就超越了德国,成为世界第一大数控机床生产国,直到现在还是。他们在机床制造水平上,有一些也走在了世界前面,如在机床复合(一机多种功能)化方面,是世界第一。数控机床的核心就在数控系统方面,日本目前在系统方面也排世界第一,主要是它的发拿科公司。第一代的系统用步进电机,我们现在也能造,第二代用交流伺服电机。现在的数控系统的核心就是交流伺服电机和系统内的逻辑控制软件,交流伺服电机我们国家目前还没有谁能制造,这是一个光学、机械、电子的综合体。逻辑控制软件就是控制机床的各轴运动,而这些轴是用伺服电机驱动的,一般的系统能同时控制3轴,高级系统能控制五轴,能控5轴的,五轴以上也没问题。我们国家也由有5轴系统,但“做秀”的成份多,还没实用化。我们的工厂用的五轴和五轴以上机床,100%进口。机床是一个国家制造业水平高低的象征,其核心就是数控系统。我们目前不要说系统,就是国内造的质量稍微好一点的数控机床,所用的高精度滚珠丝杠,轴承都是进口的,主要是买日本的,我们自产的滚珠丝杠、轴承在精度、寿命方面都有问题。目前国内的各大机床厂,数控系统100%外购,各厂家一般都买日本发那科、三菱的系统,占80%以上,也有德国西门子的系统,但比较少。德国西门子系统为什么用的少呢?早期,德国系统不太能适合我们的电网,我们的电网稳定性不够,西门子系统的电子伺服模块容易烧坏。日本就不同了,他们的系统就烧不坏。近来西门子系统改进了不少,价格方面还是略高。德国人很不重视中国,所以他们的系统汉语化最近才有,不像日本,老早就有汉语化版的。就国产高级数控机床而言,其利润的主体是被外国人拿走了,中国只是挣了一个辛苦钱。美国为什么没有能成为数控机床制造大国呢?这个和他们当时制定产业政策的人有关,再加上当时美国的劳动力贵,买比制造划算。机床属于投资大,见效慢,回报率底的产业,而且需要技术积累。不太附和美国情况。但后来美国发现,机床属于战略物资,没有它,飞机、大炮、坦克、军舰的制造都有问题,所以他们重新制定政策,扶植了一些机床厂,规定了一些单位只能买国产设备,就是贵也得买,这就为美国保留了一些数控机床行业。美国机床在世界上没有什么竞争力。欧洲的机床,除德国外,瑞士的也很好,要说超高精密机床,瑞士的相当好,但价格也是天价。一般用户用不起。意大利、英国、法国属于二流,中国很少买他们的机床。西班牙为了让中国进口他们的机床,不惜贷款给中国,但买的人也很少??借钱总是要还的。韩国、台湾的数控机床制造能力比大陆地区略强,不过水平差不多。他们也是在上世纪90年代引进日本技术发展的。韩国应该好一点,它有自己制造的、已经商业化了的数控系统,但进口到中国的机床,应我们的要求,也换成了日本系统。我们对他们的系统信不过。韩国数控机床主要有两家:大宇和现代。大宇目前在我国设有合资企业。台湾机床和我们大体一样,自己造机械部分,系统采购日本的。但他们的机床质量差,寿命短,目前在大陆影响很坏。其实他们比我们国产的要好一点。但我们自己的差,我们还能容忍,台湾的机床是用美金买来的,用的不好,那火就大了。台湾最主要的几家机床厂已打算把工厂迁往大陆,大部分都在上海。这些厂目前在国内的竞争中,也打着“国产”的旗号。近来随着中国的经济发展,也引起了世界一些主要机床厂商的注意,2000年,日本最大的机床制造商“马扎克”在中国银川设立了一家数控机床合资厂,据说制造水平相当高,号称“智能化、网络化”工厂,和世界同步。今年日本另外一家大机床厂大隈公司在北京设立了一家能年产1000台数控机床的控股公司,德国的一家很有名的企业也在上海设立了工厂。目前,国家制定了一些政策,鼓励国民使用国产数控机床,各厂家也在努力追赶。国内买机床最多的是军工企业,一个购买计划里,80%是进口,国产机床满足不了需要。今后五年内,这个趋势不会改变。不过就目前国内的需要来讲,我国的数控机床目前能满足中低档产品的订货。美、德、日三国是当今世上在数控机床科研、设计、制造和使用上,技术最先进、经验最多的国家。因其社会条件不同,各有特点。1.美国的数控发展史美国政府重视机床工业,美国国防部等部门因其军事方面的需求而不断提出机床的发展方向、科研任务,并且提供充足的经费,且网罗世界人才,特别讲究“效率”和“创新”,注重基础科研。因而在机床技术上不断创新,如1952年研制出世界第一台数控机床、1958年创制出加工中心、70年代初研制成FMS、1987年首创开放式数控系统等。由於美国首先结合汽车、轴承生产需求,充分发展了大量大批生产自动化所需的自动线,而且电子、计算机技术在世界上领先,因此其数控机床的主机设计、制造及数控系统基础扎实,且一贯重视科研和创新,故其高性能数控机床技术在世界也一直领先。当今美国生产宇航等使用的高性能数控机床,其存在的教训是,偏重於基础科研,忽视应用技术,且在上世纪80代政府一度放松了引导,致使数控机床产量增加缓慢,于1982年被后进的日本超过,并大量进口。从90年代起,纠正过去偏向,数控机床技术上转向实用,产量又逐渐上升。2.德国的数控发展史德国政府一贯重视机床工业的重要战略地位,在多方面大力扶植。,於1956年研制出第一台数控机床后,德国特别注重科学试验,理论与实际相结合,基础科研与应用技术科研并重。企业与大学科研部门紧密合作,对数控机床的共性和特性问题进行深入的研究,在质量上精益求精。德国的数控机床质量及性能良好、先进实用、货真价实,出口遍及世界。尤其是大型、重型、精密数控机床。德国特别重视数控机床主机及配套件之先进实用,其机、电、液、气、光、刀具、测量、数控系统、各种功能部件,在质量、性能上居世界前列。如西门子公司之数控系统,均为世界闻名,竞相采用。3.日本的数控发展史日本政府对机床工业之发展异常重视,通过规划、法规(如“机振法”、“机电法”、“机信法”等)引导发展。在重视人才及机床元部件配套上学习德国,在质量管理及数控机床技术上学习美国,甚至青出于蓝而胜于蓝。自1958年研制出第一台数控机床后,1978年产量(7,342台)超过美国(5,688台),至今产量、出口量一直居世界首位(2001年产量46,604台,出口27,409台,占59%)。战略上先仿后创,先生产量大而广的中档数控机床,大量出口,占去世界广大市场。在上世纪80年代开始进一步加强科研,向高性能数控机床发展。日本FANUC公司战略正确,仿创结合,针对性地发展市场所需各种低中高档数控系统,在技术上领先,在产量上居世界第一。该公司现有职工3,674人,科研人员超过600人,月产能力7,000套,销售额在世界市场上占50%,在国内约占70%,对加速日本和世界数控机床的发展起了重大促进作用。4.我国的现状我国数控技术的发展起步于二十世纪五十年代, 中国于1958年研制出第一台数控机床,发展过程大致可分为两大阶段。在1958~1979年间为第一阶段,从1979年至今为第二阶段。第一阶段中对数控机床特点、发展条件缺乏认识,在人员素质差、基础薄弱、配套件不过关的情况下,一哄而上又一哄而下,曾三起三落、终因表现欠佳,无法用于生产而停顿。主要存在的问题是盲目性大,缺乏实事求是的科学精神。在第二阶段从日、德、美、西班牙先后引进数控系统技术,从日、美、德、意、英、法、瑞士、匈、奥、韩国、台湾省共11国(地区)引进数控机床先进技术和合作、合资生产,解决了可靠性、稳定性问题,数控机床开始正式生产和使用,并逐步向前发展。通过“六五”期间引进数控技术,“七五”期间组织消化吸收“科技攻关”,我国数控技术和数控产业取得了相当大的成绩。特别是最近几年,我国数控产业发展迅速,1998~2004年国产数控机床产量和消费量的年平均增长率分别为39.3%和34.9%。尽管如此,进口机床的发展势头依然强劲,从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国,2004年中国机床主机消费高达94.6亿美元,国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。由此可以看出国产数控机床特别是中高档数控机床仍然缺乏市场竞争力,究其原因主要在于国产数控机床的研究开发深度不够、制造水平依然落后、服务意识与能力欠缺、数控,系统生产应用推广不力及数控人才缺乏等。我们应看清形势,充分认识国产数控机床的不足,努力发展先进技术,加大技术创新与培训服务力度,以缩短与发达国家之问的差距。 在20余年间,数控机床的设计和制造技术有较大提高,主要表现在三大方面:培训一批设计、制造、使用和维护的人才;通过合作生产先进数控机床,使设计、制造、使用水平大大提高,缩小了与世界先进技术的差距;通过利用国外先进元部件、数控系统配套,开始能自行设计及制造高速、高性能、五面或五轴联动加工的数控机床,供应国内市场的需求,但对关键技术的试验、消化、掌握及创新却较差。至今许多重要功能部件、自动化刀具、数控系统依靠国外技术支撑,不能独立发展,基本上处于从仿制走向自行开发阶段,与日本数控机床的水平差距很大。存在的主要问题包括:缺乏象日本“机电法”、“机信法”那样的指引;严重缺乏各方面专家人才和熟练技术工人;缺少深入系统的科研工作;元部件和数控系统不配套;企业和专业间缺乏合作,基本上孤军作战,虽然厂多人众,但形成不了合力。 我国数控技术的发展起步于二十世纪五十年代,通过“六五”期间引进数控技术,“七五”期间组织消化吸收“科技攻关”,我国数控技术和数控产业取得了相当大的成绩。特别是最近几年,我国数控产业发展迅速,1998~2004年国产数控机床产量和消费量的年平均增长率分别为39.3%和34.9%。尽管如此,进口机床的发展势头依然强劲,从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国,2004年中国机床主机消费高达94.6亿美元,国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。由此可以看出国产数控机床特别是中高档数控机床仍然缺乏市场竞争力,究其原因主要在于国产数控机床的研究开发深度不够、制造水平依然落后、服务意识与能力欠缺、数控,系统生产应用推广不力及数控人才缺乏等。我们应看清形势,充分认识国产数控机床的不足,努力发展先进技术,加大技术创新与培训服务力度,以缩短与发达国家之问的差距。2003年开始,中国就成了全球最大的机床消费国,也是世界上最大的数控机床进口国。目前正在提高机械加工设备的数控化率,1999年,我们国家机械加工设备数控华率是5-8%,目前预计是15-20%之间。 一、 什么是数控机床 车、铣、刨、磨、镗、钻、电火花、剪板、折弯、激光切割等等都是机械加工方法,所谓机械加工,就是把金属毛坯零件加工成所需要的形状,包含尺寸精度和几何精度两个方面。能完成以上功能的设备都称为机床,数控机床就是在普通机床上发展过来的,数控的意思就是数字控制。给机床装上数控系统后,机床就成了数控机床。当然,普通机床发展到数控机床不只是加装系统这么简单,例如:从铣床发展到加工中心,机床结构发生变化,最主要的是加了刀库,大幅度提高了精度。加工中心最主要的功能是铣、镗、钻的功能。 我们一般所说的数控设备,主要是指数控车床和加工中心。 我国目前各种门类的数控机床都能生产,水平参差不齐,有的是世界水平,有的比国外落后10-15年,但如果国家支持,追赶起来也不是什么问题,例如:去年,沈阳机床集团收购了德国西思机床公司,意义很大,如果大力消化技术,可以缩短不少差距。大连机床公司也从德国引进了不少先进技术。上海一家企业购买日本著名的机床制造商池贝。, 近几年随着中国制造的崛起,欧洲不少企业倒闭或者被兼并,如马毫、斯滨纳等。日本经济不景气,有不少在80年代很出名的机床制造商倒闭,例如:新泻铁工所。 二、 数控设备的发展方向 六个方面:智能化、网络化、高速、高精度、符合、环保。目前德国和瑞士的机床精度最高,综合起来,德国的水平最高,日本的产值最大。美国的机床业一般。中国大陆、韩国。台湾属于同一水平。但就门类、种类多少而言,我们应该能进世界前4名。 三、 数控系统 由显示器、控制器伺服、伺服电机、和各种开关、传感器构成。目前世界最大的三家厂商是:日本发那客、德国西门子、日本三菱;其余还有法国扭姆、西班牙凡高等。国内由华中数控、航天数控等。国内的数控系统刚刚开始产业化、水平质量一般。高档次的系统全都是进口。 华中数控这几年发展迅速,软件水平相当不错,但差就差在电器硬件上,故障率比较高。华中数控也有意向数控机床业进军,但机床的硬件方面不行,质量精度一般。目前国内一些大厂还没有采用华中数控的。广州机床厂的简易数控系统也不错。 我们国家机床业最薄弱的环节在数控系统。参考文献:1.《机床与液压》20041No17 1995-2005 Tsinghua Tongfang Optical Disc Co¸, Ltd¸ All rights reserved4.《机床数控系统的发展趋势 》 黄勇 陈子辰 浙江大学
数控技术主要是采用高速、高精度化、复合化、系统化、智能化、柔性化的加工 方法 代替传统的加工方法,它在现代机械制造中发挥着不可替代的作用。下面是我为大家整理的数控技术 毕业 论文,供大家参考。
【论文关键词】数控技术;高职 教育 ;教学改革
【论文摘要】 文章 根据数控行业对人才能力的培养要求,深化课程体系、教学内容和 教学方法 的改革,同时对教材建设、课程建设和实训基地建设等问题进行了一些探讨。
我国加入世贸组织后,中国正在逐步变成“世界制造中心”,制造业已成为我国经济的主要增长点,这也促使数控技术的广泛应用,数控人才的严重短缺引起了社会普遍关注。许多高校和培训机构都开设计数控技术专业,然而从有关部门得知,这一两年数控专业高职毕业生切合专业的就业率并不很高。
一方面企业找不到合适的数控人才,另一方面数控专业学生却找不到合适的工作。在人才使用方面,企业和人才本身都不满意,社会上还是缺口较大,其原因就是学校培养的人才不是企业所需要的人才,说明我们高职教育在教学机制、办学理念、课程设置、就业指导、实践教学模式、教材建设等方面都存在单方面的行为,没有与企业沟通、合作,没有按企业的愿望培养人才。
为什么会出现这种现象?原因有多方面的,毕业生专业能力不强;学生技能力很弱,实际 经验 和动手能力差;学生没有专长和一技之长,没有特色;学生定位不准,不愿立足一线,缺乏吃苦耐劳和为企业奉献精神;学校就业和就业指导体系不力。
一、制造业呼唤专业教学改革
随着科学技术的突飞猛进,经济全球化趋势日益增强,国际产业分工正在“重新洗牌”,许多发达国家和跨国公司看好中国市场,将部分制造业进一步向我国转移。虽然我国制造业已开始广泛使用先进的数控技术,但掌握数控技术的机电复合型人才奇缺,其中仅数控机床的操作、编程、维修人员就短缺60多万人。我国数控技术人才不仅数量上奇缺,而且质量上也存在一定缺陷,即他们的知能结构不能适应和满足现代制造业的需求。
在高等教育从精英教育向大众化教育转变的时期,生源基础变化较快,企业对人才层次要求上移,使用重心下移的情况下,由于学校专业建设教学方案调整没能及时跟上社会变化,没有一套适时的高质量教材,此外,在理论教学和实践教学的比例上还显得不够。
数控技术是集机械、电子、信息和管理等学科于一体的新兴交叉学科,数控技术的发展对人才的知识、能力、素质结构提出了新的要求。“中国制造”竞争力的提高呼唤我国高职数控技术专业要适应市场需求,改革现行的课程体系、教学内容和教学方式,高起点地培养从事数控技术人才,以满足制造业发展对人才的需求。
二、专业教学改革指导思想和目标
1.改革的指导思想。进一步加快教育思想与教育观念的变革,全面推进素质教育,深入探索高等职业教育教育人才的培养模式,努力提高高职人才培养质量,深化课程体系、教学内容和教学方法的改革,培养出有较强的职业能力和较高综合素质的机械制造业生产和管理一线的高级应用型人才。
2.改革的目标 。通过教学改革,要建立一个完整的、科学的、有特色的高职数控制造人才培养的教学体系。体现“以就业为导向”, “以企业活动为主线” ,研究其职业分布和学生就业方向; “以能力培养为中心,知识够用为度”来架构专业教学体系,在教学内容突出专业技能、综合能力及综合素质的培养。
毕业生将具备较强的专业能力和职业素质,有一技之长或一专多能,能够很快适应企业生产的需要,且具有良好的可持续发展能力。
三、专业改革的基本思路
1.学生现状剖析:(1)专业能力不强。除了其基础较差之外,还有很多原因。(2)技能不足。(3)定位不准。很多人认为自己是大学生,一定要做管理人员,没有立足一线的意识;缺乏吃苦耐劳精神,不愿干脏、累、苦的工作,不愿到小企业和条件差的企业;缺乏奉献精神,不愿立足企业,与企业同甘共苦,只讲索取,不讲奋斗、拼搏、奉献;对 企业 文化 和环境的认识不够,缺乏 安全生产 、节约、合作、严格遵守纪律等认识,难以适应企业,普遍认为 企业管理 太严。(4)就业指导和专业教育不力。目前很多学校就业指导没有引起足够的重视,没有形成就业指导体系。
2.专业教学改革方案。(1)针对学生现状,根据企业岗位群的要求,以提高人才培养质量和学生就业为目的,针对性的对原有的教学计划、教学大纲、教材、教学方法、技能训练方法和内容、师资力量、实训条件、就业指导、实习基地等方面进行改革和加强。改变学生知识和能力结构,满足企业用人要求。(2)重新构建专业课程体系。根据职业岗位群的知识和能力要求来对课程体系进行整合。专业知识以“必需、够用”为度,突出核心专业课程。确定以能力为中心来构建理论教学体系和实践教学体系,拓宽基础,注重实践,强化技能训练,加强能力培养,提高综合职业素质。将专业课提前,使学生尽早接触专业课,(下转第117页)(上接第105页)这样可提高学生学习兴趣,学生也可提前就业,缓解集中就业的压力。(3)改进教学方法和考试方法,提高教学效果。(4)教材建设和课程建设。撰写适合本专业实践教学的实践课程的校本教材并完善实训指导书;在进行专业主干课程建设的基础上,撰写专业主干课的校本教材。完成适合本专业图册和主干课程的题库建设。建设几门校级精品课。(5)师资队伍建设规划。一是加强了师资队伍建设,改善了师资队伍结构。(6)校内、校外实训场地建设。根据培养目标,新建、扩建和完善一些实训场,为学生技能训练和专业知识学习提供坚实的基础和保障。加强校企合作,建立校外实习基地,建成满足学生企业生产管理环境认识、生产实习、毕业实习等不同层次实习要求实习基地。 加强产、学结合,通过参与解决企业生产的实际问题,提高学生的综合素质。(7)完善职业素质教育和就业体系。落实专业教师职业素质教育,让他们在专业教育时就传递怎样做人、做事的知识,在实践中严格要求,使之潜移默化。积极拓展毕业生实习和就业基地,设定专人负责学生就业和就业跟踪工作,并发动全体专业教师共同参与。
四、专业教学改革的保障 措施
为了保证专业教学改革试点工作顺利进行,将逐步完善有关配套措施:
1.加强师资队伍的建设,提高师资队伍的质量,制定“双师型”教师的培养和引进制度。
2.充分发挥教研室在教学运行过程中的管理职能,加强教学改革研究;
3.结合专业立项,做好本专业教学改革工作。
4.加强和相关行业、企业合作办学的力度,建立一体化管理模式。
【参考文献】
[1]黄梓平.改革课程体系 加强技能训练 提高综合素质[J].青海大学学报, 2002.
[2]黄克孝.构建高等职业教育课程体系的理论思考[J].职业技术教育,2004.
[3]王建平.高职《数控编程》课程教学改革探析[J].长沙航空职业技术学院学报,2006.
摘要:数控技术是实现机械制造自动化的关键,直接影响到国家工业的发展和综合国力的提高。以数控技术为核心的机械设备的生产和应用已经成为衡量一个国家技术水平和战略地位的重要标准。因此广泛采用数控技术应用于制造业,无论从战略角度还是发展策略,都是我国实现工业经济大国必须要大力提倡和广泛发展的。
关键词:机械制造 数控技术
0 引言
在机械制造业中,数控加工技术已经越来越受到重视。随着计算机技术为主流的现代科技技术发展和市场产品竞争的加剧,传统的机械制造技术很难满足现代产品多样化的发展和日新月异的换代速度。面对多品种小批量生产比重的加大,产品交货质量和成本要求的提高,要求现代的制造技术具有很高的柔性。如何能增强机械制造业对外界因素的适应能力以及产品适应市场的变化能力,就需要我们能利用现代数控技术的灵活性,最大限度的应用于机械制造行业。将机械设备的功能、效率、可靠性和产品质量提高到一个新的水平,从而满足现代市场的竞争需求。
1 技术特点
数控技术是用数字信息对机械加工和运动过程进行控制的技术。它是集传统的机械制造技术、计算机技术、传感检测技术、网络通信技术、光机电技术于一体的现代制造业基础技术,具有高精度、高效率、柔性自动化等特点。
目前是采用计算机控制,预先编程然后利用控制程序实现对设备的控制功能。由于计算机软件的辅助功能替代了早期使用纯硬件电路组成的数控装置,使得输入数据的存储、处理、判断、运算等功能均由现场可编辑的软件来完成,这样极大的增强了机械制造的灵活性,提高设备的工作效率。
2 机械制造中数控技术的应用
2.1 工业生产 工业机器人和传统的数控系统一样是由控制单元、驱动单元和执行机构组成的。主要运用机器设备的生产线上,或者运用于复杂恶劣的劳动环境下下,完成人类难以完成的工作,很大程度上改善了劳动条件,保证了生产质量和人身安全。
在实际操作中,控制单元是由计算机系统组成,指挥机器人按照写入内核的程序向驱动单元发出指令,完成预想的操作,同时同步检测执行动作,一旦出现错误或发生故障,由传感系统和检测系统反馈到控制单元,发出报警信号和相应的保护动作。而执行机构是由伺服系统和机械构件组成。有动力部分向执行机构提供动力,使执行机构在驱动元件的作用下完成规定操作。
2.2 煤矿机械 现代采煤机开发速度快、品种多,都是小批量的生产,各种机壳的毛坯制造越来越多地采用焊件,传统机械加工难以实现单件的下料问题,而使用数控气割,代替了过去流行的仿型法,使用龙骨板程序对采煤机叶片、滚筒等下料,从而优化套料的选用方案。使其发挥了切割速度快、质量可靠的优势,一些零件的焊接坡口可直接割出,这样大大提高了生产效率。同时,数控气割机装有自动可调的切缝补偿装置。它允许对构件的实际轮廓进行程序控制,好比数控机床上对铣刀的半径补偿一样。这样可以通过调节切缝的补偿值来精确的控制毛坯件的加工余量。
2.3 汽车工业 汽车工业近20年来发展尤为迅猛,在快速发展的过程中,汽车零部件的加工技术也在快速发展,数控技术的出现,更加快了复杂零部件快速制造的实现过程。
将高速加工中心和 其它 高速数控机床组成的高速柔性生产线集“高柔性”与“高效率”于一体,既可满足产品不断更新换代的要求,做到一次投资,长期受益,又有接近于组合机床刚性自动线的生产效率,从而打破汽车生产中有关“经济规模”的传统观念,实现了多品种、中小批量的高效生产。数控加工技术中的快速成形制造技术在复杂的零部件加工制造中可以很轻易方便的实现,不仅如此,数控技术中的虚拟制造技术、柔性制造技术、集成制造技术等等,在汽车制造工业中都得到了广泛深入的应用。21世纪的汽车加工制造业已经离不开数控加工技术的应用了。
2.4 机床设备 机械设备是机械制造中的重中之重,面对现代机械制造业的需求,具备了控制能力的机床设备是现代机电一体化产品的重要组成部分。计算机数控技术为机械制造业提供了良好的机床控制能力,即把计算机控制装置运用到机床上,也就是用数控技术对机床的加工实施控制,这样的机床就是数控机床。它是以代码实现机床控制的机电一体化产品,它把刀具和工件之间的相对位置、主轴变速、刀具的选择、冷却泵的起停等各种操作和顺序动作数字码记录在控制介质上,从而发出控制指令来控制机床的伺服系统或其他执行元件,使机床自动加工出所需零件。
3 数控技术的发展
从第一台数控机床开发成功到现在已有50多年的历史,由传统的封闭式数控系统发展到现今的开放式PC数控系统。传统的计算机数控系统,由于采用封闭的体系结构,它的通用性、软件移植性、功能扩展和维修都比较困难;开放式体系结构的计算机数控系统的发展,使传统的计算机数控系统的市场正在受到挑战。开放式计算机数控系统,采用软件模块化的体系结构,显示了优良的性能,能适应各种计算机的软件平台,具有统一风格的用户交互环境,操作、维护、更新换代和软件开发都比较方便,具有较高的性能价格比,已成为数控系统发展的方向。
4 结束语
机械制造技术不仅是衡量一个国家科技发展水平的重要标志,也是国际间科技竞争的重点。我国正处于经济发展的关键时期,制造技术是我们的薄弱环节。PC机进入数控领域,极大的促进了数控技术的发展,也为我国在数控生产领域赶超发达国家提供了机遇。跟上发展先进数控制造技术的世界潮流,将其放在战略优先地位,并以足够的力度予以实施,尽快缩小与发达国家的差距,在激烈的市场竞争中立于不败之地。同时,数控加工技术的发展孕育产生大量的数控专业技术人才,进而推动我国现代机械制造业进一步走向繁荣。
参考文献:
[1]马岩.中国木材工业数控化的普及[J].木材工业.2006(02).
[2]陈光明.基于数控加工的工艺设计原则及方法研究[J].制造业自动化.2005(09).
[3]南生春,傅万四.浅谈数控技术在木材加工机械上的应用[J].木材加工机械,2004(01).
[4]孙荣创.数控技术及装备的发展趋势及策略[J].中国科技信息.2006(12)
【摘要】随着国内数控机床的迅速发展,数控机床逐步出现故障高发时段。然而,目前的数控维修工作混乱无序,根本不能适应数控行业快速发展的步伐。为了使数控维修工作适应现代化制造业的发展,提高数控设备维修质量,那么规范数控维修行业,已经迫在眉睫。本文通过阐述了数控机床的维修方法,使其具有可利用性、可持续发展性,为规范数控维修行业奠定坚实的基础。
【关键词】数控;机床;维修;技术分析
随着我国机械加工的快速发展,国内的数控机床也越来越多。由于数控机床的先进性和故障的不稳定性,大部分故障都是以综合故障形式出现,所以数控机床的维修难度较大,并且数控机床维修工作的不规范,使得数控维修工作处于一种混乱状态,为了规范数控维修工作,提高数控机床的利用价值,本文提出五步到位数控维修法。
一、
1、故障记录具体
数控机床发生故障时,对于操作人员应首先停止机床,保护现场,并对故障进行尽可能详细的记录,并及时通知维修人员。
(1)故障发生时的情况记录
1)发生故障的机床型号,采用的控制系统型号,系统的软件版本号。
2)故障的现象,发生故障的部位,以及发生故障时机床与控制系统的现象。
3)发生故障时系统所处的操作方式。
4)若故障在自动方式下发生,则应记录发生故障时的加工程序号,出现故障的程序段号,加工时采用的刀具号等。
5)若发生加工精度超差或轮廓误差过大等故障,应记录被加工工件号,并保留不合格工件。
6)在发生故障时,若系统有报警显示,则记录系统的报警显示情况与报警号。
7)记录发生故障时,各坐标轴的位置跟随误差的值。
8)记录发生故障时,各坐标轴的移动速度、移动方向,主轴转速、转向等。
(2)故障发生的频繁程度记录
1)故障发生的时例与周期。
2)故障发生时的环境情况。
3)若为加工零件时发生的故障,则应记录加工同类工件时发生故障的概率情况。
4)检查故障是否与“进给速度”、“换刀方式”或是“螺纹切削”等特殊动作有关。
(3)故障的规律性记录。
(4)故障时的外界条件记录。
2、故障检查方法
维修人员故障维修前,应根据故障现象与故障记录,认真对照系统、机床使用 说明书 进行各顶检查以便确认故障的原因。当数控设备出现故障时,首先要搞清故障现象,向操作人员了解第一次出现故障时的情况,在可能的情况下观察故障发生的过程,观察故障是在什么情况下发生的,怎么发生的,引起怎样的后果。搞清了故障现象,然后根据机床和数控系统的工作原理,就可以很快地确诊并将故障排除,使设备恢复正常使用。故障检查包括:
(1)机床的工作状况检查。
(2)机床运转情况检查。
(3)机床和系统之间连接情况检查。
(4)CNC装置的外观检查。
维修时应记录检查的原始数据、状态,记录越详细,维修就越方便,用户最好编制一份故障维修记录表,在系统出现故障时,操作者可以根据表的要求及时填入各种原始材料,供维修时参考。
3、故障诊断
故障诊断是进行数控机床维修的第二步,故障诊断是否到位,直接影响着排除故障的快慢,同时也起到预防故障的发生与扩大的作用。首先维修人员应遵循以下两条原则:
(1)充分调查故障现场。这是维修人员取得维修第一手材料的一个重要手段。
(2)认真分析故障的原因。分析故障时,维修人员不应局限于 CNC部分,而是要对机床强电、机械、液压、气动等方面都作详细的检查,并进行综合判断,达到确珍和最终排除故障的目的。
1)直观法。2)系统自诊断法。3)参数检查法。4)功能程序测试法。5)部件交换法。6)测量比较法。7)原理分析法。8)敲击法。9)局部升温法。10)转移法。
除了以上介绍的故障检测方法外,还有插拔法、电压拉偏法、敲击法等等,这些检查方法各有特点,维修人员可以根据不同的现象对故障进行综合分析,缩小故障范围,排除故障。
4、维修方法
在数控机床维修中,维修方法的选择到位不到位直接影响着机床维修的质量,在维修过程中经常使用的维修方法有以下几种:
(1)初始化复位法。由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次来清除故障,若系统工作存贮区由于掉电、拔插线路板或电池欠压造成混乱,则必须对系统进行初始化清除,清除前应注意作好数据拷贝记录,若初始化后故障仍无法排除,则进行硬件诊断。
(2)参数更改,程序更正法。系统参数是确定系统功能的依据,参数设定错误就可能造成系统的故障或某功能无效。有时由于用户程序错误亦可造成故障停机,对此可以采用系统搜索功能进行检查,改正所有错误,以确保其正常运行。
(3)调节、最佳化调整法。调节是一种最简单易行的办法。通过对电位计的调节,修正系统故障。
(4)备件替换法。用好的备件替换诊断出坏的线路板,并做相应的初始化启动,使机床迅速投入正常运转,然后将坏板 修理 或返修,这是目前最常用的排故办法。
(5)改善电源质量法。目前一般采用稳压电源,来改善电源波动。对于高频干扰可以采用电容滤波法,通过这些预防性措施来减少电源板的故障。
(6)维修信息跟踪法。一些大的制造公司根据实际工作中由于设计缺陷造成的偶然故障,不断修改和完善系统软件或硬件。这些修改以维修信息的形式不断提供给维修人员
(7)修复法。对数控机床的故障进行恢复性修复、调整、复位行程开关、修复脱焊、断线、修复机械故障等。
5、维修记录到位
维修时应记录、检查的原始数据、状态较多,记录越详细,维修就越方便,用户最好根据本厂的实际清况,编制一份故障维修记录表,在系统出现故障时,操作者可以根据表的要求及时填入各种原始材料,供再维修时参考。
通常维修记录包括以下几方面的内容;(1)现场记录;(2)故障原因;(3)解决方法;(4)遗留的问题;(5)日期和停工的时间;(6)维修人员情况;(7)资料记录。
二、小结
数控机床维修技术的实施,提高重复性故障的维修速度,提高维修者的理论水平和维修能力,有利于分析设备的故障率及可维修性,改进操作规程,提高机床寿命和利用率,并能充分实现资源共享。使其具有可利用性、可持续发展性,为规范数控维修行业奠定坚实的基础。
参考文献:
[1]孙伟.数控设备故障诊断与维修技术.北京国防工业出版社, 2008.
[2]杨中力.数控机床故障诊断与维修.天津:天津理工大学出版社, 2008.
[3]沈兵,历承兆.数控系统诊断与维修手册.北京机械工业出版社, 2009.
猜你喜欢:
1. 数控论文范文
2. 关于数控技术论文范文
3. 最新的数控技术论文范文
4. 数控专业技术论文
5. 大专数控毕业论文范文
基于纳米TiO<,2>碳热还原氮化制备Ti(C,N)的相关应用基础研究客观性问题——量子力学对机械物质观的挑战传动机械仓库管理系统设计及开发机械搅拌UASB反应器的研究高性能丁苯胶乳的研究与开发面向CAD设计模型的计算多体动力学虚拟原型基于XML的机械图形标记语言的研究与开发集装箱码头机械状态无线监控系统的研究重型商用车机械自动变速器控制软件开发及试验研究A港务公司机械操作部培训系统研究特种橡胶/有机蒙脱土纳米复合材料的结构与性能研究激光陀螺捷联惯组减振系统设计及其动力学特性研究机械精度对中心偏测量精度的影响农业拖拉机液压机械无级变速传动变速规律研究林分密度对华北落叶松人工林林木生长及林下植物多样性影响的研究——以塞罕坝机械林场为例并联机器人及其协调操作的运动学和动力学研究质子交换膜退化机理研究机动喷射式地下施药机的研制生物可降解气管内支架的基础研究领域汉语理解知识库的研究与实现及在机械产品设计中的应用机械制造过程非核心业务外包战略决策与管理研究SWFP66X60A型锤式粉碎机锤片尺寸及排列方式优化研究振荡轮与热沥青混合料相互作用动力学过程的研究印刷机滚筒疲劳强度分析和寿命估算研究博山区机械电子工业园区发展战略研究油田关键往复机械智能诊断方法和技术研究硅片软磨料砂轮的磨削性能研究预制桩打桩过程的非线性有限元分析低振动的滚筒洗衣机驱动系统控制研究平面柔性机械设计方法堆垛机位置控制若干问题研究基于旋量和李群李代数的SCARA工业机器人研究机械制造企业信息化中订单变更及生产计划技术研究云杉CTMP纤维漆酶介体体系改性工艺及其机理研究阻燃镁合金的制备及半固态研究机械构件动态参数电磁检测技术与系统研究基于自然进风机械排风的住宅通风换气技术的研究运煤车防冻液喷洒装置液流及机械系统设计机械自动化控制系统中RS485-光-CAN通信模块设计与开发华泰重工基于供应链的项目成本控制研究机械成孔混凝土灌注桩竖向承载力研究基于虚拟仪器的机械量测试系统模拟毫针机械刺激诱导成纤维细胞压力信号生物转化作用与针刺效应的研究熊猫型保偏光纤机械强度分析的理论和方法研究轿车车身冲压线机器人物流机械系统及关键设备的研制市场经济下烟草机械企业技术标准体系研究环模制粒机高效制粒机理与性能分析用于大型旋转机械转子故障监测的电感测量仪的研制成年大鼠心房肌细胞牵张激活钾通道的门控机制基于流形学习的机械故障诊断理论与方法研究基于长周期光纤光栅的理论及应用研究人工机械心脏瓣膜置换术后华法林抗凝治疗的监测中低端产品用全棉秆化机浆生产工艺及机理研究基于通用化思想的透平机械热力性能在线评估系统研究Al-Zn-Mg合金的表面纳米晶化及其性能研究
液压传动系统的故障分析与排故液压传动是以液压油为工作介质进行能量转换和动力传递的,它具有传送能量大、布局容易、结构紧凑、换向方便、转动平稳均匀、容易完成复杂动作等优点,因而广泛应用于工程机械领域。但是,液压传动的故障往往不容易从外部表面现象和声响特征中准确地判断出故障发生的部位和原因,而准确迅速地查出故障发生的部位和原因,并及时排除。在工程机械的使用、管理和维修中是十分重要的。��1 液压系统的主要故障��在相对运动的液压元件表面、液压油密封件、管路接头处以及控制元件部分,往往容易出现泄漏、油温过高、出现噪音以及电液结合部分执行动作失灵等现象。具体表现:一是管子、管接头处及密封面处的泄漏,它不仅增加了液压油的耗油量,脏污机器的表面,而且影响执行元件的正常工作。二是执行动作迟缓和无力,表现为推土机铲刀提升缓慢、切土困难,挖掘机挖掘无力、油马达转不起来或转速过低等。三是液压系统产生振动和噪音。四是其他元件出现异常。��2 故障的检查��2.1 直接检查法 �凭借维修人员的感觉、经验和简单工具,定性分析判断故障产生的原因,并提出解决的办法。 �2.2 仪器仪表检测法 �在直接观察的基础上,根据发生故障的特征和经验,采取各种检查仪器仪表,对液压系统的流量、压力、油温及液压元件转速直通式检测,对振动噪音和磨损微粒进行量的分析。 �2.3 元件置换法 �以备用元件逐一换下可能发生故障的元件,观察液压系统的故障是否消除,继而找出发生故障的部位和原因,予以排除。在施工现场,体积较大、不易拆装且储备件较少的元件,不宜采用这种方法。但对于如平衡阀、溢流阀及单向阀之类的体积小,易拆装的元件,采用置换法是比较方便的。 �2.4 定期按时监控和诊断�根据各种机械型号、检查内容和时间的规定,按出厂要求的时间和部位,通过专业检测、监控和诊断来检测元器件技术状况,及时发现可能出现的异常隐患,这是使液压系统的故障消灭在发生之前的一种科学技术手段。当然,执行定期检测法,首先要培养一些专业技术检测人员,使他们既精通工程机械液压元件的构造和原理,又掌握和钻研检测液压传动系统的各种诊断技术,在不断积累靠人的直感判断故障经验的同时,逐步发展不解体诊断技术,来完成技术数据采集,辅以电脑来分析判断故障的原因及排除方法。��3 液压系统的故障预防��3.1 保证液压油的清洁度 �正确使用标定的和要求使用的液压油及其相应的替代品(详参《工程机械油料手册》),防止液压油中侵入污物和杂质。因为在液压传动系统中,液压油既是工作介质,又是润滑剂,所以油液的清洁度对系统的性能,对元件的可靠性、安全性、效率和使用寿命等影响极大。液压元件的配合精度极高,对油液中的污物杂质所造成的淤积、阻塞、擦伤和腐蚀等情况反应更为敏感。 �造成污物杂质侵入液压油的主要原因,一是执行元件外部不清洁;二是检查油量状况时不注意;三是加油时未用120目的滤网过滤;四是使用的容器和用具不洁净; 五是磨损严重和损坏的密封件不能及时更换;六是检查修理时,热弯管路和接头焊修产生的锈皮杂质清理不净;七是油液贮存不当等等。�在使用检查修理过程中,应注意解决这些问题,以减少和防止液压系统故障的发生。 �3.2 防止液压油中混入空气 �液压系统中液压油是不可压缩的,但空气可压缩性很大,即使系统中含有少量空气,它的影响也是非常大的。溶解在油液中的空气,在压力较低时,就会从油中逸出产生气泡,形成空穴现象;到了高压区,在压力的冲击下,这些气泡又很快被击碎,急剧受到压缩,使系统产生噪音。同时,气体突然受到压缩时,就会放出大量的热能,因而引起局部受热,使液压元件和液压油受到损坏,工作不稳定,有时会引起冲击性振动。 �故必须防止空气进入液压系统。具体做法:一是避免油管破裂、接头松动、密封件损坏;二是加油时,避免不适当地向下倾倒;三是回油管插入油面以下;四是避免液压泵入口滤油器阻塞使吸油阻力增大,不能把溶解在油中的空气分离出来。 �3.3 防止液压油温度过度�液压系统中的油液的工作温度一般在30℃~80℃范围内比较好,在使用时必须注意防止油温过高。如油箱中的油面不够,液压油冷却器散热性能不良,系统效率太低,元件容量小,流速过高,选用油液粘度不正确,它们都会使油温升高过快。粘度高增加油液流动时的能量损耗,粘度低会使泄漏增多,因此在使用中能注意并检查这些问题,就可以预防油温过高。此外对液压油定期过滤,定期进行物理性能检验,既能保证液压系统的工作性能,又能减少液压元件的磨损和腐蚀,延长油液和液压元件的使用寿命。��4 液压系统的故障分析��4.1 传动系统分析法 �工程机械的液压传动系统如果维护得好,一般说来故障是比较少的。由于密封件老化、变质和磨损而产生外泄是很容易观察到的,根据具体情况可设法排除。但是如果液压元件的内部发生了故障是观察不到的,往往不容易一下子就找出原因,有时虽然是同样的故障现象,但产生的原因却不一定相同,要想准确而迅速地找出液压元件的故障的部位和原因,首先要根据发生故障元件的构造图、系统图,分析了解和研究元件的工作原理和特性,再使了解的构造原理与实物对号,具体情况具体分析,检查寻找故障发生的部位和产生的原因,以便采取相应的技术措施来排除故障。 �4.2 逻辑流程分析法 �此方法是根据液压传动系统的基本原理进行逻辑分析,减少怀疑对象,逐步逼近找出故障发生的部位和原因。��5 液压系统故障的排除��(1) 液压系统中管子、管子接头和焊接处,由于振动频率较高,常常发生破坏。在换用时要根据压力和使用场合,选用强度足够,内壁光滑清洁,无砂、无伤、无锈蚀、无氧化皮的管子。当管子需要焊接时,最好采用加套管的办法,因为对接可能使管的内径局部缩小;截段时,油管的截面与管子轴线的不垂直度不得大于0.5°,并清除铁屑和锐边倒钝。当管子支承距离过大或支承松动时要设卡固定拧紧,当弯曲半径过小时,易形成弯曲应力,弯曲半径一般应大于管外径的3倍。 �在密封表面处,密封元件的老化变质会使泄漏量增大。密封件的有效寿命通常是:固定元件之间的密封寿命时间为10000h,运动元件之间密封寿命时间为1500h~2000h。到了规定的使用寿命时间后,即使还可用的元件也应该更换。密封面的泄漏还与预压面的压力不够或不均匀有关。预压量增大时,其封油量压力增大,密封效果好,反之则差。再者摩擦表面光洁度与硬度不足也会缩短密封件的寿命。 �密封件设计不合理以及安装时扭曲刮伤也是导致密封圈早期磨损而引起泄漏的原因。 �油液中杂质过多,易加速密封件与摩擦表面的磨损,形成密封件的早期失效,油封工作温度过高或过低也会影响其寿命和工作性能。� (2) 执行元件运动的速度降低,主要是由于输入执行元件的液压油流量不足;执行元件无力的原因主要是输入液压油压力不足,以及回油管路背压过高等因素所造成的。 �工程机械液压系统所用的油泵多为齿轮泵,其工作压力为210×102kPa,柱塞泵的工作压力可达320×102kPa。泵的输出压力是由荷载决定的,并随着荷载的变化而变化。荷载无限增加,泵的压力也无限升高,直到系统某一部分被破坏。对于齿轮泵:主要是轴承、齿轮啮合面、齿顶与壳体、齿轮端面与泵盖间的磨损和密封件的磨损、老化、损坏使齿轮泵的内漏表现更为突出。在一定转速与一定压力下,对无端面间隙补偿的齿轮泵,其轴线磨损引起的泄漏约占全部内漏量的75%~85%,齿顶间隙内漏量约占15%~20%,其他内漏约占4%~5%,因此我们要抓住主要问题,采取有效的技术措施予以解决,就能使泵恢复其原有性能。 �在维修工作中,我们发现使用了一定时间的齿轮泵,由于啮合挤压,在齿顶和端面会产生毛刺,使泵体和端盖的磨损加剧,尤其是铝合金泵盖更为严重。如能定期修理检查,用油石磨掉所产生的毛刺,则可以延长油泵的寿命。叶片泵的主要故障是定子、叶片、转子、轴承和两侧配流盘的磨损,定子的内表面是由圆弧和过渡曲线组成的,过渡曲线如果采用“阿基米德”螺旋线,则叶片径向等速运动。实践证明,当我们将叶片泵解体修理时,定子内表面就在曲线与圆弧连接部分磨损最严重,换掉磨损严重的定子,可以使叶片泵恢复原有的性能,采用这种修理方法是比较经济的。叶片泵转子、叶片的使用寿命约相当于定子使用寿命的两倍,这在备料时应予以考虑。 �(3) 液压系统的蓄能器是用来调节能量、贮存能量、减少设备容积、降低功率消耗、减少系统发热、缓冲吸收冲击和脉动压力的辅助元件。常见的蓄能器有胶囊式的,它具有漏气损失小、反应灵敏、可以吸收急速的压力冲击和脉动、重量轻、体积小等特点。蓄能器发生故障会影响液压系统的正常工作,因此在检查气压量不足时,应按时充入惰性气体。 �(4) 液压系统中,要求装备精度高的还有液压马达。如果注意日常维护和保养,防止油液污染,一般不会发生故障,进入液压马达的油液须仔细过滤,以减少杂质,防止过快磨损。修理后的马达,应注满干净的液压油,排尽系统中的空气。确定不了马达是否有故障,最好不要拆卸,这样可减少污染的机会和保持配合的精度。液压缸是液压系统中的执行元件,常见的故障有漏油和运动不正常。缸头因密封件损坏而外泄,应立即更换密封件;油缸运动不正常有油缸内漏、油路中有空气、活塞密封件老化和损坏、油液有杂质、平衡阀发生故障等。 �(5) 控制元件是用来实现系统和执行元件对压力、流量方向的要求的。控制阀及时控制系统中最重要的元件,由于阀的配合一般都比较精密,所以在修理时应特别注意,不需拆阀芯的尽量不要抽出阀芯;配合副方位不要错乱,偶件不要互换;螺丝的拧紧力矩要均匀一致,锥形阀芯的接触线磨损可采用研磨修正接触线的办法解决;回位弹簧疲劳时,可予更换。
液压传动系统设计计算459第一节 概述 第二节 明确设计要求,进行工况分析一、明确设计要求二、进行液压系统的工况分析 第三节 确定液压系统的主要参数一、初选系统的工作压力二、计算液压缸的工作面积和流量三、计算液压马达的排量和流量四、绘制执行元件工况图 第四节 拟定液压系统原理图一、选择液压系统的类型二、选择执行元件三、选择液压泵的类型四、选择调速方式五、选择调压方式六、选择换向回路七、拟定工艺循环顺序动作图表 第五节 计算执行元件主要参数 第六节 选择液压泵一、计算液压泵的最大工作压力二、计算液压泵的最大流量三、选择液压泵规格 第七节 选择液压控制阀 第八节 计算液压泵的驱动功率,选择电动机 第九节 选择、计算液压辅助件 第十节 验算液压系统性能一、验算系统压力损失二、验算系统发热温升三、验算液压冲击 第十一节 液压装置的结构设计一、液压装置的结构形式二、液压泵站的类型及其组件的选择 第十二节 绘制工作图、编写技术文件一、绘制工作图二、编写技术文件 还有液压系统设计计算举例 ,需要请追问
您好,我们只能提供一些系统原理和您分析下,还有很多涉及到保密文件,敬请谅解我们公司是专业生产剪板机和折弯机的厂家,安徽东海机床制造有限公司,如果还需要什么帮助,可上网站留言给我们,我们会及时与您联系。四 机床的液压—气动传动系统 本机床液压一气动传动系统,主要由轴向柱塞泵2、组合阀4、主油缸9、氮气回程缸8及压料缸10等元件组成。 系统所需的压力油由轴向柱塞泵2供给,两只主油缸9驱动上刀架向下摆动剪切。上刀架的回程由氮气缸8控制,回程气压为6MPa左右。 液压一气动传动系统的工作原理(见图4):轴向柱塞泵2输出的油液经单向阀3后,分别进入主油路和控制油路。主油路的压油液进入主油缸9的上腔和直接进入压料缸10的油腔内。控制油路的油液进入组合阀4,使其中的锥阀打开,油液同时经锥阀口和二位二通换向阀7流回油箱。此时主油路失压,压料缸10和主油缸9均不能产生动作。 当二位二通换向阀得电换向,控制油路中的油液仅进入溢流阀,由于溢流阀在其调定的压力值之下是关闭的,此时控制油中的油压开始升高,首先使组合阀4中的锥阀关闭,随之主油路中的油压开始升高。当压力升至一定值时,压料缸10克服弹簧的拉力开始下压,一旦压紧工件,主油路压力继续升高,随后主油缸9克服氮气回程缸8的支承力推动上刀架向下摆动,开始剪切运动。当剪切运动完成后,行程挡块碰撞限位开关,二位四通换向阀失电换向,液压系统卸失压,上刀架在氮气回程缸8的作用下迅速回程,压料缸10在弹簧拉力的作用下复位结束压料动作。 在整个剪切过程中,由于本机液压一气动传动系统的精心设计和调试,确保了“先压料、后剪切和刀架先回程、压料缸后放松”的安全操作规范的实现
液压传动系统的故障分析与排故液压传动是以液压油为工作介质进行能量转换和动力传递的,它具有传送能量大、布局容易、结构紧凑、换向方便、转动平稳均匀、容易完成复杂动作等优点,因而广泛应用于工程机械领域。但是,液压传动的故障往往不容易从外部表面现象和声响特征中准确地判断出故障发生的部位和原因,而准确迅速地查出故障发生的部位和原因,并及时排除。在工程机械的使用、管理和维修中是十分重要的。��1 液压系统的主要故障��在相对运动的液压元件表面、液压油密封件、管路接头处以及控制元件部分,往往容易出现泄漏、油温过高、出现噪音以及电液结合部分执行动作失灵等现象。具体表现:一是管子、管接头处及密封面处的泄漏,它不仅增加了液压油的耗油量,脏污机器的表面,而且影响执行元件的正常工作。二是执行动作迟缓和无力,表现为推土机铲刀提升缓慢、切土困难,挖掘机挖掘无力、油马达转不起来或转速过低等。三是液压系统产生振动和噪音。四是其他元件出现异常。��2 故障的检查��2.1 直接检查法 �凭借维修人员的感觉、经验和简单工具,定性分析判断故障产生的原因,并提出解决的办法。 �2.2 仪器仪表检测法 �在直接观察的基础上,根据发生故障的特征和经验,采取各种检查仪器仪表,对液压系统的流量、压力、油温及液压元件转速直通式检测,对振动噪音和磨损微粒进行量的分析。 �2.3 元件置换法 �以备用元件逐一换下可能发生故障的元件,观察液压系统的故障是否消除,继而找出发生故障的部位和原因,予以排除。在施工现场,体积较大、不易拆装且储备件较少的元件,不宜采用这种方法。但对于如平衡阀、溢流阀及单向阀之类的体积小,易拆装的元件,采用置换法是比较方便的。 �2.4 定期按时监控和诊断�根据各种机械型号、检查内容和时间的规定,按出厂要求的时间和部位,通过专业检测、监控和诊断来检测元器件技术状况,及时发现可能出现的异常隐患,这是使液压系统的故障消灭在发生之前的一种科学技术手段。当然,执行定期检测法,首先要培养一些专业技术检测人员,使他们既精通工程机械液压元件的构造和原理,又掌握和钻研检测液压传动系统的各种诊断技术,在不断积累靠人的直感判断故障经验的同时,逐步发展不解体诊断技术,来完成技术数据采集,辅以电脑来分析判断故障的原因及排除方法。��3 液压系统的故障预防��3.1 保证液压油的清洁度 �正确使用标定的和要求使用的液压油及其相应的替代品(详参《工程机械油料手册》),防止液压油中侵入污物和杂质。因为在液压传动系统中,液压油既是工作介质,又是润滑剂,所以油液的清洁度对系统的性能,对元件的可靠性、安全性、效率和使用寿命等影响极大。液压元件的配合精度极高,对油液中的污物杂质所造成的淤积、阻塞、擦伤和腐蚀等情况反应更为敏感。 �造成污物杂质侵入液压油的主要原因,一是执行元件外部不清洁;二是检查油量状况时不注意;三是加油时未用120目的滤网过滤;四是使用的容器和用具不洁净; 五是磨损严重和损坏的密封件不能及时更换;六是检查修理时,热弯管路和接头焊修产生的锈皮杂质清理不净;七是油液贮存不当等等。�在使用检查修理过程中,应注意解决这些问题,以减少和防止液压系统故障的发生。 �3.2 防止液压油中混入空气 �液压系统中液压油是不可压缩的,但空气可压缩性很大,即使系统中含有少量空气,它的影响也是非常大的。溶解在油液中的空气,在压力较低时,就会从油中逸出产生气泡,形成空穴现象;到了高压区,在压力的冲击下,这些气泡又很快被击碎,急剧受到压缩,使系统产生噪音。同时,气体突然受到压缩时,就会放出大量的热能,因而引起局部受热,使液压元件和液压油受到损坏,工作不稳定,有时会引起冲击性振动。 �故必须防止空气进入液压系统。具体做法:一是避免油管破裂、接头松动、密封件损坏;二是加油时,避免不适当地向下倾倒;三是回油管插入油面以下;四是避免液压泵入口滤油器阻塞使吸油阻力增大,不能把溶解在油中的空气分离出来。 �3.3 防止液压油温度过度�液压系统中的油液的工作温度一般在30℃~80℃范围内比较好,在使用时必须注意防止油温过高。如油箱中的油面不够,液压油冷却器散热性能不良,系统效率太低,元件容量小,流速过高,选用油液粘度不正确,它们都会使油温升高过快。粘度高增加油液流动时的能量损耗,粘度低会使泄漏增多,因此在使用中能注意并检查这些问题,就可以预防油温过高。此外对液压油定期过滤,定期进行物理性能检验,既能保证液压系统的工作性能,又能减少液压元件的磨损和腐蚀,延长油液和液压元件的使用寿命。��4 液压系统的故障分析��4.1 传动系统分析法 �工程机械的液压传动系统如果维护得好,一般说来故障是比较少的。由于密封件老化、变质和磨损而产生外泄是很容易观察到的,根据具体情况可设法排除。但是如果液压元件的内部发生了故障是观察不到的,往往不容易一下子就找出原因,有时虽然是同样的故障现象,但产生的原因却不一定相同,要想准确而迅速地找出液压元件的故障的部位和原因,首先要根据发生故障元件的构造图、系统图,分析了解和研究元件的工作原理和特性,再使了解的构造原理与实物对号,具体情况具体分析,检查寻找故障发生的部位和产生的原因,以便采取相应的技术措施来排除故障。 �4.2 逻辑流程分析法 �此方法是根据液压传动系统的基本原理进行逻辑分析,减少怀疑对象,逐步逼近找出故障发生的部位和原因。��5 液压系统故障的排除��(1) 液压系统中管子、管子接头和焊接处,由于振动频率较高,常常发生破坏。在换用时要根据压力和使用场合,选用强度足够,内壁光滑清洁,无砂、无伤、无锈蚀、无氧化皮的管子。当管子需要焊接时,最好采用加套管的办法,因为对接可能使管的内径局部缩小;截段时,油管的截面与管子轴线的不垂直度不得大于0.5°,并清除铁屑和锐边倒钝。当管子支承距离过大或支承松动时要设卡固定拧紧,当弯曲半径过小时,易形成弯曲应力,弯曲半径一般应大于管外径的3倍。 �在密封表面处,密封元件的老化变质会使泄漏量增大。密封件的有效寿命通常是:固定元件之间的密封寿命时间为10000h,运动元件之间密封寿命时间为1500h~2000h。到了规定的使用寿命时间后,即使还可用的元件也应该更换。密封面的泄漏还与预压面的压力不够或不均匀有关。预压量增大时,其封油量压力增大,密封效果好,反之则差。再者摩擦表面光洁度与硬度不足也会缩短密封件的寿命。 �密封件设计不合理以及安装时扭曲刮伤也是导致密封圈早期磨损而引起泄漏的原因。 �油液中杂质过多,易加速密封件与摩擦表面的磨损,形成密封件的早期失效,油封工作温度过高或过低也会影响其寿命和工作性能。� (2) 执行元件运动的速度降低,主要是由于输入执行元件的液压油流量不足;执行元件无力的原因主要是输入液压油压力不足,以及回油管路背压过高等因素所造成的。 �工程机械液压系统所用的油泵多为齿轮泵,其工作压力为210×102kPa,柱塞泵的工作压力可达320×102kPa。泵的输出压力是由荷载决定的,并随着荷载的变化而变化。荷载无限增加,泵的压力也无限升高,直到系统某一部分被破坏。对于齿轮泵:主要是轴承、齿轮啮合面、齿顶与壳体、齿轮端面与泵盖间的磨损和密封件的磨损、老化、损坏使齿轮泵的内漏表现更为突出。在一定转速与一定压力下,对无端面间隙补偿的齿轮泵,其轴线磨损引起的泄漏约占全部内漏量的75%~85%,齿顶间隙内漏量约占15%~20%,其他内漏约占4%~5%,因此我们要抓住主要问题,采取有效的技术措施予以解决,就能使泵恢复其原有性能。 �在维修工作中,我们发现使用了一定时间的齿轮泵,由于啮合挤压,在齿顶和端面会产生毛刺,使泵体和端盖的磨损加剧,尤其是铝合金泵盖更为严重。如能定期修理检查,用油石磨掉所产生的毛刺,则可以延长油泵的寿命。叶片泵的主要故障是定子、叶片、转子、轴承和两侧配流盘的磨损,定子的内表面是由圆弧和过渡曲线组成的,过渡曲线如果采用“阿基米德”螺旋线,则叶片径向等速运动。实践证明,当我们将叶片泵解体修理时,定子内表面就在曲线与圆弧连接部分磨损最严重,换掉磨损严重的定子,可以使叶片泵恢复原有的性能,采用这种修理方法是比较经济的。叶片泵转子、叶片的使用寿命约相当于定子使用寿命的两倍,这在备料时应予以考虑。 �(3) 液压系统的蓄能器是用来调节能量、贮存能量、减少设备容积、降低功率消耗、减少系统发热、缓冲吸收冲击和脉动压力的辅助元件。常见的蓄能器有胶囊式的,它具有漏气损失小、反应灵敏、可以吸收急速的压力冲击和脉动、重量轻、体积小等特点。蓄能器发生故障会影响液压系统的正常工作,因此在检查气压量不足时,应按时充入惰性气体。 �(4) 液压系统中,要求装备精度高的还有液压马达。如果注意日常维护和保养,防止油液污染,一般不会发生故障,进入液压马达的油液须仔细过滤,以减少杂质,防止过快磨损。修理后的马达,应注满干净的液压油,排尽系统中的空气。确定不了马达是否有故障,最好不要拆卸,这样可减少污染的机会和保持配合的精度。液压缸是液压系统中的执行元件,常见的故障有漏油和运动不正常。缸头因密封件损坏而外泄,应立即更换密封件;油缸运动不正常有油缸内漏、油路中有空气、活塞密封件老化和损坏、油液有杂质、平衡阀发生故障等。 �(5) 控制元件是用来实现系统和执行元件对压力、流量方向的要求的。控制阀及时控制系统中最重要的元件,由于阀的配合一般都比较精密,所以在修理时应特别注意,不需拆阀芯的尽量不要抽出阀芯;配合副方位不要错乱,偶件不要互换;螺丝的拧紧力矩要均匀一致,锥形阀芯的接触线磨损可采用研磨修正接触线的办法解决;回位弹簧疲劳时,可予更换。
一 绪论1.1 液压传动与控制概述液压传动与控制是以液体(油、高水基液压油、合成液体)作为介质来实现各种机械量的输出(力、位移或速度等)的。它与单纯的机械传动、电气传动和气压传动相比,具有传递功率大,结构小、响应快等特点,因而被广泛的应用于各种机械设备及精密的自动控制系统。液压传动技术是一门新的学科技术,它的发展历史虽然较短,但是发展的速度却非常之快。自从1795年制成了第一台压力机起,液压技术进入了工程领域;1906年开始应用于国防战备武器。第二次世界大战期间,由于军事工业迫切需要反应快、精度高的自动控制系统,因而出现了液压伺服控制系统。从60年代起,由于原子能、空间技术、大型船舰及电子技术的发展,不断地对液压技术提出新的要求,从民用到国防,由一般的传动到精确度很高的控制系统,这种技术得到更加广泛的发展和应用。在国防工业中:海、陆、空各种战备武器均采用液压传动与控制。如飞机、坦克、舰艇、雷达、火炮、导弹及火箭等。在民用工业中:有机床工业、冶金工业、工程机械、农业方面,汽车工业、轻纺工业、船舶工业。另外,近几年又出现了太阳跟踪系统、海浪模拟装置、飞机驾驶模拟、船舶驾驶模拟器、地震再现、火箭助飞发射装置、宇航环境模拟、高层建筑防震系统及紧急刹车装置等,均采用了液压技术。总之,一切工程领域,凡是有机械设备的场合,均可采用液压技术。它的发展如此之快,应用如此之广,其原因就是液压技术有着优异的特点,归纳起来液压动力传动方式具有显著的优点:其单位重量的输出功率和单位尺寸输出功率大;液压传动装置体积小、结构紧凑、布局灵活,易实现无级调速,调速范围宽,便于与电气控制相配合实现自动化;易实现过载保护与保压,安全可靠;元件易于实现系列化、标准化、通用化;液压易与微机控制等新技术相结合,构成“机-电-液-光”一体化便于实现数字化。1.2 液压机的发展及工艺特点液压机是制品成型生产中应用最广的设备之一,自19世纪问世以来发展很快,液压机在工作中的广泛适应性,使其在国民经济各部门获得了广泛的应用。由于液压机的液压系统和整机结构方面,已经比较成熟,目前国内外液压机的发展不仅体现在控制系统方面,也主要表现在高速化、高效化、低能耗;机电液一体化,以充分合理利用机械和电子的先进技术促进整个液压系统的完善;自动化、智能化,实现对系统的自动诊断和调整,具有故障预处理功能;液压元件集成化、标准化,以有效防止泄露和污染等四个方面。作为液压机两大组成部分的主机和液压系统,由于技术发展趋于成熟,国内外机型无较大差距,主要差别在于加工工艺和安装方面。良好的工艺使机器在过滤、冷却及防止冲击和振动方面,有较明显改善。在油路结构设计方面,国内外液压机都趋向于集成化、封闭式设计,插装阀、叠加阀和复合化元件及系统在液压系统中得到较广泛的应用。特别是集成块可以进行专业化的生产,其质量好、性能可靠而且设计的周期也比较短。近年来在集成块基础上发展起来的新型液压元件组成的回路也有其独特的优点,它不需要另外的连接件其结构更为紧凑,体积也相对更小,重量也更轻无需管件连接,从而消除了因油管、接头引起的泄漏、振动和噪声。逻辑插装阀具有体积小、重量轻、密封性能好、功率损失小、动作速度快、易于集成的特点,从70年代初期开始出现,至今已得到了很快的发展。我国从1970年开始对这种阀进行研究和生产,并已将其广泛的应用于冶金、锻压等设备上,显示了很大的优越性。液压机工艺用途广泛,适用于弯曲、翻边、拉伸、成型和冷挤压等冲压工艺,压力机是一种用静压来加工产品。适用于金属粉末制品的压制成型工艺和非金属材料,如塑料、玻璃钢、绝缘材料和磨料制品的压制成型工艺,也可适用于校正和压装等工艺。由于需要进行多种工艺,液压机具有如下的特点:(1) 工作台较大,滑块行程较长,以满足多种工艺的要求;(2) 有顶出装置,以便于顶出工件;(3) 液压机具有点动、手动和半自动等工作方式,操作方便;(4) 液压机具有保压、延时和自动回程的功能,并能进行定压成型和定程成型的操作,特别适合于金属粉末和非金属粉末的压制;(5) 液压机的工作压力、压制速度和行程范围可随意调节,灵活性大。二 150t液压机液压系统工况分析本机器(见图1.1)适用于可塑性材料的压制工艺。如冲压、弯曲、翻边、薄板拉伸等。也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。本机器具有独立的动力机构和电气系统。采用按钮集中控制,可实现调整、手动及半自动三种操作方式。本机器的工作压力、压制速度、空载快速下行和减速的行程范围均可根据工艺需要进行调整,并能完成一般压制工艺。此工艺又分定压、定程两种工艺动作供选择。定压成型之工艺动作在压制后具有保压、延时、自动回程、延时自动退回等动作。 本机器主机呈长方形,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。该机并设有脚踏开关,可实现半自动工艺动作的循环。2.2 工况分析本次设计在毕业实习调查的基础上,用类比的方法初步确定了立式安装的主液压缸活塞杆带动滑块及动横梁在立柱上滑动下行时,运动部件的质量为500Kg。1.工作负载 工件的压制抗力即为工作负载:2. 摩擦负载 静摩擦阻力:动摩擦阻力:3. 惯性负载自重:4. 液压缸在各工作阶段的负载值:其中: ——液压缸的机械效率,一般取 =0.9-0.97。工况 负载组成 推力 F/2.3负载图和速度图的绘制:负载图按上面的数值绘制,速度图按给定条件绘制,如图:三 液压机液压系统原理图设计3.1 自动补油的保压回路设计考虑到设计要求,保压时间要达到5s,压力稳定性好。若采用液压单向阀回路保压时间长,压力稳定性高,设计中利用换向阀中位机能保压,设计了自动补油回路,且保压时间由电气元件时间继电器控制,在0-20min内可调整。此回路完全适合于保压性能较高的高压系统,如液压机等。自动补油的保压回路系统图的工作原理:按下起动按纽,电磁铁1YA通电,换向阀6接入回路时,液压缸上腔成为压力腔,在压力到达预定上限值时压力继电器11发出信号,使换向阀切换成中位;这时液压泵卸荷,液压缸由换向阀M型中位机能保压。当液压缸上腔压力下降到预定下限值时,压力继电器又发出信号,使换向阀右位接人回路,这时液压泵给液压缸上腔补油,使其压力回升。回程时电磁阀2YA通电,换向阀左位接人回路,活塞快速向上退回。3.2 释压回路设计:释压回路的功用在于使高压大容量液压缸中储存的能量缓缓的释放,以免她突然释放时产生很大的液压冲击。一般液压缸直径大于25mm、压力高于7Mpa时,其油腔在排油前就先须释压。根据设计很实际的生产需要,选择用节流阀的释压回路。其工作原理:按下起动按钮,换向阀6的右位接通,液压泵输出的油经过换向阀6的右位流到液压缸的上腔。同时液压油的压力影响压力继电器。当压力达到一定压力时,压力继电器发出信号,使换向阀5回到中位,电磁换向阀10接通。液压缸上腔的高压油在换向阀5处于中位(液压泵卸荷)时通过节流阀9、换向阀10回到油箱,释压快慢由节流阀调节。当此腔压力降至压力继电器的调定压力时,换向阀6切换至左位,液控单向阀7打开,使液压缸上腔的油通过该阀排到液压缸顶部的副油箱13中去。使用这种释压回路无法在释压前保压,释压前有保压要求时的换向阀也可用M型,并且配有其它的元件。机器在工作的时候,如果出现机器被以外的杂物或工件卡死,这是泵工作的时候,输出的压力油随着工作的时间而增大,而无法使液压油到达液压缸中,为了保护液压泵及液压元件的安全,在泵出油处加一个直动式溢流阀1,起安全阀的作用,当泵的压力达到溢流阀的导通压力时,溢流阀打开,液压油流回油箱。起到保护作用。在液压系统中,一般都用溢流阀接在液压泵附近,同时也可以增加液压系统的稳定性。使零件的加工精度增高。3.3液压机液压系统原理图拟定上液压缸工作循环(1) 快速下行。按下起动按钮,电磁铁1YA通电,这时的油路为:液压缸上腔的供油的油路变量泵1—换向阀6右位—节流阀8—压力继电器11—液压缸15液压缸下腔的回油路液压缸下腔15—液控单向阀7—换向阀6右位—电磁阀5—背压阀4—油箱油路分析:变量泵1的液压油经过换向阀6的右位,液压油分两条油路:一条油路通过节流阀7流经继电器11,另一条路直接流向液压缸的上腔和压力表。使液压缸的上腔加压。液压缸15下腔通过液控单向阀7经过换向阀6的右位流经背压阀,再流到油箱。因为这是背压阀产生的背压使接副油箱旁边的液控单向阀7打开,使副油箱13的液压油经过副油箱旁边的液控单向阀14给液压缸15上腔补油。使液压缸快速下行,另外背压阀接在系统回油路上,造成一定的回油阻力,以改善执行元件的运动平稳性。(2) 保压时的油路情况:油路分析:当上腔快速下降到一定的时候,压力继电器11发出信号,使换向阀6的电磁铁1YA断电,换向阀回到中位,利用变量泵的柱塞孔从吸油状态过渡到排油状态,其容积的变化是由大变小,而在由增大到缩小的变化过程中,必有容积变化率为零的一瞬间,这就是柱塞孔运动到自身的中心线与死点所在的面重合的这一瞬间,这时柱塞孔的进出油口在配油盘上所在的位置,称为死点位置。柱塞在这个位置时,既不吸油,也不排油,而是由吸转为排的过渡状态。液压系统保压。而液压泵1在中位时,直接通过背压阀直接回到油箱。(3) 回程时的油路情况:液压缸下腔的供油的油路:变量泵1——换向阀6左位——液控单向阀7——液压油箱15的下腔液压缸上腔的回油油路:液压腔的上腔——液控单向阀14——副油箱13液压腔的上腔—节流阀8——换向阀6左位——电磁阀5——背压阀4——油箱油路分析: 当保压到一定时候,时间继电器发出信号,使换向阀6的电磁铁2YA通电,换向阀接到左位,变量泵1的液压油通过换向阀旁边的液控单向阀流到液压缸的下腔,而同时液压缸上腔的液压油通过节流阀9(电磁铁6YA接通),上腔油通过换向阀10接到油箱,实现释压,另外一部分油通过主油路的节流阀流到换向阀6,再通过电磁阀19,背压阀11流回油箱。实现释压。下液压缸的工作循环:向上顶出时,电磁铁4YA通电,5YA失电。进油路:液压泵——换向阀19左位——单向节流阀18——下液压缸下腔回油路:下液压缸上腔——换向阀19左位——油箱当活塞碰到上缸盖时,便停留在这个位置上。向下退回是在4YA失电,3YA通电时产生的,进油路:液压泵——换向阀19右位——单向节流阀17——下液压缸上腔回油路:下液压缸下腔——换向阀19右位——油箱原位停止是在电磁铁3YA,4YA都断电,换向阀19处于中位时得到的。四 液压系统的计算和元件选型4.1 确定液压缸主要参数:按液压机床类型初选液压缸的工作压力为25Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。快进时采用差动连接,并通过充液补油法来实现,这种情况下液压缸无杆腔工作面积 应为有杆腔工作面积 的6倍,即活塞杆直径 与缸筒直径 满足 的关系。快进时,液压缸回油路上必须具有背压 ,防止上压板由于自重而自动下滑,根据《液压系统设计简明手册》表2-2中,可取 =1Mpa,快进时,液压缸是做差动连接,但由于油管中有压降 存在,有杆腔的压力必须大于无杆腔,估计时可取 ,快退时,回油腔是有背压的,这时 亦按2Mpa来估算。1) 计算液压缸的面积可根据下列图形来计算—— 液压缸工作腔的压力 Pa—— 液压缸回油腔的压力 Pa故:当按GB2348-80将这些直径圆整成进标准值时得: ,由此求得液压缸面积的实际有效面积为:2) 液压缸实际所需流量计算① 工作快速空程时所需流量液压缸的容积效率,取② 工作缸压制时所需流量③ 工作缸回程时所需流量4.2液压元件的选择4.2.1确定液压泵规格和驱动电机功率由前面工况分析,由最大压制力和液压主机类型,初定上液压泵的工作压力取为 ,考虑到进出油路上阀和管道的压力损失为 (含回油路上的压力损失折算到进油腔),则液压泵的最高工作压力为上述计算所得的 是系统的静态压力,考虑到系统在各种工况的过渡阶段出现的动态压力往往超过静态压力,另外考虑到一定压力贮备量,并确保泵的寿命,其正常工作压力为泵的额定压力的80%左右因此选泵的额定压力 应满足:液压泵的最大流量应为:式中 液压泵的最大流量同时动作的各执行所需流量之和的最大值,如果这时的溢流阀正进行工作,尚须加溢流阀的最小溢流量 。系统泄漏系数,一般取 ,现取 。1.选择液压泵的规格由于液压系统的工作压力高,负载压力大,功率大。大流量。所以选轴向柱塞变量泵。柱塞变量泵适用于负载大、功率大的机械设备(如龙门刨床、拉床、液压机),柱塞式变量泵有以下的特点:1) 工作压力高。因为柱塞与缸孔加工容易,尺寸精度及表面质量可以达到很高的要求,油液泄漏小,容积效率高,能达到的工作压力,一般是( ) ,最高可以达到 。2) 流量范围较大。因为只要适当加大柱塞直径或增加柱塞数目,流量变增大。3) 改变柱塞的行程就能改变流量,容易制成各种变量型。4) 柱塞油泵主要零件均受压,使材料强度得到充分利用,寿命长,单位功率重量小。但柱塞式变量泵的结构复杂。材料及加工精度要求高,加工量大,价格昂贵。根据以上算得的 和 在查阅相关手册《机械设计手册》成大先P20-195得:现选用 ,排量63ml/r,额定压力32Mpa,额定转速1500r/min,驱动功率59.2KN,容积效率 ,重量71kg,容积效率达92%。2.与液压泵匹配的电动机的选定由前面得知,本液压系统最大功率出现在工作缸压制阶段,这时液压泵的供油压力值为26Mpa,流量为已选定泵的流量值。 液压泵的总效率。柱塞泵为 ,取 0.82。选用1000r/min的电动机,则驱动电机功率为选择电动机 ,其额定功率为18.5KW。4.2.2阀类元件及辅助元件的选择1. 对液压阀的基本要求:(1). 动作灵敏,使用可靠,工作时冲击和振动小。油液流过时压力损失小。(2). 密封性能好。结构紧凑,安装、调整、使用、维护方便,通用性大2. 根据液压系统的工作压力和通过各个阀类元件及辅助元件型号和规格主要依据是根据该阀在系统工作的最大工作压力和通过该阀的实际流量,其他还需考虑阀的动作方式,安装固定方式,压力损失数值,工作性能参数和工作寿命等条件来选择标准阀类的规格:序号 元件名称 估计通过流量型号 规格1 斜盘式柱塞泵156.8 63SCY14-1B 32Mpa,驱动功率59.2KN2 WU网式滤油器 160 WU-160*180 40通径,压力损失 0.01MPa3 直动式溢流阀 120 DBT1/315G24 10通径,32Mpa,板式联接4 背压阀 80 YF3-10B 10通径,21Mpa,板式联接5 二位二通手动电磁阀 80 22EF3-E10B6 三位四通电磁阀 100 34DO-B10H-T 10通径,压力31.5MPa7 液控单向阀80 YAF3-E610B 32通径,32MPa8 节流阀80 QFF3-E10B 10通径,16MPa9 节流阀80 QFF3-E10B 10通径,16MPa10 二位二通电磁阀30 22EF3B-E10B 6通径,压力20 MPa11 压力继电器- DP1-63B 8通径,10.5-35 MPa12 压力表开关- KFL8-30E 32Mpa,6测点13 油箱14 液控单向阀 YAF3-E610B 32通径,32MPa15 上液压缸16 下液压缸17 单向节流阀48 ALF3-E10B 10通径,16MPa18 单向单向阀48 ALF3-E10B 10通径,16MPa19 三位四通电磁换向阀 25 34DO-B10H-T20 减压阀 40 JF3-10B4.2.3 管道尺寸的确定油管系统中使用的油管种类很多,有钢管、铜管、尼龙管、塑料管、橡胶管等,必须按照安装位置、工作环境和工作压力来正确选用。本设计中油管采用钢管,因为本设计中所须的压力是高压,P=31.25MPa , 钢管能承受高压,价格低廉,耐油,抗腐蚀,刚性好,但装配是不能任意弯曲,常在装拆方便处用作压力管道一中、高压用无缝管,低压用焊接管。本设计在弯曲的地方可以用管接头来实现弯曲。尼龙管用在低压系统;塑料管一般用在回油管用。胶管用做联接两个相对运动部件之间的管道。胶管分高、低压两种。高压胶管是钢丝编织体为骨架或钢丝缠绕体为骨架的胶管,可用于压力较高的油路中。低压胶管是麻丝或棉丝编织体为骨架的胶管,多用于压力较低的油路中。由于胶管制造比较困难,成本很高,因此非必要时一般不用。1. 管接头的选用:管接头是油管与油管、油管与液压件之间的可拆式联接件,它必须具有装拆方便、连接牢固、密封可靠、外形尺寸小、通流能力大、压降小、工艺性好等各种条件。管接头的种类很多,液压系统中油管与管接头的常见联接方式有:焊接式管接头、卡套式管接头、扩口式管接头、扣压式管接头、固定铰接管接头。管路旋入端用的连接螺纹采用国际标准米制锥螺纹(ZM)和普通细牙螺纹(M)。锥螺纹依靠自身的锥体旋紧和采用聚四氟乙烯等进行密封,广泛用于中、低压液压系统;细牙螺纹密封性好,常用于高压系统,但要求采用组合垫圈或O形圈进行端面密封,有时也采用紫铜垫圈。液压系统中的泄漏问题大部分都出现在它管系中的接头上,为此对管材的选用,接头形式的确定(包括接头设计、垫圈、密封、箍套、防漏涂料的选用等),管系的设计(包括弯管设计、管道支承点和支承形式的选取等)以及管道的安装(包括正确的运输、储存、清洗、组装等)都要考虑清楚,以免影响整个液压系统的使用质量。国外对管子的材质、接头形式和连接方法上的研究工作从不间断,最近出现一种用特殊的镍钛合金制造的管接头,它能使低温下受力后发生的变形在升温时消除——即把管接头放入液氮中用芯棒扩大其内径,然后取出来迅速套装在管端上,便可使它在常温下得到牢固、紧密的结合。这种“热缩”式的连接已经在航空和其它一些加工行业中得到了应用,它能保证在40~55Mpa的工作压力下不出现泄漏。本设计根据需要,选择卡套式管接头。要求采用冷拔无缝钢管。2. 管道内径计算:(1)式中 Q——通过管道内的流量v——管内允许流速 ,见表:允许流速推荐值油液流经的管道 推荐流速 m/s液压泵吸油管液压系统压油管道 3~6,压力高,管道短粘度小取大值液压系统回油管道 1.5~2.6(1). 液压泵压油管道的内径:取v=4m/s根据《机械设计手册》成大先P20-641查得:取d=20mm,钢管的外径 D=28mm;管接头联接螺纹M27×2。(2). 液压泵回油管道的内径:取v=2.4m/s根据《机械设计手册》成大先P20-641查得:取d=25mm,钢管的外径 D=34mm;管接头联接螺纹M33×2。3. 管道壁厚 的计算式中: p——管道内最高工作压力 Pad——管道内径 m——管道材料的许用应力 Pa,——管道材料的抗拉强度 Pan——安全系数,对钢管来说, 时,取n=8; 时,取n=6; 时,取n=4。根据上述的参数可以得到:我们选钢管的材料为45#钢,由此可得材料的抗拉强度 =600MPa;(1). 液压泵压油管道的壁厚(2). 液压泵回油管道的壁厚所以所选管道适用。4. 液压系统的验算上面已经计算出该液压系统中进,回油管的内径分别为32mm,42mm。但是由于系统的具体管路布置和长度尚未确定,所以压力损失无法验算。4.2.4系统温升的验算在整个工作循环中,工进阶段所占的时间最长,且发热量最大。为了简化计算,主要考虑工进时的发热量。一般情况下,工进时做功的功率损失大引起发热量较大,所以只考虑工进时的发热量,然后取其值进行分析。当V=10mm/s时,即v=600mm/min即此时泵的效率为0.9,泵的出口压力为26MP,则有即此时的功率损失为:假定系统的散热状况一般,取 ,油箱的散热面积A为系统的温升为根据《机械设计手册》成大先P20-767:油箱中温度一般推荐30-50所以验算表明系统的温升在许可范围内。五 液压缸的结构设计5.1 液压缸主要尺寸的确定1) 液压缸壁厚和外经的计算液压缸的壁厚由液压缸的强度条件来计算。液压缸的壁厚一般指缸筒结构中最薄处的厚度。从材料力学可知,承受内压力的圆筒,其内应力分布规律应壁厚的不同而各异。一般计算时可分为薄壁圆筒和厚壁圆筒。液压缸的内径D与其壁厚 的比值 的圆筒称为薄壁圆筒。工程机械的液压缸,一般用无缝钢管材料,大多属于薄壁圆筒结构,其壁厚按薄壁圆筒公式计算设 计 计 算 过 程式中 ——液压缸壁厚(m);D——液压缸内径(m);——试验压力,一般取最大工作压力的(1.25~1.5)倍 ;——缸筒材料的许用应力。无缝钢管: 。= =22.9则 在中低压液压系统中,按上式计算所得液压缸的壁厚往往很小,使缸体的刚度往往很不够,如在切削过程中的变形、安装变形等引起液压缸工作过程卡死或漏油。因此一般不作计算,按经验选取,必要时按上式进行校核。液压缸壁厚算出后,即可求出缸体的外经 为2) 液压缸工作行程的确定液压缸工作行程长度,可根据执行机构实际工作的最大行程来确定,并参阅<<液压系统设计简明手册>>P12表2-6中的系列尺寸来选取标准值。液压缸工作行程选缸盖厚度的确定一般液压缸多为平底缸盖,其有效厚度t按强度要求可用下面两式进行近似计算。无孔时有孔时式中 t——缸盖有效厚度(m);——缸盖止口内径(m);——缸盖孔的直径(m)。液压缸:无孔时取 t=65mm有孔时取 t’=50mm3)最小导向长度的确定当活塞杆全部外伸时,从活塞支承面中点到缸盖滑动支承面中点的距离H称为最小导向长度(如下图2所示)。如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一定的最小导向长度。对一般的液压缸,最小导向长度H应满足以下要求:设 计 计 算 过 程式中 L——液压缸的最大行程;D——液压缸的内径。活塞的宽度B一般取B=(0.6~10)D;缸盖滑动支承面的长度 ,根据液压缸内径D而定;当D<80mm时,取 ;当D>80mm时,取 。为保证最小导向长度H,若过分增大 和B都是不适宜的,必要时可在缸盖与活塞之间增加一隔套K来增加H的值。隔套的长度C由需要的最小导向长度H决定,即滑台液压缸:最小导向长度:取 H=200mm活塞宽度:B=0.6D=192mm缸盖滑动支承面长度:隔套长度: 所以无隔套。液压缸缸体内部长度应等于活塞的行程与活塞的宽度之和。缸体外形长度还要考虑到两端端盖的厚度。一般液压缸缸体长度不应大于内径的20~30倍。液压缸:缸体内部长度当液压缸支承长度LB (10-15)d时,需考虑活塞杆弯度稳定性并进行计算。本设计不需进行稳定性验算。5.2 液压缸的结构设计液压缸主要尺寸确定以后,就进行各部分的结构设计。主要包括:缸体与缸盖的连接结构、活塞与活塞杆的连接结构、活塞杆导向部分结构、密封装置、排气装置及液压缸的安装连接结构等。由于工作条件不同,结构形式也各不相同。设计时根据具体情况进行选择。设 计 计 算 过 程1) 缸体与缸盖的连接形式缸体与缸盖的连接形式与工作压力、缸体材料以及工作条件有关。本次设计中采用外半环连接,如下图1所示:图1 缸体与缸盖外半环连接方式优点:(1) 结构较简单(2) 加工装配方便缺点:(1) 外型尺寸大(2) 缸筒开槽,削弱了强度,需增加缸筒壁厚2)活塞杆与活塞的连接结构参阅<<液压系统设计简明手册>>P15表2-8,采用组合式结构中的螺纹连接。如下图2所示:图2 活塞杆与活塞螺纹连接方式特点:结构简单,在振动的工作条件下容易松动,必须用锁紧装置。应用较多,如组合机床与工程机械上的液压缸。
选择格瑞德挖掘机厂家实习,如果您有能力,要针对要点,重点了解,去描写