首页 > 学术发表知识库 > 五年级上册数学小论文

五年级上册数学小论文

发布时间:

五年级上册数学小论文

啦咯啦咯啦咯

写的不错,是不错,很好 ,可是有的地方写错了 ,我就不说出来了, 希望我进步 。

在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个既生动又引人深思的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:在一个游泳池内,有一艘小船,上面有许多石头,现在把石头全部从船里扔到水中,请问,游泳池内的水位会上升、下降,还是不变? 乍一看题目,我便疑惑不解:这道题似乎和数学沾不上一点关系啊!这下该怎么做呢?我不气馁,努力思考,不一会儿便理出了头绪:当石头扔到水中后,船的重量减轻,便会上浮,水位也会下降,但石头在水中占了一部分空间,水位又要随之上升。因为这都是同一堆石头,所以上升与下降的幅度也应该一致,水位当然保持不变啦!可爸爸看了,却说是下降,我很不服气,决定与他打个赌 可是,用什么来证明我的猜想正确与否呢?这时,抽象的想象就没有真实的操作好了。于是,我便在爸爸的协助下作了一个实验:由于我能力有限,没法从外面搬来一个游泳池,也没法去造一艘小船,只好把题中的条件按比例缩小了。游泳池变成塑料盆,小船变成肥皂盒,石头则变成了五块橡皮。我先在塑料盆里倒进一些水,再把装着五块橡皮的肥皂盒放入水中,然后用直尺量出水位是20厘米。最关键的时刻到了,我把五块橡皮小心翼翼地从肥皂盒中取出,再全部投入水中,最后用直尺量出水位--天哪!竟然只有18厘米,是下降了!我错了! 虽然事实证明,水位是下降了,但我还是丈二和尚--摸不着头脑:这水位怎么会下降呢? 我苦思冥想了好长时间,草稿纸上全是一幅幅演示图,可我还是一筹莫展。我急得团团转,可越急脑子越乱,反而想不出了。就当我即将放弃的时候,我突然想起了数学家陈景润孜孜不倦,夜以继日算题目的故事,血液中仿佛充斥着一股勇往直前的力量,任何困难都挡不住我。果然,不出半小时,这道题我终于想通了:当石头在船上时,上升水的重量=石头的重量,而石头的密度比水大,因此同等重量的水和石头,水的体积大于石头的体积。当石头被投进水中后,水便下降了石头的重量,而石头在水中要占空间,因此,石头扔进水中后,水上升的体积=石头的体积。而同等体积的水和石头,水的重量小于石头的重量。综合以上几点,得到:石头扔下去后,水位下降的重量大于石头的重量,水位上升的重量小于石头的重量,也就是下降的水的重量大于上升的水的重量,于是下降的水的体积便大于上升的水的体积,水位当然下降了。就这样,一道难题便迎刃而解了。 其实,仔细观察,这道题与数学密不可分,其中的体积、重量、密度,都属于数学的范畴之内。你瞧,一个生活中的小事也能变成一道数学题,数学是无处不在的,让我们热爱数学,学好数学吧

今天上午,我闲着没事干,妈妈说:“既然你没事干,那我就考考你吧?”“好呀,没问题。”我爽快地答应了。 “第一题:有一只长尾鳄鱼,它的尾巴是头部长度的三倍,而身体只有尾巴的一半长。它的尾巴和身体加在一起是1.35米,问它有多长?”我开始计算:“可以想象把鳄鱼分成几等分,头部算一份。由于尾巴是头的三倍,尾巴就应该占三份。身体是尾巴长度的一半,因此身体应该占3/2份。这样一来,鳄鱼的总长是1+3/2+3=11/2 份,其中头部恰好占一部分,所以可以先把头长算出来: 头长:1.35÷(1+3/2+3)=1.35 ÷11/2=27/110(米) “照你这么说,鳄鱼的头长是27/110米喽?”“对....等等,不对!”“怎么又不对了?”妈妈笑着问,“1.35米只是鳄鱼的身体和尾巴的长度,不包括头的长度。求头长时,应该用3/2+3去除才对。”我“嘿嘿”笑了几声,说:“正确的算法是: 头长=1.35÷(3/2+3)=1.35÷9/2=0.3(米) 总长=1.35+0.3=1.65(米)” 妈妈笑了笑:“想不到你还有两下子,再考你一道题。”“行!”我再次答应了妈妈。 “有一只大象,它很爱喝酒,它有3只装酒的桶,大桶可以装6升,中桶可以装4升,小桶可以装3升。一天,大象找到一桶6升的酒,它的老婆要5升酒,儿子要1升酒,它用这3只桶怎么分?” 我想了想,说:“先把6升的酒倒满中桶,这时大桶中还有2升的酒。再把中桶的4升酒倒满小桶。由于小桶只能装3升,这时中桶里还剩下1升。最后把小桶的酒再倒回大桶,大桶里就是5升了。把大桶给老婆,把中桶给儿子就行了。” “挺聪明,不错,今天给你买好吃的。”“耶!老妈万岁....”

五年级数学上册小论文

写的不错,是不错,很好 ,可是有的地方写错了 ,我就不说出来了, 希望我进步 。

在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个既生动又引人深思的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:在一个游泳池内,有一艘小船,上面有许多石头,现在把石头全部从船里扔到水中,请问,游泳池内的水位会上升、下降,还是不变? 乍一看题目,我便疑惑不解:这道题似乎和数学沾不上一点关系啊!这下该怎么做呢?我不气馁,努力思考,不一会儿便理出了头绪:当石头扔到水中后,船的重量减轻,便会上浮,水位也会下降,但石头在水中占了一部分空间,水位又要随之上升。因为这都是同一堆石头,所以上升与下降的幅度也应该一致,水位当然保持不变啦!可爸爸看了,却说是下降,我很不服气,决定与他打个赌 可是,用什么来证明我的猜想正确与否呢?这时,抽象的想象就没有真实的操作好了。于是,我便在爸爸的协助下作了一个实验:由于我能力有限,没法从外面搬来一个游泳池,也没法去造一艘小船,只好把题中的条件按比例缩小了。游泳池变成塑料盆,小船变成肥皂盒,石头则变成了五块橡皮。我先在塑料盆里倒进一些水,再把装着五块橡皮的肥皂盒放入水中,然后用直尺量出水位是20厘米。最关键的时刻到了,我把五块橡皮小心翼翼地从肥皂盒中取出,再全部投入水中,最后用直尺量出水位--天哪!竟然只有18厘米,是下降了!我错了! 虽然事实证明,水位是下降了,但我还是丈二和尚--摸不着头脑:这水位怎么会下降呢? 我苦思冥想了好长时间,草稿纸上全是一幅幅演示图,可我还是一筹莫展。我急得团团转,可越急脑子越乱,反而想不出了。就当我即将放弃的时候,我突然想起了数学家陈景润孜孜不倦,夜以继日算题目的故事,血液中仿佛充斥着一股勇往直前的力量,任何困难都挡不住我。果然,不出半小时,这道题我终于想通了:当石头在船上时,上升水的重量=石头的重量,而石头的密度比水大,因此同等重量的水和石头,水的体积大于石头的体积。当石头被投进水中后,水便下降了石头的重量,而石头在水中要占空间,因此,石头扔进水中后,水上升的体积=石头的体积。而同等体积的水和石头,水的重量小于石头的重量。综合以上几点,得到:石头扔下去后,水位下降的重量大于石头的重量,水位上升的重量小于石头的重量,也就是下降的水的重量大于上升的水的重量,于是下降的水的体积便大于上升的水的体积,水位当然下降了。就这样,一道难题便迎刃而解了。 其实,仔细观察,这道题与数学密不可分,其中的体积、重量、密度,都属于数学的范畴之内。你瞧,一个生活中的小事也能变成一道数学题,数学是无处不在的,让我们热爱数学,学好数学吧

0是一个神秘的数字,它像宇宙中的奥秘一样,让人捉摸不透。0也是一个重要的数字,如果你一不小心,多添了一个0或少加了一个0的话,那后果真是不堪设想。这次的数学考试,让我真正领略了0的重要性。当考卷发下来的时候,99分!我立即寻找错误点。结果令我目瞪口呆。原来是4500÷90这道题。“怎么可能这么简单的题我也会出错?”我心里嘀咕道。想起当时在口算45000÷90这道题时,我轻而易举地写下50,还十分自信,可到头来一计算原来得500,差了一个0。这是多少不应该的呀!不该错的也错了,想必0是多么重要呀!如果我以后当了公司的财务总经理,别人来提钱,本来要提10000元,我却多加了一个0--100000,在帐单上仍然记了10000元。那这90000元我向谁来要呀!这一切后果都得我承担啊。通过这件事,我明白了在工作上、学习上都要一丝不苟,要不然后果非常严重。

啦咯啦咯啦咯

小学生数学报五年级上册

星期一 21种26种星期二16种不同的框法8种不同的和星期三12种星期四10种不同的剪法星期五20种不同的和我只知道答案,其他的帮不了你.

五年级学生数学手抄报县第四实验小学五年级举办数学手抄报比赛小学生手抄报数学报合集涟五年级学生数学手抄报五年级有关数学手抄报五年级数学手抄报关于数学手抄报的内容小学生数学报小学生数学手抄报展示五年级学生数学手抄报五年级数学报图片大全手抄报 五年级数学手抄报部数学组在3月的最后一周通知了三到五年级全体学生制作数学手抄报五年级数学手抄报二智慧数学报 伴我成长乐 延安枣园小学三年级数学手抄报比赛五年级数学手抄报图片精选版面设计图趣味数学手抄报数学手抄报小学六年级数学手抄报-数学故事小学数学手抄报比赛锦集小学生数学手抄报图片数学报数学报积旳变化规律手抄报 家乡变化手抄报小学生一等奖五年级内容与图片简单漂亮小朋友们数学报手抄报怎么画让快乐与数学同行让智慧伴活动共生一一盐官镇中川小学数学手抄报展

4.61-4.26=0.35 先算出这个小数是多少4.26-0.35=3.91 这样就算出来了这道题很简单,不用写得太复杂,这样会扣分的(我是小学学生,五年级)

数学报五年级上册

数学小报视频教程如下:数学手抄报一等奖模板,数学小报这样画,简单又好看!

《数学小报》是指与数学相关的趣味性小报。主要内容有:数学知识、数学家故事、数学趣题、数学家名言等。可以使用手抄报、电脑打印、剪贴报、出奥数题等形式。

数学小报要求较高,难度较大,学生最好与家长一起完成。但不能形式单一,要利用所学知识,不要一味、刻板地去模仿老套的形式。

常用素材:数学小故事

1.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在说:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。

2.阿基米德出生于公元前287年意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。

3.塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。

画数学小报的步骤如下:

1、画数学手抄报要把数学元素画进去,比如数字、三角板、标尺等,这些都可以画进去。学科类的手抄报,边框可以用黑板的样式或者是书本的样式,这样的布局都很棒。

2、如果是想要画一些比较简单的数学小报,也可以以边框为主,画一个几何边框也很棒的。

《趣味数学小故事》手抄报内容由苗苗手抄报 为大家提供1、趣味数学小故事内容一一八戒吃了几个山桃?八戒去花果山找悟空,大圣不在家。

小猴子们热情地招待八戒,采了山中最好吃的山桃整整100个,八戒高兴地说:大家一起吃!可怎样吃呢,数了数共30只猴子,八戒找个树枝在地上左画右画,

列起了算式,100÷30=3.....1八八戒指着上面的3,大方的说,你们一个人吃3个山桃吧,瞧,我就吃那剩下的1个吧!小猴子们很感激八戒,纷纷道谢,然后每人拿了各自的一份。

悟空回来后,小猴子们对悟空讲今天八戒如何大方,如何自己只吃一个山桃,悟空看了八戒的列式,大叫,好个呆子,多吃了山桃竟然还嘴硬,我去找他!哈哈,你知道八戒吃了几个山桃?2、趣味数学小故事内容--阿拉伯数字的由来小明是个喜欢提问的孩子。

数学小论文的题目五年级上册

网上有,教科书上有

在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个既生动又引人深思的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:在一个游泳池内,有一艘小船,上面有许多石头,现在把石头全部从船里扔到水中,请问,游泳池内的水位会上升、下降,还是不变? 乍一看题目,我便疑惑不解:这道题似乎和数学沾不上一点关系啊!这下该怎么做呢?我不气馁,努力思考,不一会儿便理出了头绪:当石头扔到水中后,船的重量减轻,便会上浮,水位也会下降,但石头在水中占了一部分空间,水位又要随之上升。因为这都是同一堆石头,所以上升与下降的幅度也应该一致,水位当然保持不变啦!可爸爸看了,却说是下降,我很不服气,决定与他打个赌 可是,用什么来证明我的猜想正确与否呢?这时,抽象的想象就没有真实的操作好了。于是,我便在爸爸的协助下作了一个实验:由于我能力有限,没法从外面搬来一个游泳池,也没法去造一艘小船,只好把题中的条件按比例缩小了。游泳池变成塑料盆,小船变成肥皂盒,石头则变成了五块橡皮。我先在塑料盆里倒进一些水,再把装着五块橡皮的肥皂盒放入水中,然后用直尺量出水位是20厘米。最关键的时刻到了,我把五块橡皮小心翼翼地从肥皂盒中取出,再全部投入水中,最后用直尺量出水位--天哪!竟然只有18厘米,是下降了!我错了! 虽然事实证明,水位是下降了,但我还是丈二和尚--摸不着头脑:这水位怎么会下降呢? 我苦思冥想了好长时间,草稿纸上全是一幅幅演示图,可我还是一筹莫展。我急得团团转,可越急脑子越乱,反而想不出了。就当我即将放弃的时候,我突然想起了数学家陈景润孜孜不倦,夜以继日算题目的故事,血液中仿佛充斥着一股勇往直前的力量,任何困难都挡不住我。果然,不出半小时,这道题我终于想通了:当石头在船上时,上升水的重量=石头的重量,而石头的密度比水大,因此同等重量的水和石头,水的体积大于石头的体积。当石头被投进水中后,水便下降了石头的重量,而石头在水中要占空间,因此,石头扔进水中后,水上升的体积=石头的体积。而同等体积的水和石头,水的重量小于石头的重量。综合以上几点,得到:石头扔下去后,水位下降的重量大于石头的重量,水位上升的重量小于石头的重量,也就是下降的水的重量大于上升的水的重量,于是下降的水的体积便大于上升的水的体积,水位当然下降了。就这样,一道难题便迎刃而解了。 其实,仔细观察,这道题与数学密不可分,其中的体积、重量、密度,都属于数学的范畴之内。你瞧,一个生活中的小事也能变成一道数学题,数学是无处不在的,让我们热爱数学,学好数学吧

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。所以正确答案应该是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米)和452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 大家一定从小就开始奇怪了,0到底是怎么来的呢?关于0的起源,有以下几种观点。①、古巴比伦的0的符号是用空位来表示的,例如要表示一百零一,古巴比伦写作1。1②、在古印度数学中,发现0的最早记载是公元876年,欧洲许多数学家都同意这一观点。公元6世纪,印度人就开始用“?”,后来变成了一个圆圈。到了公元九世纪就固定成了今天的“0”。③、0的故乡在中国。我国最早的诗歌总集《诗经》中就有0的记载,只不过当时0的意思是“暴风雨末了的小雨滴”。在我国远古时代的结绳记数法中,0是在对“有”的否定中出现的,意思是“没有”。总之,有关0的起源还没有一个定论。 但是无论如何,0自从一出现就具有非常旺盛的生命力,现在,它广泛应用于社会的各个领域。 在课堂上,常听老师说,0就是没有的意思,你有0元钱,就代表没有钱;你有0支笔,就代表你没有笔。在这样的情况下,温度表上的0度就代表着没有温度吗?答案肯定是否定的。纯净的冰水混合物的温度就是0度。 想一想我们四年级学的素数与合数吧!老师是这样解释的“自然数可以分成3类:1、素数与合数,一个自然数只有一和它本身两个因数的数是素数,因数大于3个就是合数,1单独为一种。”那0也是自然数,它是最小的自然数,0到底是质数还是合数呢?这个谁也说不清楚。 我还有一个关于0的问题,自然数也可以分成奇数与偶数,能被2整除的数就是合数,反之就是奇数。0是奇数还是偶数呢?看上去像偶数,但又说不准,到底是什么数谁也不清楚。 0还有许多奇妙有趣的事就在我们身边呢,大家一起来发现吧! 麻烦采纳,谢谢!

有趣的职业 小赵、小丁、小张分别是教师、医生和律师,只知道:1小赵比教师年纪大;2小张和教师不同岁;3小赵和律师是朋友,你能推断谁是教师,谁是律师,谁是医生吗? 根据1小赵比教师年纪大和3小赵和律师是朋友,可以推断小赵既不是教师,也不是律师,所以小赵是医生,再根据2小张和教师不同岁和小赵是医生可以看出小张是律师,所以剩下的小丁是个教师。 这道题目很简单,我运用了排除法,比如:根据条件1和3就可以看出,小赵既不是教师,也不是律师。以次类推就可以得出答案。在我们学习数学的过程中,我们只要掌握方法,就可以解决一切难题,想不到从数学中也能得到乐趣。

千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

模糊不过vncjhvb

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 望采纳。

《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不著头脑,我心里琢磨著,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按著这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。

第一页 居中 先写题目 第二行写班级、姓名 换页 找关于论文的主题的例子 写完一个例子写两行左右的说明,例如这题的做法是怎么样的 写三到五个例题即可 一般用WROD两页即可,建议多写,但不要写的题目太难,不符合你的年龄段

  • 索引序列
  • 五年级上册数学小论文
  • 五年级数学上册小论文
  • 小学生数学报五年级上册
  • 数学报五年级上册
  • 数学小论文的题目五年级上册
  • 返回顶部