我倒是见过matlab基于pca法的人脸面部表情识别,个人感觉很有道理,不过我没这个能力,写不出来,lz可以考虑pca法
……这种事情还是你自己搞定吧,别人不可能了解你课题的详情的,所以从逻辑上讲别人没办法从你的课题出发制作开题报告,而从理性的角度讲50分报酬远远不够,从智商的角度讲正常人不会答应你这样离谱的要求,从情商的角度讲一般人会选择远离楼主这样的懒人。
·ADSL接入网技术研究 (字数:24985,页数:36) ·直序扩频技术的仿真与应用 (字数:14521,页数:37) ·音频数字水印的实现 (字数:15331,页数:28) ·DVB系统设计 (字数:14318,页数:28) ·PAM调制解调系统设计 二 (字数:9181,页数:31 ) ·上位PC机与下位单片机之间进行串口通信 (字数:12645,页数:30) ·图像梯形退化校正的研究与实现 (字数:12616,页数:34) ·简易数字电压表设计实现 (字数:7436,页数:24 ) ·基于计算机视觉库OpenCV的文本定位算法改进 (字数:9674,页数:32 ) ·基于编码的OFDM系统的C语言设计与实 (字数:11190,页数:34) ·基于ofdm系统的接受分集技术 (字数:11057,页数:28) ·基于FPGA的交织编码器设计 (字数:13239,页数:39) ·红外异步数字通信的数据采集装置设计与实现 (字数:19577,页数:68) ·Visual C++环境下的基于肤色图像的人脸检测算法 (字数:11186,页数:28) ·PAM调制解调系统设计 (字数:13922,页数:43) ·P2P网络通信设计 (字数:8075,页数:39 ) ·NAND Flash设备 (字数:10928,页数:49) ·MPEG4播放技术 (字数:13207,页数:38) ·Butterworth滤波器设计 (字数:8348,页数:28 ) ·基于单片机的智能教师点名器 (字数:10627,页数:29) ·基于CPLD的CDMA扩频调制解调器建模设计与实现 (字数:14327,页数:63) ·带CC1100无线收发模块基本控制系统 (字数:15224,页数:50) ·基于CPLD的CMI码传输系统设计 (字数:11429,页数:41) ·一个简单光纤传输系统的设计 (字数:12785,页数:37) ·基于MCS51微控制器的FSK调制解调器设计——电路设计 (字数:13439,页数:39) ·中小型网络的设计与配置 (字数:16254,页数:42) ·基于AT89S52的FSK调制解调器设计 (字数:14064,页数:45) ·远端光纤收发器断电断纤的识别 (字数:15759,页数:89) ·脉冲成形BPSK调制电路的设计与实现 (字数:11472,页数:36) ·基于XR2206的函数信号发生器设计与实现 (字数:9179,页数:31 ) ·基于MCS51微控制器的FSK调制解调器的设计——程序设计 (字数:12191,页数:46) ·基于CPLD的QPSK调制器实现——电路设计 (字数:11621,页数:33) ·QPSK调制器的CPLD实现——程序设计 (字数:5973,页数:30 ) ·基于卷积码的BPSK基带系统C语言实现 (字数:9361,页数:30 ) ·白噪声发生器的设计 (字数:11398,页数:34) ·基于单片机的机床控制系统 (字数:12085,页数:35) ·低压电力线载波通信模块设计 (字数:15460,页数:68) ·基于SH框架的电子技术交流平台 (字数:10333,页数:38) ·带隙基准电压源的设计 (字数:10396,页数:31) ·电子计时器系统设计与实现 (字数:9780,页数:31 ) ·无线局域网的组建与测试 (字数:17392,页数:48) ·抑制载波双边带调幅电路的设计 (字数:9787,页数:24 ) ·宽带放大器的设计与实现 (字数:12200,页数:36) ·基于单片机的遥控芯片解码的设计与实现 (字数:9802,页数:39 ) ·多种正交幅度调制QAM误码率仿真及星座图的优化 (字数:10967,页数:43)
Viola-jones人脸检测算法是一种基于滑动窗口的目标检测算法,但它却克服了滑动窗口检测带来的低效问题,可以用于实时人脸检测,主要归功于以下三点:
我参考论文[1]实现了Viola Jones中提到的attention cascade检测框架,此处是 github传送门 。
下面进一步详细介绍整个检测原理。
基于滑窗的目标检测基本原理很简单,首先构建一个classifier(分类器),以人脸检测为例,分类器的工作是判断给定大小的图像的是否为人脸,用该分类器从左至右从上到下扫描整幅图像,扫描获取的部分图像称为子窗(文章中子窗大小为24x24像素),当分类器判断子窗是人脸时,即完成了人脸检测。
这样处理有个问题,如果图像中包含的人脸变大了,此时采用固定大小的子窗就无法进行检测。通常有两种解决方法,1. 采用image-pyramid(图像金字塔),也就是通过resize获得多种不同大小图像并堆叠在一起,用固定大小分类器同时对所有图像进行扫描;2. 采用不同大小的分类器进行扫描。文章中用到的是第二种方法,尽管如此,虽然避免了调整图像大小带来的计算开销,但不同大小的分类器意味着有更多子窗需要进行处理。
如何构建一个足够快的分类器来对每个子窗进行快速判断。
分类器的构建有两种方式,一种是pixel-based(基于像素),另一种是feature-based(基于特征)。当把神经网络作为图像分类器时,输入是图像的像素值,即基于像素的分类器。用图像像素作为输入不包含任何和待分类目标有关的特定信息,往往训练这种分类器需要大量数据,并且分类过程较慢。基于特征的分类器就是先针对图像进行特征提取(HOG特征,SIFT特征等),再利用获取的特征进行分类。这种分类器不需要大量训练数据,且计算量一般会在特征计算部分,相对较小。
文章采用的是基于特征的分类器,选取了一种较为简单的特征即haar-like特征。利用矩形个数对可以将haar-like特征分为三类,分别由两个,三个,和四个 大小相同 的矩形组成。全部列举出来可以分为以下(a)(b)(c)(d)(e)五类(注意是五类不是五个,具体有多少个haar-like特征是由子窗大小决定的)。如下图所示(文章[1]中的图)。
当子窗大小给定后,我们可以用五个参数唯一确定 一个 haar-like特征,即特征种类(a/b/c/d/e),左上角x轴坐标,左上角y轴坐标,矩形的长,矩形的宽。对应的特征值等于位于白色矩形框中像素值总和减去位于黑色矩形框中的像素值总和。文章中用到的子窗大小为24x24像素,可以计算出来总共有162336个特征(把在子窗中所有可能位置和可能大小的特征全部列举出来)。利用haar-like特征进行分类只需两步:
haar-like特征有两个优点,第一是它是scale-invariant(不随图片大小而改变)的,第二是可以通过积分图像快速计算。简单的说下第一点的含义,例如我们用24x24像素的训练样本训练获取一组haar-like特征和对应的门限值,当对图像进行扫描时,子窗大小调整为SxS像素,此时只需将特征中的矩形大小按同样比例进行缩放(门限值同样需要缩放),计算所得的特征值依然是有效的。 积分图像是受卷积的微分性质启发而定义一种数据结构。积分图像定义: 其中 为积分图像, 为原图像。积分图像中 位置处的像素值等于原图中位于 的左侧和上方的所有像素值之和。有了积分图像我们就可以快速计算haar-like特征,以特征(a)为例,如下图所示。
S1到S6是积分图像在这六个顶点上的值。该特征值等于位于A中的像素总和减去位于B中的像素总和,而A中像素总和等于S5+S1-S2-S4,B中像素总和等于S6+S2-S3-S5,并且无论矩形多大,我们总能在固定时间内计算出特征值(6次索引操作和少量的加法乘法计算)。积分图像只需计算一次后续可以一直使用,事实上在算法实现时,我们只需保存样本的积分图像,原图像反而不用保存。
现在找到了一类特征用于构建分类器,和快速计算该类特征的方法。分类器是由一组特征构成的,而不是一个,如何找到一组有效的特征。
文章列举了前人的一些特征选取方法(此处就不列举了),它们虽然取得了一定的效果,但最终选出来的特征数量还是太多。文章将adaBoost算法用于特征选取(创新点),即每次训练的弱分类器的过程看做特征选取的过程,一次从162336个特征中选取一个特征(同时还包括了对应的门限值,极性,加权误差)。
adaboost算法就不详细介绍了,它的基本思想是训练一系列“弱”分类器,组成一个committee(即每个弱分类器都有投票权,但是权重不同,加权误差越小的弱分类器权重越大)。adaboost采用迭代训练方式,给定一个t阶committee,如何寻找第t+1个弱分类器和对应的权重,以最小化在一定分布下的训练样本的加权指数损失。这个优化过程可以转换为对训练样本的分布进行调整(即增大上一轮错误判断的样本的权重,减小正确判断的样本权重),在调整后的样本分布下寻找最小化加权0-1损失的弱分类器并计算对应的加权0-1损失。
可以利用adaboost找到一组特征构成分类器,使得该分类器有极高的准确率和召回率(这种分类器势必会有较大的计算量),这样会导致图像中的每一个子窗都享有同等的计算量,扫描一整幅图会有几十万甚至上百万子窗,总体计算量依然很大。实际上一幅图像中只有极少可能包含人脸的位置是我们感兴趣的,其他不包含人脸的子窗我们希望能够快速筛除,将更精细的计算用于包含人脸的子窗。
文章引入了attention-cascade的机制(注意力级联),即训练多个分类器进行级联,替代单一的分类器。结构如下图所示(文章[3]中的图)。
上图所示的分类器有三级,上一级的输出是下一级的输入,只有预测为正的样本才能传递给下一级,预测为负的样本直接舍弃。大部分非人脸子窗往往在前几级分类器就被舍弃,这样使得扫描每个子窗所需的平均计算量大大减小。
分类器是一级一级训练之后级联起来的,训练分类器时,整个级联分类器的假负率(fpr_overall)有一个训练目标(文章[1]中设置为10e-7),同时每一级有一对训练目标,即假正率和假负率。每级分类器训练的思想是在假负率极低的情况下(文章[1]中设置为0.005)尽量得到一个较低的假正率(文章中[1]中设置为0.5),即我们保证在正样本尽可能多的通过该级分类器的情况下尽量筛除更多的负样本。文章[3]通过一个松弛量来调节假正率和假负率。
下一级用到的训练数据是由所有的正样本和上一级输出的假正样本组成的,这样训练的好处是可以让处于级联后半部分的分类器“看到”更多负样本数据,缺点是训练后期假正样本很难获取,训练时间会比较长。
尽管我们获取了一个级联分类器,但依然不能保证对同一幅图中的一张人脸只会检测到一次(子窗相对人脸有所便宜或者缩放子窗大小都可能导致重复检测),如何消除重复检测,获得更好的检测效果。
文章[3]中说的较为简略,主要是针对检测框构建并查集,并对并查集中的候选框求平均得出最终的检测框。
文章[1]中是采用连通分量算法,计算每种大小检测框的置信度,根据置信度选取最终结果,但前提是检测器在图像中扫描的步进必须是1个像素,处理时间可能会比较长。
只能用于正脸检测,如果人脸朝屏幕内外或者在屏幕平面上旋转均有可能失效 在背景较亮,人脸较暗的情况下可能失效。 在有遮挡的情况下大概率失效。
长的好看和长的丑
点人脸识别的技术其实就是通过特殊的一些电脑的扫描,然后去准确的找到你进行人脸识别的数据标注,其实就是上面有一些相关的方案。
颜值评分是一款通过上传照片到Face++人脸识别服务得到人脸属性后,调用黄金比计算颜值的小应用。
使用指南:
1、使用手机微信APP扫描页面上方二维码体验。
2、在手机微信APP中搜索“颜值评分”即可进入。
功能列表
人脸检测:检测出人脸及位置
生成人脸标识:生成一个人脸标识, 相同人脸每次检测都会生成不同的人脸标识
人脸关键点检测:检测出 83 点或 106 点人脸关键点
性别检测:分析人脸性别
年龄检测:分析人脸年龄
笑容检测:分析人脸笑容程度
情绪识别:分析包括愤怒、厌恶、恐惧、高兴、平静、伤心、惊讶在内的 7 种情绪
颜值评分:判断人脸颜值
佩戴眼镜识别:分析人脸是否佩戴眼镜、墨镜
眼部遮挡识别:分析左右眼被遮挡或被眼镜遮挡情况
嘴部遮挡识别:分析嘴部被医用口罩或呼吸面罩或其他物体遮挡情况
头部姿势检测:分析人脸姿势,包括抬头、旋转(平面旋转)、摇头
人脸模糊判断:分析人脸模糊程度
人脸质量判断:判断人脸图片质量,若分数过低,则不适合用于人脸比对
视线识别:分析左右眼位置及视线状态
肤质识别:分析面部健康、色斑、青春痘、黑眼圈程度
人脸识别是一种软件层面的算法,用于通过处理视频帧或数字图像来验证或识别一个人的身份,其中该人的脸是可见的。其实机器本来并不擅长识别图像,比如这张图片在机器眼里只是一串0和1组成的数据,机器并不能理解这个图像有什么含义。所以想让机器学会认识图像,就需要我们给它编写程序算法。当我们描述一个人的长相的时候,大多会用到类似这样的词汇,比如瓜子脸、柳叶眼、蒜头鼻、樱桃嘴。所谓长相很大程度上取决于人脑袋和五官的形状。最早的人脸识别就是采用这样的方法。首先机器会在图像中识别出脸所在的位置,然后描绘出这张脸上的五官的轮廓,获得人脸上五官的形状和位置信息。比如两个眼睛之间的距离,鼻尖嘴角连线在水平方向上的角度等等。
如今,越来越多的人写论文了,为防止抄袭、代写、抄袭、买卖论文等学术不端现象,所有要发表的论文和学生毕业论文都需要进行查重检测,并得到论文检测报告,以避免抄袭、代写、抄袭、买卖论文等学术不端现象。论文检测报告怎么看? 一、如何下载论文检测报告? 论文检测报告由论文检测系统提供,论文作者只需上传到选定的检测系统,该系统可以自动地将论文中的内容与数据库中的文献进行检测,计算出重复率,最终呈现为论文的检测报告。这一过程一般需要三十分钟左右,检测完毕,直接点击查看报告即可查看报告,按下下载报告,检测报告就会以PDF格式存入本地。目前市场上有各种各样的论文检测系统,建议大家在选择检测系统时必须综合考虑安全性和准确性,Paperfree论文查重系统是一个很好的选择。 二、论文检测报告如何看? 各种论文检测系统的论文检测报告会有不同,但差别不大,以Paperfree论文检测系统为例。第一页为论文检测结果的基本信息,包括对比结果、报告编号、论文主题、论文作者、语句相似性分布图和本地库相似资源清单等,报表中用红色标记出的内容属于严重相似内容,相似性在70%以上建议完全修改,用橙色表示的内容是轻微相似内容,相似度高于40%低于70%,经适当修改,不得以任何颜色标记的文本为合格部分。
主要就是看以下几点:1、总文字复制比,也就是检测出来的重复率。2、全文标明引文,重复都已经被标红。3、全文对照报告单,相似内容来源都准确标出。红色文字表示文字复制部分;黄色文字表示引用部分,根据指示进行修改就可以了。
在写论文的过程中,每个人都会检测论文的重复,论文检测结束后,每个人都会出示一份查重报告。这份报告将区分大量的测试数据。论文检测结果中数据分别代表什么意思?请和paperfree 小编一起看看。 在论文检测报告中,我们可以看到论文相似度、引用率和重复率以及自写率等。许多学生对这些百分比不是很清楚。这些部分的具体含义是什么?让我们来看看。 1.相似度百分比:其实是论文的总重复率。检测系统会根据我们提交的论文跟数据库中的论文进行对比,得到相似比。 2.引用率百分比:引用率代表你的论文引用别人的观点,引用部分占全文的百分比,这就是你引用的比例。 3.重复率百分比:这意味着你在论文检测系统中去除引用率后的重复率,也就是抄袭率,也就是你的论文和数据库比较后的重复率。对于这部分,如果重复率很高,需要修改。 4.原创率的百分比:这个数据表是你论文中完全没有重复的部分,字面意思是你自己写的部分,这个部分没有必要修改。这个自写率的数据越高,这篇论文的重复率就越低。
论文查重报告是指通过论文查重系统检测出的论文,论文查重报告主要包括了论文查重率、论文对比、对比来源、作者姓名等基本信息。通常,相似度在80%~100%会用红色字体显示出来,相似度50%~80%的用黄色字体显示,而绿色字体表示没有找到相似的语句,一般红色部分建议修改,黄色部分酌情修改。
其次,毕业论文查重报告是在提交了论文,并且检测完成之后论文查重报告才会有。在paperfree、papertime提交检测论文,检测完成就会生成报告,点击导航栏“查看报告”,然后找到刚刚查重的论文后面的查看报告就可以了。
在查重报告的开头,可以看到作者、提交检测时间、论文标题等信息,下面一点可以看见论文的总体相似度、详细报告、综合评估、查看原文、使用帮助、打印pdf等,在往下是正文部分,用对应的颜色标注了,可以一目了然的看到,哪些部分相似度极高,哪些地方相似度适中,哪些地方没有找到相似语句,同时paperfree、papertime还提供了“在线改重”功能,实现了一边修改论文,一边论文查重,改哪里检测那里,可以提高论文降重的效率,节省修改论文时间。
这个查重率要看学校的标准,一般本科来说,30%是很高了。
高的话,你需要尽量原创,如果还是很高,你需要查重,根据查重报告中的标红报告来修改自己的论文,这样效果会明显一些。
查重软件
1、维普查重:维普查重可个人查重,在该官网内付费即可查重论文,检测完成下载查重报告即可查看到信息的论文重复率结果。维普网论文查重报告通常分为5大部分报告内容,分别是相似度对比报告、片段对照报告、格式分析报告、原文对照报告、PDF报告等内容。
2、万方论文查重网站:而万方论文查重网站查重的价格,其检测收费模式与知网论文查重系统的收费模式有很大不同,知网是按论文篇数与次数定价收费的,不同查重版本检测一篇论文一次所收取的费用各有不同。
而万方论文查重网站对于查重论文的收费却不是按篇收费,而是按查重论文的全文字数来收费的。
通常本科论文查重的费用是按照上传查重的论文的字数以每1万字收取20元来收费的,且不满足1万字的论文按1万字来计算,而对于万方的硕、博论文的检测查重费用为每1万字25元。
可见万方论文查重网站查重价格是十分物美价廉了,无论是价格还是查重系统本身的查重准确度都是较为适合论文初稿查重的。
3、PaperPP论文查重系统:属于PaperPP品牌产品,致力于为毕业生提供完善的学术不端论文检测服务,通过对比库及智能AI技术为用户提供毕业论文查重。
PaperPP论文查重系统定期更新比对数据库,保证学术期刊,学位论文,硕博等论文查重结果的精准,坚决保护用户隐私。 聚合文献检索、知网查重等众多论文检测功能。
如今,越来越多的人写论文了,为防止抄袭、代写、抄袭、买卖论文等学术不端现象,所有要发表的论文和学生毕业论文都需要进行查重检测,并得到论文检测报告,以避免抄袭、代写、抄袭、买卖论文等学术不端现象。论文检测报告怎么看? 一、如何下载论文检测报告? 论文检测报告由论文检测系统提供,论文作者只需上传到选定的检测系统,该系统可以自动地将论文中的内容与数据库中的文献进行检测,计算出重复率,最终呈现为论文的检测报告。这一过程一般需要三十分钟左右,检测完毕,直接点击查看报告即可查看报告,按下下载报告,检测报告就会以PDF格式存入本地。目前市场上有各种各样的论文检测系统,建议大家在选择检测系统时必须综合考虑安全性和准确性,Paperfree论文查重系统是一个很好的选择。 二、论文检测报告如何看? 各种论文检测系统的论文检测报告会有不同,但差别不大,以Paperfree论文检测系统为例。第一页为论文检测结果的基本信息,包括对比结果、报告编号、论文主题、论文作者、语句相似性分布图和本地库相似资源清单等,报表中用红色标记出的内容属于严重相似内容,相似性在70%以上建议完全修改,用橙色表示的内容是轻微相似内容,相似度高于40%低于70%,经适当修改,不得以任何颜色标记的文本为合格部分。
对许多人来说,对于学生论文的查重还是一个比较陌生的,所以说我们不知道自己如何正确看待论文的检测报告,什么是论文的检测报告,那么下面就让paperfree 小编来谈谈论文检测报告怎么看? 一、论文检测报告是什么? 论文质量检测报告实际上是我们所说的论文检测结果报告,该报告是指论文检验结束后的检验结果报告,该报告显示了很多论文数据。一般而言,自己论文中有什么不合格之处都会在本报告中显示出来。并且自己论文中的哪些内容是抄袭信用的,或者是自己写的,都会在论文检测结果报告中显示出来。这样,即使你的论文查重失败,你也可以通过论文查重结果报告的反馈进行修改,这样你的论文查重率就可以很好的降低。 二、如何看论文检测报告? 众所周知,在进行论文查重时,只需将自己的论文上传到论文查重系统和逆行查重即可,但查重时需要一定的时间,在自己耐心等待后,才能打印出自己的论文检测结果报告即可。本人也可以不用马上打印出来,可以下载本文查重检测结果报告,然后本人也可以通过本文件查看,或者可以通过本文件打印出来即可。此外,当你向学校申请论文答辩时,你还需要打印你的论文检测结果报告并提交给论文审查组。
北的中心城市。那(你们)的男篮很厉害啊,我看你就有点像郭艾伦。”真会说话,大侄子郭艾伦可是辽篮的金牌。马二自感受用,肚子里的火便熄了大半。“在下便是这个店的老板,多有得罪,还望客官海涵,海涵!”老板说着,把服务员又唤了过来:“快煮二斤刚从青岛空运来的大虾,再开一瓶七十年的陈酿,吾要和这位客官畅饮几杯。”酒拿上来了,包装盒上还真有七十年的字样,且用醒目的黑体字标着:“非转基因高粱米酿造”。马二不由联想起所谓元青花瓷器的底部印有“微波炉专用”字样的段子,心中暗笑。虾端上来了。难道这就是传说中的青岛大虾?就是吓得黄晓明和Baby 不敢在当地举办婚礼的青岛大虾?观其形态,就是普通的基围虾嘛!马二吃了一只,觉得味道还不如大连的嘎巴虾。两人边喝边聊,开始聊的不过是美酒大虾的话题,后来火锅店老板就有意无意地探问了马二的婚姻情况。酒过三巡,两人都有点醉意。马二也不自觉进入了穿越的角色,见火锅店老板年纪比自己略小,便以兄长自居,问道:“愚兄有一事不明,不知贤弟为啥待我这般客气?”老板叹了一口气,说道:“兄台有所不知,这和愚弟的家事有关。”“啥?家事?此话怎讲?”“说来话长,吾有一个妹子,已过婚嫁年龄,可一直未有心仪之人。眼瞅着就要滑入剩女之列,家父家母焦急万分,我也为此寝食不安。”“原来如此。”马二想了想,试探地问道,“看贤弟是位帅锅,想来,令妹也是位美女吧!”