滥用违禁饲料添加剂和抗生素造成的危害越来越严重 抗菌药物滥用的危害不仅导致药品不良事件和药源性疾病的发生,而且会导致对抗菌药物的耐药性,这样的事有逐步增加的趋势,严重威胁着人类的生命。如环丙沙星刚上市时敏感性很高,但短短几年时间耐药率已从零上升为60%-70%甚至更高,同时,也造成严重经济负担。 40年代,青霉素作为最早抗菌药物,成功地解决了临床上金黄色葡萄球菌感染的难题,随后问世的大环内酯类,氨基糖苷类抗生素又使肺炎、肺结核的死亡率降低了80%。那时,曾有人断言,人类战胜细菌的时代已经到来。当时,全球每年死于感染性疾病的人数约为700万。但是,四十年后这一数字猛增至2000万。 1、抗生素滥用的最严重后果之一就是导致产生复杂多变的耐药菌。更为严重的是耐药菌可以从一个区域转移到另一个地区或多个地区,从一个国家转移到一个或多个国家。甚至从人传给动物,动物传给人。 2、由于抗生素的长期滥用和误用,不但激化了病毒的进化,而且使细菌的耐药性直线上升,使动物的难治性感染越来越多,导致病菌感染的机会也越来越多,同时治疗感染性疾病的费用越来越高,使养殖业生产成本不断攀升。 在我国中部、东部抗生素应用频繁的地方,志贺氏菌几乎100%具有抗药性,对四环素的抗药性尤为明显。大肠杆菌、葡萄球菌、沙门氏菌等过去并不严重或较少发生的细菌病,现在已上升为畜禽的主要传染病。这与长期滥用抗生素有着直接关系。 长期或大量乱用抗生素,会造成机体内菌群失调,微生态平衡遭到破坏,使敏感的细菌生长繁殖受到抑制,而不敏感的细菌大量繁殖,从而引起畜禽内源性感染,同时,抗生素还会消灭体内第三菌,在体内一些微生物附着点上造成大量空位,为外界耐药细菌乘虚而入提供机会,从而造成外源感染。由另外一种或多种内源或外源病菌再次感染机体造成的感染称为二次感染。 3 长期使用抗生素造成畜禽机体免疫力下降 抗生素在轻松控制胃肠道内的微生物数量的同时,也对胃肠道内的有益微生物造成了极大的破坏,大大降低了动物机体的免疫能力。大量抗生素在被摄入机体后,会随血液循环分布到淋巴结、肾、肝、脾、胸腺、肺和骨骼等组织器官,动物肌体的免疫力就被逐渐击垮,人和动物的慢性病例增多,一些可以形成终生坚强免疫的疾病也频频复发。动物免疫系统的生长发育受到抑制,机体的免疫能力被逐渐削弱,抗病能力下降。畜禽慢性病增多,一些过去可以形成终生坚强免疫的疾病频频复发。抗生素还会导致抗原质量下降,直接影响免疫过程,从而对疫苗的接种产生不良影响。 4、在养殖业中,大量长期使用抗生素在畜禽产品中造成残留,对人体构成危害。人们吃进含有药物残留的动物性食品时,各种抗生素必然在人体内蓄积,然后导致各种危害,主要是药物的不良反应、过敏反应、变态反应、细菌耐药、菌群失调,更为严重的是可以产生致畸、致癌、致基因突变的不良作用。 福建省医药研究所的专家认为,经常食用含有抗生素的食品,即使是微量的,也能使人出现荨麻疹或造成过敏性休克。时常摄入含有抗生素的食品,可使某些菌株产生耐药性,耐药菌株又能将耐药因子传递给其他敏感细胞,使其他异种菌株变成耐药菌株,从而带来预防与治疗某些人畜疾病的困难。如果长期食用抗生素残留的食物,可造成人体中一些非致病菌的死亡,使菌群平衡失调或引起核黄素缺乏症和紫癜性损伤。特别是氯霉素的滥用,极易损害人类骨髓的造血功能,并由此导致再生障碍性贫血的发生。 5、药物残留成为影响动物产品国际贸易的重要因素,也成为动物产品贸易技术性壁垒的主要内容。这一问题成为制约我国动物产品出口的瓶颈。 6、由动物疾病造成的经济损失越来越严重 据有关报道,自改革开发以来,从国外传入或国内新发现的动物疫病达30多种。目前,猪、牛、羊、禽的病死率分别达8%、1%、4%和18%,每年因发病死亡造成的直接经济损失高达200—250亿元,约相当于畜牧业总产值的2.5%-3.1%。由于发病造成的动物生产性能下降、畜禽产品品质下降、饲料消耗增加、人工浪费、防治费用增加、环境损害及相关产业的经济损失就更加巨大,估计约为因发病死亡造成损失的3-5倍。 查看原帖>>
稀土元素作为猪饲料添加剂的应用重庆市畜牧科学院 景绍红 402460摘要:稀土元素由17种元素组成,稀土元素及其化合物具有特殊的物理化学性质。在我国,一些稀土元素中的盐份和镧系元素(如其中的镧和铈等)被作为饲料添加剂应用于畜禽生产已经有四十多年的历史,有大量文献表明添加微量稀土元素混合物的饲料不仅能提高猪、牛、羊、鸡等的体重,而且还能增加奶类和蛋类的产量。近五年,很多西方国家从我国进口稀土元素作为饲料添加剂应用于猪的研究。结果表明:稀土元素可增加猪的日增重和提高饲料转化率,是一种新型、安全并且实惠的新型促生长剂。本文综述了稀土元素主要是镧系元素在国内外农业特别是养猪业的应用研究成果并解释了其潜在机理,为以后相关研究提供参考依据。关键词:稀土元素,镧系元素,猪,体增重,饲料转化率1. 前言50多年来,抗生素作为饲料添加剂有效地预防和控制了畜禽疾病的发生和流行,但同时也带来了诸多不良后果:如肉类的药物残留;粪便给环境造成的污染;过度使用使动物产生对抗生素的依赖性甚至抗药性等。从2005年底开始,抗生素作为饲料添加剂在欧盟已经被全面禁止。目前全球人口不断增加,动物蛋白需求量不断增加,唯一的方法是增加肉类生产。而全面禁止抗生素会严重影响动物断奶后的健康和产量。这样一来,建立动物卫生保健战略和发展新型饲料已迫在眉睫,人们需要新的促生长素替代品作为饲料添加剂,这些添加剂必须有效、安全并且有助于环境保护。比如说益生菌、益生素、酶类、有机酸还有中草药提取物等。目前引起人们注意的是一种新型的稀土元素或稀土元素混合物添加剂,包括钪、钇和镧系中从镧到镥等元素。稀土元素在地壳中并不是非常罕见,但数量有限。特别是镧(La,57号元素)、铈(Ce,58号元素)、还有镨(Pr,59号元素)。镧和铈主要存在于地质浓度类似于重要微量元素钴的地质区,因而不算太稀有。由于世界上80%的稀土元素存在于我国,我国成为了这些元素的主要供应方,它们主要以浓缩品、氧化物、合金的形式出口给其他国家。稀土元素主要应用于冶金、化工、电子工业和农业。其中,大约25%的镧矿石被用来制作碳弧灯;25%被用于镧、铈合金的生产,这些合金可以用在火石打火机、镁合金和某些合金铁生产;25%用于玻璃工业:如钕镨混合物、铈盐和其他的镧系元素在玻璃上色和脱色工艺上有重要用途。最后还有25%的镧产品被应用于其他行业,比如电视器件、催化剂、激光器和饲料添加剂。2.稀土元素在国内农业的应用2.1.在种植业的应用在我国,稀土元素,通常是铈、镧和镨的混合物,在农业种植中作为肥料增强剂已经被应用了40余年,并且卓有成效。促进生长和增产的原因至今不清楚,但据推测可能是由于稀土元素与钙元素的相互作用对细胞质膜的结构和功能产生的影响增强了光合作用和酶的活性。这些效果已被其他国家所证实。在澳大利亚和英国,科学家发现施有稀土元素的土壤可以提高15%的农作物产量 ,而且不会残留于农产品。在水溶性的研究中,Tucher等证明了培养基中的镧系元素对植物中的矿物质产生强烈影响,但由于稀土元素的盐是水溶性的,土壤浓度不会有大幅度增加。2.2.在养殖业的应用国内还进行了许多养殖业研究,诸多结果被报道。这些报道指出,添加少量稀土元素的饲料不仅能增加牛、猪、鸡、鱼和兔的体重,还能增加牛奶和鸡蛋的产量。此外,饲料转化率在以上物种都有提高。稀土元素可加强猪生长性能。何若钢等(1998)发现,饲喂补充了稀土元素日粮的平均体重为7千克(5-9千克)组小猪,体重可增加5%到23%[1];饲料转化率可提高4%到19%。在体重13-17千克组,体重可增加11%到20%,饲料转化率提高5%到9% [2]。陈樵等(1994)研究发现,生长肥育猪(30—50千克),稀土元素添加剂可使体重增加9%--13%,饲料转化率提高6%--8%[3]。王和许(2003)发表的最新文章,提出体重可增加13%,饲料转化率提高7%。总的来说,并不是某些特定的稀土元素添加到饲料中,而是以铈 、镧、镨 为主和其他一些镧系元素中某些成分组成的混合物。早期的研究主要采用添加这些稀土元素的硝酸盐和氯化物,而最近的研究主要采用添加有机盐类象柠檬酸和葡萄糖之类,有时再辅以氨基酸的蛋氨酸、赖氨酸、谷氨酰胺之类。不同研究采用不同浓度。在国内,猪饲料一般采用100 -600毫克/千克浓度。较大的浓度差异导致研究数据缺乏可比性,从而使对稀土元素的作用机制的理解更困难。3.稀土元素在国外饲养研究应用欧美国家的饲养条件明显不同于国内,他们更注重家畜品种的选育和饲料的优化,家畜对生长促进剂和增强剂易感性较低。1999年,Rambeck 等首先进行了一系列猪的饲养试验。用稀土元素盐饲养72只德意志和皮特兰仔猪,平均体重7千克,分为两组,对照组饲喂纯氯化镧(99.7% LaCl3.6H2O),试验组38.0% LaCl3.6H2O + 52.1% CeCl3.6H2O + 3%C rCl3.6H2O,以75毫克/千克和150毫克/千克添加到全价日粮(能量:13兆焦耳/千克;52.7% 大麦,20% 小麦,18.8% 豆类)饲喂五周。结果表明,饲喂了稀土元素混合物的试验组效果最好。体重增加了5%,饲料转化率提高了7%(P〈0.05〉[4]。在He(2001)等进行的另一个试验中,体重17.5千克的杂交仔猪饲喂 300毫克/千克含稀土元素配方。一个月以后,试验组体重明显增加了19%,饲料转化率提高了11%。继续添加一个月后,体重比对照组高了12%,饲料转化率高3%。在瑞士进行的猪场实验把猪分为两组,一组97头仔猪 (初始重11.2千克),一组176头仔猪(初始重8.3千克)(Schweizer Edelschwein,2003)。分别饲喂16天和30天,与对照组比较,添加了200毫克/千克稀土元素混合物的实验组体重增加3%-10%,饲料转化率提高2%-9%。这是第一次猪场实验证明稀土元素作为添加剂是有效的。由于负离子的存在,稀土元素盐的生物利用率会受到影响,稀土元素中柠檬酸盐的影响也被考虑。Halle等(2003)发现,柠檬酸盐可以显著提高鸡的体重达7%。但Schuller等(2002)发现,在同样条件下,氯化盐既不能提高体重也不能提高饲料转化率,因此柠檬酸盐被广泛应用于仔猪饲养试验。另外因为柠檬酸盐比氯化盐的吸湿度要小,作为饲料添加剂比较容易置放。在一项持续了六周的饲养试验中,50、100和200毫克的柠檬酸盐添加给28只仔猪(每组7只,体重8.6千克)。按照剂量比例计算,体重增加高达22%,饲料转化率达19%。2004年,Kessler研究发现,柠檬酸盐对整个育肥期有显著的促进作用,以250毫克/千克的浓度添加到饲料中,对照组达104千克需102天;而实验组只需93天;日增重分别是782克/天VS.851克/天;饲料转化率分别为2.5 VS 2.4;差异特别显著。稀土元素对家畜的健康和肉产品的质量和安全性没有影响。对胴体和肉的质量检测数据显示,所有被测家畜肉是E或U级(两个最高等级,EUROP等级制)。其他有关肉质参数也没有受到稀土元素的影响,例如,PH1和PH24,肉色和瘦肉率均很正常。从试验猪采取的肌肉、肝脏和肾脏样品中,实验组和对照组的稀土元素含量都很低。尽管实验组镧的含量比对照组高,但所有试验猪的镧沉积速度都很低,接近检测极限。也有研究发现稀土元素添加剂对体重和饲料转化率没有影响。例如,Halle(2003)等做的一项有关猪的肥育试验,在饲料中添加不同稀土元素负离子氧化物,浓度为100毫克/千克,却没有表现出促生长效应,也许是本试验的浓度太低所致。在另一个实验中,稀土元素氯化物(300毫克/千克饲料)几乎对体增重(-4.7% 对比对照组)和饲料转化率(+1.3%对比对照组) 没有作用。4.结论稀土元素对猪生产性能产生显著影响的机理目前尚不十分清楚。据分析,虽然胃肠道对稀土元素的吸收很少,但可影响胃肠道微生物的组成,从而促进日粮中营养成分的消化和利用。高浓度的镧系元素通常可以抑制细菌的生长,低浓度的镧系元素可能促进细菌生长。稀土元素既有微量元素的特征,可划为营养类添加剂;又可以增加胃肠道消化率和稳定有益菌丛,可被视为益生类添加剂。从目前在国内外养猪业的应用效果来看,稀土元素是一种高效、低价、安全的新型饲料添加剂。参考文献1.何若钢,夏中生,《稀土对生长肥育猪生产性能的影响》,广西农业科学1998年(5)-243-2452.李德发,余伟民,《添加稀土对生长猪生长性能及氮平衡的影响》,饲料博览1992年(4)-3-43. 陈樵,高家骅,《稀土的表观消化率及添加稀土对日粮粗蛋白粗脂肪表观消化率的影响》,江苏农业科学1994年(1)-59-614. Rambeck W.A., He, M.L., Chang, J., Arnold, R., Henkelmann, R. & SuB, A Possible role of rare earth elements as growth promoters. In: Vitamine undZusatzstoffe in der Ernahrung von Mensch und Tier. Symposium, 22-23 September 1999, Jena/Thuringen, Germany, pp.311-317 (1999).
抗生素作为饲料添加剂应用于畜牧业已经有四五十年的历史了,长期使用抗生素虽然提高了畜禽生产力,但也造成了药物残留、耐药菌产生、动物免疫功能下降等危害,甚至威胁到人们的身体健康。 近日,国内某全国发行的报纸上刊登一则鸡蛋广告,宣称所卖鸡蛋内绝无抗生素。商家如此宣传,似乎正暗示了市场上出售的大部分鸡蛋都含有抗生素。一石激起千层浪,随后便有媒体报道,其实鸡蛋中含抗生素在业内早已不是秘密。据悉,为防止鸡生病,国内很多养殖场都会在饲料中添加抗生素。饲料中的抗生素会在鸡体内沉积,内脏、鸡肉、蛋内都会有抗生素残留。鸡蛋里能否含有抗生素?含抗生素鸡蛋对人体健康有没有影响?带着这些疑问,笔者走访了在食品检测领域具有丰富经验的知名第三方检测机构PONY谱尼测试,请专家代为解答。 PONY谱尼测试专家指出,在农业部发布的《饲料药物添加剂使用规范》中已明确定出各种添加剂的规定使用量及使用阶段,这其中便包括部分抗生素。动物饲料添加抗生素能帮助动物预防疾病、促进生长,提高产量。但抗生素残留会对人体健康产生很多不利影响。人长期食用含抗生素残留的动物性食品后,药物不断在体内蓄积,对人体产生毒性作用和耐药性;此外还可能导致人体肠道内正常菌群失调紊乱,以及过敏反应等。 鸡蛋里的抗生素,目前没有专门的检测标准,主要是根据无公害食品或绿色食品的标准对鸡蛋进行检测。至于不在国标内的其他品种抗生素,则无法进行准确评估。 抗生素残留一直是我国畜产品出口受阻的主要原因之一。PONY谱尼测试专家建议广大畜产品生产经销商家,应努力提高养殖水平和卫生标准,减少饲料中四环素、金霉素、土霉素、磺胺类、恩诺沙星等各类抗生素添加。对于各类动物性食品中的抗生素残留,宜借助检测手段及时了解并控制其含量限值,提升产品声誉,保障百姓健康安全。
我只知道若人通过鸡间接摄入过量抗生素危害一定很大。滥用抗生素的危害应该是人尽皆知了。
1.药理实验动物的麻醉 在药理实验中,对动物实行外科手术或进行某种实验处理时,常需要使动物全身或局部暂时痛觉消失或痛觉迟钝,以利于进行实验。因此,作为药理人员,我们必须掌握实验动物的麻醉方法,在此基础上,设计、应用合理的麻醉方案,才可以满足手术需要和保证实验动物安全,又能减少麻醉与手术给动物带来的刺激,提高实验的精确度。本文将文献内容与本人所在药理室麻醉动物的经验相结合,叙述麻醉药物的分类,特性,麻醉方法及影响麻醉的因素及麻醉的选择原则,以求为广大药理工作者进行实验动物的麻醉提供一些参考。 1 麻醉药物的分类,特性,麻醉方法 药理实验动物的麻醉药物从物理性质上可以分成两类,即挥发性麻醉剂、非挥发性麻醉剂。 1.1挥发性麻醉剂的分类,特性,麻醉方法 挥发性麻醉剂包括乙醚、氟烷、甲氧氟烷、氯仿等,其中乙醚常用于全身麻醉的吸入麻醉。乙醚无色透明,是挥发性很强的液体,有特殊气味,易燃易爆,使用时必须远离火焰,用后盖紧瓶盖。乙醚与空气中的氧接触产生刺激性很强的乙醛及过氧化物,故应该储存在棕色的玻璃瓶中,置干燥阴暗的地方。乙醚麻醉的优点是麻醉后恢复比较快,但麻醉深度不易掌握。麻醉时间过长,容易导致动物死亡。麻醉时间过短的话,动物仍未进入麻醉期。适用于时间比较短的手术操作或实验处理,如大鼠胃幽门结扎术。乙醚麻醉的另外一个缺点是人容易不慎吸入乙醚,损害实验操作者健康。大鼠、小鼠乙醚麻醉较常见。将乙醚倒入干燥器中,再将大鼠放入干燥器,经过1-2分钟左右,大鼠出现抑制,尔后失去运动能力,肌肉松弛,立即取出大鼠,将其固定于实验台上,将含有乙醚棉球或纱布靠近其鼻部,适时追加乙醚吸入量,以维持其麻醉深度和时间。小鼠麻醉用一试管装有乙醚棉球,将试管口对住小鼠口鼻部,1-2分钟左右,小鼠反应迟钝,四肢紧张性明显降低即可。 1.2非挥发性麻醉剂的分类,特性,麻醉方法 非挥发性麻醉剂又分全身麻醉剂和局部麻醉剂。全身麻醉剂常用的有巴比妥类,氯胺酮,水合氯醛。巴比妥钠是最常用的一种动物麻醉剂。其安全范围大,毒性小,麻醉潜伏期短,维持时间较长。适用于时间较长的手术操作。小型动物多为腹腔给药,中型动物多为静脉给药。氯胺酮麻醉剂注射后很快使动物进入浅睡眠状态,但不引起中枢神经系统深度抑制,所以,麻醉的安全期相对高,是一种镇痛麻醉剂。一般多用于犬、猫等动物的基础麻醉和啮齿类动物的麻醉。因能通过胎盘屏障,怀孕的动物必须慎重。水合氯醛作用特点与巴比妥类药物相似,使用方法采用腹腔注射或静脉注射,但其安全范围小,且对皮肤和粘膜有较强的刺激作用,使用时要注意。 局部麻醉剂常用的有普鲁卡因、利多卡因、的卡因。普鲁卡因麻醉速度快,注射后1-3分钟内可产生麻醉,可以维持30分钟-45分钟。为了延长其作用时间,常在溶液中加入少量肾上腺素。它的副作用:在大量药物被吸收后,表现出中枢神经系统先兴奋后抑制。这种作用可用巴比妥类药物预防。利多卡因常用于表面、浸润、传导麻醉和硬膜外麻醉。它的效力和穿透能力比普鲁卡因强两倍。的卡因结构与普鲁卡因相似,局麻作用比普鲁卡因强10倍。进行局部浸润麻醉时,首先把动物固定好,然后在实验操作的局部皮肤区域,用皮试针头先作皮内注射,形成橘皮样皮丘。然后换局麻长针头,由皮点进针,放射到皮点周围继续注射,直至要求麻醉区域的皮肤都浸润到为止。可以根据实验操作要求的深度,按皮下、筋膜、肌肉、腹膜或骨膜的顺序,依次注入麻药,以达到麻醉神经末梢的目的。 2 影响麻醉的因素 2.1 年龄和体重 动物对药物的反应随年龄的不同而有差异。幼年动物对麻醉的敏感性一般大于成年和老年。对麻醉反应的年龄差异,可能与解毒酶活性有关。幼年动物因缺乏这些酶,故对麻醉很敏感。另外,幼年动物,特别是刚出生的动物,肝肾功能未发育完全,药物消除能力低,这些因素使游离型药物及进入组织的药量增多,易发生蓄积中毒现象。 体重小的动物每单位体重的基础代谢率较大动物高,因此,动物越小,每单位体重所需的麻醉药剂量越大。一些慢性实验,观察时间较长,可选择年幼、体重较小的动物做实验。 2.2 性别 不同性别的动物对麻醉药物的敏感性不同,对各种刺激的反应也不尽一致,雌性动物性周期不同阶段和怀孕、授乳时的机体反应性有较大的改变,因此,药理实验一般选择雄性动物或雌雄各半。 2.3 生理和健康状况 体重、肌肉发达的动物较脂肪多的动物所需麻醉药量大,因为脂肪为相对非代谢组织,其基础代谢率较低。活动可增加代谢率,因此,好动的动物所需的麻醉量大。身体状况差的动物,所需麻醉药量小,耐受性降低。 2.4 动物饲养 保证足够的营养供应是维持动物健康的重要因素,其中饲料对动物的关系更为密切。动物的生长、发育、繁殖、抵御疾病的能力及一切生命活动都依赖于营养丰富的饲料。动物在麻醉之前一周应给于精心的饲养管理,使其处于良好的健康状态。饲喂营养均衡的饲料,营养成分不能过高或过低,如大量食肉的犬其基础代谢率提高90%;小鼠的饲料中蛋白质含量低于20%易产生肠道疾病;豚鼠饲料中维生素缺乏易引起坏血病。 2.5 环境因素 主要包括温度、湿度、空气的流速和清洁度。温度一般保持在20~25℃,实验环境温度过高或过低都能导致机体抵抗力下降,对麻醉药物的敏感性升高,易发生中毒现象,因而影响麻醉效果。湿度对动物的体温调解和健康状况的直接影响,间接影响着动物对麻醉药物的反应性。因此,进行动物麻醉的实验室,相对湿度宜保持在50%~60%。空气的清洁度要求氨浓度小于20mg/L、气流速度10 - 25cm/s。氨浓度过高可刺激动物粘膜而引起流泪、咳嗽等,严重者可引起粘膜发炎、肺水肿或肺炎。 3 麻醉药物的选择原则 3.1 以安全性、有效性作为选择麻醉药物的中心原则 尽量选择安全范围大而且麻醉效果好的药物。在用药前要检查药物的生产日期和使用期限,即使未超出使用期限,如发现药物溶液有沉淀、浑浊现象,也应弃用。 3.2 根据不同实验动物选择麻醉药物 注意动物种属的差异,应选用对实验动物较为敏感的麻醉药物。即使同一种甚至是同一只实验动物,其生理状态不同,对麻醉药物的选择也不尽相同。如怀孕动物不选能通过胎盘的麻醉药。 3.3 根据不同药理实验选择麻醉药物 如动物实验需要动物保持较长时间麻醉状态、麻醉程度较深,可选择具有较强镇静催眠作用的戊巴比妥钠;如所需时间较短、麻醉程度较浅,可使用中枢性抑制但作用短效的乙醚,以及对中枢抑制弱、苏醒快的盐酸氯胺酮及速眠新。还可以使用复合麻醉,更好地达到不同动物实验所需的麻醉效果。 3.4 做好麻醉前的准备工作 动物宜禁食,大动物禁食10~12小时,用犬做长时间实验前1小时应灌肠,以排除积粪。 3.5 掌握好麻醉深度 要根据动物体重、药物浓度,仔细计算好所需的麻醉药物剂量。应考虑麻醉剂的纯度。国产的产品麻醉效果往往不如进口的,实际使用时,要注意增加剂量。在静脉注射麻醉时,不可将药物一次性快速推入,而是间歇性地缓慢推进,在注射到预定剂量3/4 后,更要减慢推进速度,并一边注射,一边观察动物的角膜反射、肌松程度和疼痛反应,达到实验所需麻醉状态时,立即停止药物的注射。 3.6 做好麻醉后的动物监护 采取保温措施。在麻醉期间,动物的体温调节机能受到抑制,会出现体温下降,影响实验结果。必须保持动物气道的通畅和组织的营养。追加麻醉药物要严格控制剂量(一般不超过麻醉剂量的1∕3)。出现麻醉过深情况后,应立即采取抢救措施。应备有常用的抢救药物,如尼可刹米、东莨菪碱、肾上腺素等。 综上所述,实验动物的麻醉是一项复杂系统的工作。我们不仅要掌握动物麻醉的基本知识和技术,还要了解影响实验动物麻醉的各种因素,麻醉药物的选择原则,在具体实验中,理论结合实际,才能正确进行麻醉处理,保障动物实验的成功。 2.王浆酸的药理实验及应用网址在这哦:希望我的答案读LZ有帮助,望LZ看在我是第一个回答的份上,采纳下吧!
体温除了受发热性疾病等因素的影响外,还需注意药物对它的影响。如解热镇痛药能使发热患者的体温趋向正常,但不能降低正常人的体温。此类药物的解热作用,主要是通过增加散热过程实现的。表现为皮肤血管扩张和出汗增多,因而增加热的散失,最后使升高的体温下降。解热镇痛药对产热过程没有什么作用。但有人通过动物实验,认为解热镇痛药物的解热作用,除了由于对丘脑下部的体温调节中枢直接作用外,还可能由于抑制了白细胞释放内源性致热原,或是阻断了致热物质进入脑组织,因而减少了致热物质对丘脑下部体温调节中枢的病理性刺激,通过这种对体温调节中枢的间接作用方式,发挥其降热作用。临床上我们也常发现肾上腺皮质激素有迅速退热作用。其机制可能为抑制致热原的释放,并且直接作用于丘脑下部的体温调节中枢,使热度下降或防止体温升高。但因感染性发热是由致病微生物引起的,如大叶性肺炎、菌痢、肠伤寒、败血症等,因此当发热原因未明时不应随便滥用皮质激素类药物,以免掩盖症状,延误疾病的诊断。
没有影响。解热镇痛药能降低发热动物的体温,而对正常体温几乎无影响。家畜的体温受丘脑下部体温调节中枢的控制,而保持在恒定范围内。体温调节中枢通过神经和内分泌系统的作用使机体的产热和放热处于相对的平衡状态。即当中枢温度升高时,神经元冲动发放的频率就增加。当中枢温度达到调定点以上时,散热过程在兴奋的同时,产热过程受到抑制,使体温不致过高。相反,当中枢温度降到调定点以下时,产热过程立即增加,散热过程受到抑制,使体温也不会降低。病原体及毒素、病毒等致热性物质可作用于白细胞,使之释放内源性致热物质而作用于体温调节中枢,使体温调定点提高到38℃以上,此时产热增加,散热减少,因此体温升高,动物出现所谓的发热现象。解热镇痛药能使动物升高的体温恢复正常,主要是选择性地抑制体温调节中枢的病态兴奋性,并通过神经调节使皮肤血管扩张,排汗增加呼吸加快等途径增加散热,使体温降到正常的调节水平。除此之外,本类药物还能稳定白细胞内的溶酶体膜,从而阻碍白细胞内的热源的生成和释放,使体温调节中枢免受热源的刺激作用,体温恢复到正常的水平。另外由于热源物质不能释放而阻止前列腺素的生成和释放。这类药物可对抗缓激肽、组织胺、前列腺素、5-羟色胺等致痛性物质,对外周痛觉感受器的刺激作用,因而有镇痛作用。
今年5月15日是我国第二十二个“防治碘缺乏病日”。市疾病预防控制中心的专家表示,碘是影响智力发育的重要的微量元素之一,人体缺碘会造成不同程度的损害,导致发生碘缺乏病,乃至残疾。我市虽地处沿海,但历史资料及我市水碘调查结果显示,我市属外环境缺碘地区(水碘含量中位数为7.35μg/L)。因此,多年来我市一直执行了食盐加碘消除碘缺乏危害政策。2012年3月15日,我市执行了新的盐碘含量标准(25mg/kg±30%)。市民该如何补碘?哪些人群不适合补碘呢?昨天,市疾控中心的专家给予支招,提醒市民科学补碘,比如甲状腺功能亢进、甲状腺炎、自身免疫性甲状腺疾病等患者中的少数人不宜食用碘盐。 孕妇母乳碘营养下降 青岛市疾控中心每年严密监测我市居民的碘盐食用情况及居民的碘营养状况。据2014年我市碘缺乏病监测数据显示,居民户碘盐覆盖率96.6%,合格碘盐食用率94.64%,8-10岁儿童尿碘含量中位数206.5μg/L,孕妇尿碘含量中位数166.1μg/L,哺乳期妇女尿碘含量中位数128.8μg/L,成人尿碘含量中位数149.5μg/L。监测数据表明,我市自食用新标准碘盐以来,居民碘摄入量总体状况适宜。但是孕妇、乳母碘营养逐年下降,处于适宜值的相对低的水平。 沿海地区人们食用海产品较多,为什么也要食用碘盐?专家表示,2009年,卫生部在福建、上海、浙江、辽宁等4省(市)开展的沿海地区居民膳食碘摄入量调查结果显示,海带、紫菜、海鱼等富碘食物在沿海地区居民中的食用频率和食用量都很低,居民膳食碘摄入来源于这类食物所占的比例相应很低。沿海地区在未考虑烹调损失的情况下,膳食中的碘84.2%来自于加碘食盐,来自于各类食物的碘仅占13.1%(其中海带、紫菜和海鱼共占2.1%),来自于饮用水的碘占2.7%。如果食用不加碘食盐,97%以上的居民碘摄入量低于推荐摄入量,居民碘缺乏的风险很大。因此,沿海地区的居民也需要普及加碘食盐,以保证居民的碘摄入,进一步降低碘缺乏的风险。 自然环境为何缺碘 自然环境为什么会缺碘?对于这个问题,市疾控中心专家表示,自然环境缺碘是指土壤和水含碘不足。自然环境缺碘主要有三种原因:第一,大约在第四纪冰川期,由于冰川溶化,冰水冲刷,将富碘的成熟土壤大量冲走。而由岩石形成的新土壤,其碘含量仅为原成熟土壤的四分之一,这就造成世界上大部分地区环境碘缺乏,也是自然环境碘缺乏的主要原因。第二,洪水泛滥致使局部地区土壤中的碘连同土壤被冲走而加重碘缺乏。第三,生态因素。由于植被破坏,土壤表面被风、沙、雨水、河流带走,致使土壤表面裸露,造成碘被淋滤并大量丢失,这种现象在山区更加明显。 碘摄入量标准 不同人群碘的推荐摄入量是多少? 答:0-3岁为每人每日50微克; 4-10岁为每人每日90微克; 11-13岁为每人每日120微克; 14岁以上为每人每日150微克; 孕妇和哺乳期妇女为每人每日250微克。 碘缺乏病是否只发生在农村?城市人群也缺碘吗?专家表示,碘缺乏病不仅发生在农村,也发生在城市。1995年,我国在10大城市学龄儿童中开展的碘营养状况调查结果显示,有5个城市儿童尿碘中位数低于100微克/升,最低仅为57.0微克/升,处于碘营养不足水平;7个城市儿童的甲状腺肿大率在5%以上。 人群补碘的措施有哪些?补碘的措施主要有碘盐、碘制剂和富碘食品等。我国预防控制碘缺乏病的主要措施是普及加碘食盐。此外,在交通不便、居住分散、非碘盐冲击严重、食盐加碘措施尚未有效实施的地区可采用碘油或碘片作为替代或辅助措施,应用的主要对象是新婚育龄妇女、孕妇、哺乳期妇女、婴幼儿和儿童,这一措施需要在医生指导下使用;也可以通过食用海带、紫菜、贝类等富碘食物补碘。 疑问 碘盐要坚持食用 实现消除碘缺乏病后还需继续食用碘盐吗? 答:目前,我国虽然实现了消除碘缺乏病的阶段目标,但是碘缺乏危害是自然环境缺碘造成,而自然环境缺碘状况是不能改变的。如果我们不食用碘盐,人们又会因摄入碘不足而受到碘缺乏危害。为此,我们要坚持食用碘盐。 居民如何正确购买和使用碘盐? 答:(1)应该通过正规渠道购买碘盐,碘盐必须有包装和碘盐标志,购买时要辨认清楚。(2)购买的碘盐要妥善保存,碘盐应放在阴凉、干燥处,避免受日光直射和吸潮,离开灶台存放,避免高温影响。居民可购买小包装碘盐,存放时间不宜过长,做到随吃随买。(3)为防止碘丢失,烹饪时不宜过早放入碘盐,宜在食物快熟时放入,避免用碘盐爆锅、长时间炖、煮,以免碘受热失效而失去补碘的作用。 哪些人不宜吃碘盐? 答:甲状腺功能亢进、甲状腺炎、自身免疫性甲状腺疾病等患者中的少数人,因治疗需要遵医嘱可不食用或少食用碘盐。生活在高碘地区的居民,他们每天从食物和饮用水中已经得到了较高剂量的碘,这部分人群也不宜食用碘盐。
主要用于制药物、染料、碘酒、试纸和碘化合物等。
1、在高级哺乳动物中,碘以碘化氨基酸的形式集中在甲状腺内,缺乏碘会引起甲状腺肿大。
2、 约2/3的碘及化合物用来制备防腐剂、消毒剂和药物,如碘酊和碘仿CHI3。
3、放射性同位素碘-131用于放射性治疗和放射性示踪技术。
4、碘还可用于制造染料和摄影胶片。
5、含碘制剂如碘酊、复方碘溶液、碘喉片、碘甘油等为医疗中应用较广的药物,碘酊是家庭中常备的消毒药品。
6、碘是人体的必需微量元素之一,有“智力元素”之称。健康成人体内的碘的总量约为30mg(20~50mg),其中70%~80%存在于甲状腺。
7、碘化银(AgI)还可作人工降雨时造云的晶种。
扩展资料:
医学专家解释,碘缺乏病是由于人们所处的环境缺碘进而使机体缺碘造成的,吃碘盐对于每个人来说都是非常重要的。碘盐在帮人们补碘防病方面作出了不小的贡献,但要让碘盐充分发挥作用,就需要在日常生活中多加注意:
1、碘盐要少买、及时吃。购买碘盐一次不宜过多,可吃完再买,以避免碘的挥发。
2、食用碘盐时不要加太多的醋。碘与酸性物质结合后,其功效会受到影响,另外碘盐与带酸味的菜(如西红柿、酸菜等)一起食用时,其功效也会受到影响。
3、碘盐放入容器后,要加盖密封,并存放于阴凉、通风、避光处,以保证其效果。
4、要掌握好放碘盐的时机。因碘盐遇热易挥发,所以在炒菜或做汤时,因温度较高,不宜放入碘盐,应在菜或食物快炒好时放入碘盐。
参考资料:百度百科-碘
您的症状是有多久了?
有什么影响意义的话,可以把研究对象属的胃肠蠕动的话,可以用在人的身上
1925年费希尔完成的《研究人员用统计方法》,......这搜索些都是早、中期运用统计学进行生命科学研究的典范。到了20世纪50年代,遗传物质DNA螺旋结构的发现,整个试验过程处处使用了现代统
那得查文献吧,虽然我可以把我的数据给你,但也不能写到你论文里啊
药物的作用是通过药物与机体相互作用来完成的。一般来说,能够影响药物和动物机体的许多因素都会影响到药物的作用。(1)药物方面的因素①剂量、剂型与给药途径的影响当用药剂量过小,疗效差;若剂量过大,导致毒性反应,或导致动物中毒死亡。水溶液、注射剂吸收较油剂、混悬剂、固体制剂快。不同给药途径起效快慢顺序:静脉注射给药>吸入给药>肌肉注射给药>皮下注射给药>口服给药>直肠给药>经皮肤给药。②给药时间与次数a.饲前空腹给药:吸收快、充分,药效快、好。b.饲喂后给药:避免对胃肠黏膜的直接损害,适合于刺激性较大药物。c.给药次数:依据病情和药物的半衰期而定。③反复用药a.耐受性:连续用药后使疗效逐渐下降,需要加大剂量才可达原有的效应。b.耐药性:指病原体、寄生虫和肿瘤细胞等对药物敏感性降低,药物的疗效下降或无效。④药物相互作用四环素、恩诺沙星等在消化道中可与钙、铁、镁等金属离子发生络合,影响药物吸收或使药物失活。(2)动物方面的因素①生理因素不同日龄、性别、怀孕或哺乳期猪对同一种药物的反应往往有一定差异,这与机体器官组织的功能状态,尤其与肝脏药物代谢酶系统有密切的关系。如初生仔猪肝脏解毒功能、肾脏排毒功能较弱。因此在幼龄仔猪由肝脏微粒体酶代谢和肾脏排泄消除的药物的半衰期将被延长。老龄猪也有上述现象(肝、肾脏功能降低),一般对药物的反应较成年动物敏感,所以临床用药剂量应适当减少。②机体机能状态不同(病理状态)不少药物在疾病动物的作用较显著,甚至在病理状态下才呈现药物的作用,如解热镇痛药能使发病猪降温,对正常猪体温没有影响;洋地黄对慢性充血性心力衰竭有很好的强心作用,对正常功能的心脏则无明显作用。猪严重的肝脏、肾脏功能障碍,可影响药物的生物转化和排泄,引起药物的蓄积,延长半衰期,从而增强药物的作用,严重者可能引发毒性反应。但也有少数药物在肝脏生物转化后才有作用,如可的松、泼尼松,在肝脏功能不全的病猪作用减弱。严重的寄生虫病、失血性疾病或营养不良病猪,因血浆蛋白大大减少,可使高血浆蛋白结合率药物的血中游离药物浓度增加,既可使药物作用增强,同时也使药物的生物转化和排泄增加,半衰期缩短。③个体差异指相同剂量的药物在不同个体,血药浓度、作用及作用维持时间不同。可分为高敏性和耐受性。同种动物在基本条件相同的情况下,少数个体对药物特别敏感,称为高敏性;另有少数个体则特别不敏感,称为耐受性。个体差异除表现药物作用量的差异外,有的还出现质的差异,也就是个别动物用药后出现过敏反应。(3)环境因素包括饲养管理不善、饲料发霉变质,外界环境的改变,季节变化等均能影响药物作用。
一、概述药物的分布是指药物从给药部位吸收进入血液后,由循环系统运送至体内各脏器组织(包括靶组织)的过程。分布往往比消除快。由于药物的理化性质及生理因素的差异,药物在体内分布是不均匀的,不同的药物具有不同的分布特性。有些药物主要分布于肝、肾等消除器官,有些药物分布到脑、皮肤和肌肉组织,有些药物能通过胎盘进入胎儿体内,有些药物可通过乳腺分泌到乳汁中,有些药物能与血浆或组织蛋白高度结合,脂溶性药物可分布到脂肪组织再缓慢释放。(一)组织分布与药效药物从血液向组织器官分布的速度取决于组织器官的血液灌流速度和药物与组织器官的亲和力。药物在作用部位的浓度,除主要与透入作用部位和离开作用部位的相对速度有关外,尚与肝脏的代谢速度、肾或胆汁的排泄速度有关。药物在分布过程中,尽管受上述因素的影响,但在靶部位的有效药物浓度,主要与受体的结合有关。体内产生的药理效应,可看作是受体结合的最终结果。药物在体内分布后的血药浓度与药理作用有密切关系,决定药效起始时间、强弱或作用持续时间,故往往根据血药浓度来判断药效。但血药浓度与药效不一定都呈现正比关系。药效的起始时间和药效强度受给药剂量及药物在血液中分布影响。必须选择适宜的剂量与剂型,使药物达到足够高的血药浓度,并能以适宜的速度将需要量的药物分布到作用部位。药物作用的持续时间则主要取决于药物消除速度。(二)组织分布与化学结构药物向组织的分布往往因为化学结构略有改变而显著不同。如硫喷妥对脂肪组织亲和力较大,易于透过血-脑脊液屏障,故作用迅速,但又很快转入脂肪组织中使脑内浓度降低,故作用短暂。存在异构体的药物,其体内分布常因异构体的构型不同产生显著差异。布洛芬两种异构体的血浆蛋白结合能力不同,血浆与关节腔滑液中清蛋白比例不同都是造成布洛芬对映体体内分布差异的原因。(三)组织分布与蓄积当药物对某一些组织有特殊的亲和性时,该组织就可能成为药物贮库。此时常可以看到药物从组织解脱入血的速度比进入组织的速度慢。例如某些脂溶性药物连续应用时,容易从水性血浆环境中分布进入脂肪组织。这一分布过程是可逆的。但药物从脂肪组织中解脱非常慢,以至于当药物已从血液中消除,组织中的药物仍可滞留很长时间。脂肪组织中血液流量极低,药物蓄积也较慢。但一旦药物在脂肪组织中蓄积,其移出速度也非常慢。临床上有时有目的地利用药物的蓄积作用,使药物在体内逐渐达到有效浓度,再长期维持用药。但药物长时间滞留组织内的蓄积现象并不是所期望的。当反复用药时,由于体内解毒或排泄功能的改变,使药物在体内蓄积过多而产生蓄积中毒。(四)表观分布容积表观分布容积是用来描述药物在体内分布状况的重要参数,是将全血或血浆中的药物浓度与体内药量联系起来的比例常数,也是药动学的一个重要参数。它是指假设在药物充分分布的前提下,体内全部药物按血中同样浓度溶解时所需的体液总容积。表观分布容积不是指体内含药物的真实容积,也没有生理学意义。但表观分布容积与药物的蛋白质结合及药物在组织中的分布密切相关,能够反映出药物在体内分布的某些特点和程度,其单位通常以L或L/㎏表示。人的体液是由细胞内液、细胞间液和血浆三部分组成的。细胞间液处于细胞内液与血浆之间,它与血浆一起组成细胞外液。药物在体内的实际分布容积与体重有关,不能超过总体液。二、影响分布的因素药物在向体内各脏器组织分布时,影响分布速度及分布量的因素很多。归纳起来可分为机体方面的生理学、解剖学因素以及药物的理化因素两大类。(一)体内循环与血管透过性的影响吸收的药物向体内各组织分布是通过血液循环进行的。除了中枢神经系统外,药物穿过毛细血管壁的速度快慢,主要取决于血液循环的速度,其次为毛细血管的通透性。随着药物分子量增大,膜孔透过性变小,当分子半径增大至3nm时,其透过速度变得极慢。大多数药物通过被动扩散透过毛细血管壁,小分子的水溶性药物分子可以从毛细血管的膜孔中透出(即微孔途径),脂溶性药物还可扩散通过血管的内皮细胞(即类脂途径)。组织内毛细动脉端与毛细静脉端之间存在流体静压差,水溶性药物可以顺压差进入血管内皮细胞间隙和淋巴液。(二)药物与血浆蛋白结合的能力许多药物能够与血浆蛋白、组织蛋白或体内大分子物质如DNA反应,生成药物大分子。生成药物一蛋白质复合物的过程通常称为药物一蛋白结合。进入血液的药物,一部分在血液中呈非结合的游离型状态存在,一部分与血浆蛋白成为结合型药物。1.蛋白结合与体内分布药物与蛋白质之类高分子物质结合后,不能透过血管壁向组织转运,不能由肾小球滤过,不能经肝代谢。只有药物的游离型分子才能从血液向组织转运,并在作用部位发挥药理作用,并进行代谢和排泄。故药物转运至组织主要决定于血液中游离型药物的浓度,其次也与该药物和组织结合的程度有关。2.蛋白结合与药效药物与血浆蛋白可逆性结合,是药物在血浆中的一种贮存形式,能降低物的分布与消除,使血浆中游离型药物保持一定的浓度和维持一定的时间,不致因很快消除而作用短暂。毒性作用较大的药物与血浆蛋白结合可起到减毒和保护机体的作用。若药物与血浆蛋白结合率高,药理作用将受到显著影响。特别是临床要求迅速起效的磺胺类和抗生素,形成蛋白结合物往往会降低抗菌效力。3.影响蛋白结合的因素药物与蛋白结合除了受药物的理化性质、给药剂量、药物与蛋白质的亲和力及药物相互作用等因素影响外,还与下列因素有关:(1)动物种属差异:药物的蛋白结合率因动物种类不同而差异较大,这是由于各种动物的血浆蛋白对药物的亲和性不同所引起。故从大鼠、豚鼠、家兔等低等哺乳动物实验中得到的结果来预测。(2)性别差异:关于动物性别差异影响蛋白结合的研究,以激素类药物报道为最多。此外,水杨酸的蛋白结合受清蛋白影响,而女性体内清蛋白的浓度高于男性,故水杨酸的蛋白结合率女性高于男性。相反,磺胺的蛋白结合率男性高于女性。(3)生理和病理状态:年龄是影响蛋白结合的一个重要生理因素,因为血浆的容量及其组成随年龄而改变。如磺胺药的蛋白结合率随年龄增加而增加,由于新生儿的血浆清蛋白浓度比成人低,故新生儿的药物蛋白结合率亦较低,所以血浆中游离型药物的比例较高,这是小儿对药物较成人敏感的原因之一。(三)药物的粒化性质与透过生物膜的能力药物透过血管壁进入细胞外液后,还必须通过细胞膜,才能进入细胞内。进入细胞后还要通过细胞内的超微结构,如线粒体、细胞核的外膜,这些膜统称生物膜。药物穿透进入细胞内的情况与其由胃肠道吸收相似,存在经细胞脂质双分子层扩散和经细胞膜微孔透入两种途径。水溶性的小分子和离子通过细胞膜微孔扩散进去,脂溶性的分子穿过膜的类脂双分子层。药物以被动扩散方式转运,一般只有非离子型部分易于透过细胞膜。其透入速度取决于药物的油/水分配系数、解离度以及膜两侧药物的浓度差。(四)药物与组织的亲和力药物在体内的选择性分布,除决定于生物膜的转运特性外,不同组织对药物亲和力的不同也是重要原因之一。在体内与药物结合的物质,除血浆蛋白外,其他组织细胞内存在的蛋白、脂肪、DNA、酶以及粘多糖类等高分子物质,亦能与药物发生非特异性结合。这种结合与药物和血浆蛋白结合的原理相同。一般组织结合是可逆的,药物在组织与血液间仍保持着动态平衡关系。(五)药物相互作用对分布的影响药物与蛋白结合绝大部分是非特异性的,在某些药物与蛋白质的结合点上,可能存在竞争作用。由于只有游离型药物发挥药理作用,因此对于一些结合率高的药物,与另一种与其竞争使结合率下降的药物合用,则会使游离型药物大量增加,引起该药的分布容积、半衰期、肾清除率、受体结合量等一系列改变,最终导致药效的改变和不良反应的产生。一般来讲,蛋白结合率高的药物对置换作用敏感。但只有当药物大部分分布在血浆中(不在组织),这种置换作用才可能显著增加游离药物浓度,所以只有低分布容积高结合率的药物才受影响。三、淋巴系统转运血液循环与淋巴循环构成体循环,由于血流速度比淋巴流速快200~500倍,故药物主要通过血液循环转运。但药物的淋巴系统转运,有时也是十分重要的:①某些特定物质如脂肪、蛋白质等大分子物质转运必须依赖淋巴系统;②当传染病、炎症、癌转移等使淋巴系统成为病灶时,必须使药物向淋巴系统转运;③淋巴循环可使药物不通过肝脏从而避免首过作用。四、脑内分布在血液与脑组织之间存在屏障作用,称为血-脑脊液屏障,其功能在于保护中枢神经系统,使其具有更加稳定的化学环境。当血脑脊液屏障受到破坏时,其通透性大为增加。药物向脑内转运以被动扩散为主,即膜扩散速度为限速因素,取决于该药物在pH7.4时的分配系数和解离度。在体液pH7.4环境下,解离度小的药物从血液向脑内转运极快,并在脑脊液、脑内和血液之间迅速达到平衡。相反,油/水分配系数接近,解离度大的药物,则极难进入脑脊液和脑内,转运速度也很慢,浓度远远低于它在血液中的水平。另外,一些身体必需物质(如葡萄糖、氨基酸和K+等金属离子)向脑内的转运被认为是通过主动转运机制进行的。五、胎儿内分布在母体循环系统与胎儿循环系统之间,存在着胎盘屏障。胎盘屏障对母体与胎儿间的体内物质和药物交换,起着十分重要的作用。胎盘屏障的性质与其他生物膜相似,胎盘作用过程类似于血-脑脊液屏障。胎盘转运机制包括被动转运和主动转运,因为胎儿的脑组织和其他组织相比尚未成熟,血脑脊液屏障也尚未成熟,因此许多药物易于透过胎儿脑内。