首页 > 学术发表知识库 > 数学史论文圆周率

数学史论文圆周率

发布时间:

数学史论文圆周率

圆周率—π ▲什麼是圆周率? 圆周率是一个常数,是代表圆周和直径的比例。它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。 ▲什麼是π? π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表圆周率了。但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。 ▲圆周率的发展史 在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。 亚洲 中国: 魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即「割圆术」),求得π的近似值3.1416。 汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。 公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小於八亿分之一。这个纪录在一千年后才给打破。 印度: 约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。 婆罗门笈多采用另一套方法,推论出圆周率等於10的平方根。 欧洲 斐波那契算出圆周率约为3.1418。 韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537 他还是第一个以无限乘积叙述圆周率的人。 鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。 华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9...... 欧拉发现的 e的iπ次方加1等於0,成为证明π是超越数的重要依据。 之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。 π与电脑的关系 在1949年,美国制造的世上首部电脑—ENIAC(Electronic Numerical Interator and Computer)在亚伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等於平均两分钟算出一位数。五年后,NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随著美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和M. Bouyer发现了π的第一百万个小数位。 在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收歛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。之后, 不断有人以高速电脑结合类似萨拉明的算则来计算π的值。目前为止,π的值己被算至小数点后51,000,000,000个位。 为什麼要继续计算π 其实,即使是要求最高、最准确的计算,也用不著这麼多的小数位,那麼,为什麼人们还要不断地努力去计算圆周率呢? 这是因为,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是有研究圆周率的推动,从而发展出来的。 ▲π的年表 圆周率的发展 年代 求证者 内容 古代 中国周髀算经 周一径三 圆周率 = 3 西方圣经 元前三世 阿基米德(希腊) 1. 圆面积等於分别以半圆周和径为边长的矩形 的面积 2.圆面积与以直径为长的正方形面积之比为11:14 3. 圆的周长与直径之比小於3 1/7 ,大於 3 10/71 三世纪 刘徽 中国 用割圆术得圆周率=3.1416称为'徽率' 五世纪 祖冲之 中国 1. 3.1415926<圆周率<3.1415927 2. 约率 = 22/7 3. 密率 = 355/113 1596年 鲁道尔夫 荷兰 正确计萛得的35 位数字 1579年 韦达 法国 '韦达公式'以级数无限项乘积表示 1600年 威廉.奥托兰特 英国 用/σ表示圆周率 π是希腊文圆周的第一个字母 σ是希腊文直径的第一个字母 1655年 渥里斯 英国 开创利用无穷级数求的先例 1706年 马淇 英国 '马淇公式'计算出的100 位数字 1706年 琼斯 英国 首先用表示圆周率 1789年 乔治.威加 英国 准确计萛至126 位 1841年 鲁德福特 英国 准确计萛至152 位 1847年 克劳森 英国 准确计萛至248 位 1873年 威廉.谢克斯 英国 准确计萛至527 位 1948年 费格森和雷恩奇 英国 美国 准确计萛至808 位 1949年 赖脱威逊 美国 用计算机将计算到2034位 现代 用电子计算机可将计算到亿位 ▲背诵π 历来都有不少人想挑战自己的记忆力,他们通常以圆周率为目标。目前的世界记录是由敬之后藤创下的,他在1995年花了9个多小时,背诵出圆周率的42,000个位数。 目前,最常用的记忆圆周率技巧就是字长法,以每个字的字数代表圆周率的一个位数。在这种方法中最简单的就是“How I wish I could calculate pi.” 用中文去背圆周率也很简单,因为每个数字都只有一个音节,这样背起来就如背诗一样,只不过有点言不及义,例如: 山巅一石一壶酒 3.14159 二侣舞扇舞 26535 把酒砌酒扇又搧 8979323 饱死罗..... 846..... 关於π的有趣发现 将π的头144个小数位数字相加,结果是666。144也等於(6+6)*(6+6) 爱因斯坦的生日恰好是在π日(3/14/1879) 从π的第523,551,502个小数位开始,是数列123456789。 从第359个位数开始,是数字360。也就是说第360个位数正好位於数字360的中央。 在头一百万个小数中,除了2和4,其他数字都曾连续出现7次。 资料来源 <<神奇的π>> David Blatner 著 商周出版 <<新世纪数学>>1A 第7课 牛津大学出版社

数学史选讲的新课标要求:通过生动、丰富的事例,了解数学发展过程中若干重要事件、重要人物与重要成果,初步了解数学产生与发展的过程,体会数学对人类文明发展的作用,提高学习数学的兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神。教师应鼓励学生对数学发展的历史轨迹、自己感兴趣的历史事件与人物,写自己的研究报告。为此,结合新课程内容,我简要总结了中国数学史的发展过程,主要分为以下七个阶段: 第一时期:中国数学的萌芽(远古~春秋) 古希腊学者毕达哥拉斯有这样一句名言:“凡物皆数”。在7000年以前,我们的祖先甚至连2以上的数字还数不上来,在逐步摸索中,先是结绳记数,然后又发展到“书契”,五六千年前就会写1~30的数字,到了2000多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。《周髀算经》是周代传下来有关测量的理论和方法,其中就有中国最早的勾股定理。 春秋时代,诸子百家中的墨家的思想《墨经》中的几何学与逻辑、无限分割思想,体现出理性思维。孔子修改过的古典书籍之一《周易》中含有组合学知识,坐标系思想,二进制思想,还出现了八卦,这神奇的八卦至今在中国和外国仍然是人们努力研究和对象,它在数学、天文、物理等多方面都发挥着不可低估和作用。 第二时期: 中国古代数学框架的形成(战国~秦汉) 到了战国时期,在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。算术领域,四则运算在这一时期内得到了确立,乘法中诀已经在《管子》、《荀子》、《周逸书》等著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。几何领域,出现了勾股定理。代数领域,出现了负数概念的萌芽。 秦汉时期在算术方面乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法中诀。在几何方面,对于长方形面积的计算以及体积计算的知识也具备了。 《九章算术》集先秦到西汉数学知识之大成,确定了中国古代数学的框架、内容、形式、风格和思想方法的特点。全书有90余条抽象性算法、公使,246道例题及其解法,基本上采用算法统率应用题的形式,包括丰富的算术、代数和几何。从体系方面,归纳的,开放的,以计算为中心的算法体系,体现实用性,如“出南北门求邑方”。 第三时期:数学理论的奠基(魏晋~唐初) 在这一时期,数学教育的正规化和数学人才辈出,为数学理论奠定了基础。 赵爽,三国时代吴国人,全面注《周髀算经》,其中的“勾股圆方图注”是对勾股定理的最早证明。 刘徽,三国时代魏国人,是中国古代最伟大的数学家之一。他为《九章算术》做注,《九章算术注》集中了秦汉以来的创造发明,把中国古代数学提高到了一个新的水平,奠定了中国数学教育体系的坚实的基础.其中主要成果:(1)求得圆周率为157/50,(2)出入相补法,棋验法,齐同原理等;(3)数学概念的严格定义.例如幂,率,方程,正负数等;(4)割圆术,反映了数学的极限思想.(5)“重差”之法.他认为数学方法起源于空间形式和数量关系的统一,这正反映了中国古算的特色——几何与算术、代数的统一.他认为数学方法起源于空间形式和数量关系的统一,这正反映了中国古算的特色——几何与算术、代数的统一.祖冲之是我国南北朝时期杰出的数学家、天文学家。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践。他在数学上的杰出成就是关于圆周率的计算。祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理". 中国从隋建立起数学专科教育,开设算学馆.学习内容主要是算经十数;学制七年;三位一体(读书,考试,做官)的体制;学生来源整个大众,任何人可以报。 第四时期:中国传统数学的高潮(宋元时期) 数学内容在宋元达到高峰:数学教育家出现,专门研究数学教育制度。在日趋完善的数学教育制度下,涌现出了一代名垂青史的数学泰斗,如宋元五大数学家是:贾宪、秦九韶、杨辉、李冶、朱世杰。 贾宪,北宋数学家。他继承了《九章算术》以来的诸多方法,扬弃了他们的不足,在算法机械化方面做出了贡献。他构造贾宪三角的“增乘方求廉法”,把中国古代数学的程序化思想又提高到一个新的阶段。 秦九韶,南宋著名数学家。他在数学上的贡献主要有:1、一般高次方程的解法;2、建立一般线性方程组严整规范的算法;3、一次同余式组完整解法程序的建立;4、三斜求积公式(等价于海伦公式)。 杨辉,南宋末年著名的数学家和数学教育家。在教学过程中,他搜集、阅读了大量数学著作,先后完成数学著作15种21卷。为普及日常所用的数学知识,他专门写了《日用算法》一书,书中的题目全部取自社会生活,多为简单的商业问题,也有土地丈量、建筑和手工业问题。他还为初学者制定了《习算纲目》,主要数学教育思想有:由浅入深,循序渐进;重视解题能力的培养,强调精讲多练,举一反三;充分利用直观材料,抽象与具体相结合;理论结合实际,注重应用能力的培养;循循善诱,指导学生学法。他的现金的教育思想和数学方法对后世也有深刻的影响。 元代著名数学家李冶和朱世杰私人传授数学的教育实践。李冶以《益古演段》教材,从最简单的方程,不等式,算术一直到四元术;朱世杰著有《算学启蒙》和《四元玉鉴》传世。 第五时期:中国传统数学的衰落(明初~清中1840年) 满清统治者为了维护其部族的统治压抑民智,如同黑暗的欧洲中世纪一样,思想领域实行强控制,不光政治文化的书籍要禁,就连包括数学在内的科学技术也不放过。《几何原本》、《天工开物》大批明代的科技成果或毁或弃,只要和官方的程朱理学不统一的,都要禁止。满清统治不支持西方传教士向中国的学者介绍西方科学知识和数学知识,不鼓励中国学人参与中西文化交流。学习西方科技不是国策,也没有形成社会风气。中国数学日渐衰落。 第六时期:中西数学的合流(清中~清末1911年) 自明末西方数学开始大规模传入中国以来,直到20世纪初中国数学与西方数学合流,这300多年间中国数学的发展实际上就是中国数学由传统走向近代的过程。以三角学、天元术和垛积术为纲具体研究数学研究内容的西化过程,中国数学家对西方数学的“拒斥”与“吸纳”之间的微妙关系在改变。中国数学家在幂级数、尖锥术等方面已独立地得到了一些微积分成果,在不定分析和组合分析方面也获得了出色的成绩。然而,即使是这样,在世界的同行们之中,我国也仍然没达到领先的地位。 第七时期:现代数学的奠基与发展(公元1911年~公元1976年) 19世纪末20世纪初,中国数学界发生了很大的变化,派出大批留学生,创办新式学校,组织学术团体,有了专门的期刊,中国从此进入了现代数学研究阶段。从1847年,形成了一个出国留学的高潮。这样一批海外学子归来之后,在科研、教育、学术交流等方面都有了新转变。其中在数学方面做出突出成就的有:苏步青、陈建功、陈省身、周炜良、许宝、华罗庚、林家翘等人。 1949年,新中国成立之初,国家虽然正处于资金匮乏、百废待兴的困境,然而政府却对科学事业给予了极大关注。1949年11月成立了中国科学院,1952年7月数学研究所正式成立,接着,中国数学会及其创办的学报恢复并增创了其他数学专刊,一些科学家的专著也竞相出版,这一切都为数学研究铺平了道路。正当数学家们奋起直追,力图恢复中国数学在世界上的先进地位时,一场无情的风暴席卷了中国。在文化大革命的十年中,社会失控,人心混乱,科学衰落,在数学的园地里除了陈景润、华罗庚、张广厚等几个数学家挣扎着开了几朵花,几乎是满目凋零,一片空白。 中华民族历来就有自强不息的光荣传统和坚韧不拔的耐力。浩劫以后,随着郭沫若先生那篇文采横溢的《科学的春天》的发表,数学园地里又迎来了万物复苏的春天。1977年,在北京制订了新的数学发展规划,恢复数学学会工作,复刊、创刊学术杂志,加强数学教育,加强基础理论研究…

圆周率是一个极其驰名的数。从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了。事实也是如此,几千年来作为数学家们的奋斗目标,古今中外一代一代的数学家为此献出了自己的智慧和劳动。回顾历史,人类对 π 的认识过程,反映了数学和计算技术发展情形的一个侧面。 π 的研究,在一定程度上反映这个地区或时代的数学水平。德国数学史家康托说:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。”直到19世纪初,求圆周率的值应该说是数学中的头号难题。为求得圆周率的值,人类走过了漫长而曲折的道路,它的历史是饶有趣味的。我们可以将这一计算历程分为几个阶段。实验时期 通过实验对 π 值进行估算,这是计算 π 的的第一阶段。这种对 π 值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出的。在古代世界,实际上长期使用 π =3这个数值。最早见于文字记载的有基督教《圣经》中的章节,其上取圆周率为3。这一段描述的事大约发生在公元前950年前后。其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值。在我国刘徽之前“圆径一而周三”曾广泛流传。我国第一部《周髀算经》中,就记载有圆“周三径一”这一结论。在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七”,意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7。这正反映了早期人们对圆周率 π 和√2 这两个无理数的粗略估计。东汉时期官方还明文规定圆周率取3为计算面积的标准。后人称之为“古率”。 早期的人们还使用了其它的粗糙方法。如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值。或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率的稍好些的值。如古埃及人应用了约四千年的 4 (8/9)2 = 3.1605。在印度,公元前六世纪,曾取 π= √10 = 3.162。在我国东、西汉之交,新朝王莽令刘歆制造量的容器――律嘉量斛。刘歆在制造标准容器的过程中就需要用到圆周率的值。为此,他大约也是通过做实验,得到一些关于圆周率的并不划一的近似值。现在根据铭文推算,其计算值分别取为3.1547,3.1992,3.1498,3.2031比径一周三的古率已有所进步。人类的这种探索的结果,当主要估计圆田面积时,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。几何法时期 凭直观推测或实物度量,来计算 π 值的实验方法所得到的结果是相当粗略的。 真正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他是科学地研究这一常数的第一个人,是他首先提出了一种能够借助数学过程而不是通过测量的、能够把 π 的值精确到任意精度的方法。由此,开创了圆周率计算的第二阶段。圆周长大于内接正四边形而小于外切正四边形,因此 2√2 < π < 4 。当然,这是一个差劲透顶的例子。据说阿基米德用到了正96边形才算出他的值域。 阿基米德求圆周率的更精确近似值的方法,体现在他的一篇论文《圆的测定》之中。在这一书中,阿基米德第一次创用上、下界来确定 π 的近似值,他用几何方法证明了“圆周长与圆直径之比小于 3+(1/7) 而大于 3 + (10/71) ”,他还提供了误差的估计。重要的是,这种方法从理论上而言,能够求得圆周率的更准确的值。到公元150年左右,希腊天文学家托勒密得出 π =3.1416,取得了自阿基米德以来的巨大进步。 在我国,首先是由数学家刘徽得出较精确的圆周率。公元263年前后,刘徽提出著名的割圆术,得出 π =3.14,通常称为“徽率”,他指出这是不足近似值。虽然他提出割圆术的时间比阿基米德晚一些,但其方法确有着较阿基米德方法更美妙之处。割圆术仅用内接正多边形就确定出了圆周率的上、下界,比阿基米德用内接同时又用外切正多边形简捷得多。另外,有人认为在割圆术中刘徽提供了一种绝妙的精加工办法,以致于他将割到192边形的几个粗糙的近似值通过简单的加权平均,竟然获得具有4位有效数字的圆周率 π =3927/1250 =3.1416。而这一结果,正如刘徽本人指出的,如果通过割圆计算得出这个结果,需要割到3072边形。这种精加工方法的效果是奇妙的。这一神奇的精加工技术是割圆术中最为精彩的部分,令人遗憾的是,由于人们对它缺乏理解而被长期埋没了。 恐怕大家更加熟悉的是祖冲之所做出的贡献吧。对此,《隋书·律历志》有如下记载:“宋末,南徐州从事祖冲之更开密法。以圆径一亿为丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。密率:圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。” 这一记录指出,祖冲之关于圆周率的两大贡献。其一是求得圆周率 3.1415926 < π < 3.1415927 其二是,得到 π 的两个近似分数即:约率为22/7;密率为355/113。 他算出的 π 的8位可靠数字,不但在当时是最精密的圆周率,而且保持世界记录九百多年。以致于有数学史家提议将这一结果命名为“祖率”。 这一结果是如何获得的呢?追根溯源,正是基于对刘徽割圆术的继承与发展,祖冲之才能得到这一非凡的成果。因而当我们称颂祖冲之的功绩时,不要忘记他的成就的取得是因为他站在数学伟人刘徽的肩膀上的缘故。后人曾推算若要单纯地通过计算圆内接多边形边长的话,得到这一结果,需要算到圆内接正12288边形,才能得到这样精确度的值。祖冲之是否还使用了其它的巧妙办法来简化计算呢?这已经不得而知,因为记载其研究成果的著作《缀术》早已失传了。这在中国数学发展史上是一件极令人痛惜的事。祖冲之的这一研究成果享有世界声誉:巴黎“发现宫”科学博物馆的墙壁上著文介绍了祖冲之求得的圆周率,莫斯科大学礼堂的走廊上镶嵌有祖冲之的大理石塑像,月球上有以祖冲之命名的环形山…… 对于祖冲之的关于圆周率的第二点贡献,即他选用两个简单的分数尤其是用密率来近似地表示 π 这一点,通常人们不会太注意。然而,实际上,后者在数学上有更重要的意义。 密率与 π 的近似程度很好,但形式上却很简单,并且很优美,只用到了数字1、3、5。数学史家梁宗巨教授验证出:分母小于16604的一切分数中,没有比密率更接近 π 的分数。在国外,祖冲之死后一千多年,西方人才获得这一结果。 可见,密率的提出是一件很不简单的事情。人们自然要追究他是采用什么办法得到这一结果的呢?他是用什么办法把圆周率从小数表示的近似值化为近似分数的呢?这一问题历来为数学史家所关注。由于文献的失传,祖冲之的求法已不为人知。后人对此进行了各种猜测。 让我们先看看国外历史上的工作,希望能够提供出一些信息。 1573年,德国人奥托得出这一结果。他是用阿基米德成果22/7与托勒密的结果377/120用类似于加成法“合成”的:(377-22) / (120-7) = 355/113。 1585年,荷兰人安托尼兹用阿基米德的方法先求得:333/106 < π < 377/120,用两者作为 π 的母近似值,分子、分母各取平均,通过加成法获得结果:3 ((15+17)/(106+120) = 355/113。 两个虽都得出了祖冲之密率,但使用方法都为偶合,无理由可言。 在日本,十七世纪关孝和重要著作《括要算法》卷四中求圆周率时创立零约术,其实质就是用加成法来求近似分数的方法。他以3、4作为母近似值,连续加成六次得到祖冲之约率,加成一百十二次得到密率。其学生对这种按部就班的笨办法作了改进,提出从相邻的不足、过剩近似值就近加成的办法,(实际上就是我们前面已经提到的加成法)这样从3、4出发,六次加成到约率,第七次出现25/8,就近与其紧邻的22/7加成,得47/15,依次类推,只要加成23次就得到密率。 钱宗琮先生在《中国算学史》(1931年)中提出祖冲之采用了我们前面提到的由何承天首创的“调日法”或称加权加成法。他设想了祖冲之求密率的过程:以徽率157/50,约率22/7为母近似值,并计算加成权数x=9,于是 (157 + 22×,9) / (50+7×9) = 355/113,一举得到密率。钱先生说:“冲之在承天后,用其术以造密率,亦意中事耳。” 另一种推测是:使用连分数法。 由于求二自然数的最大公约数的更相减损术远在《九章算术》成书时代已流行,所以借助这一工具求近似分数应该是比较自然的。于是有人提出祖冲之可能是在求得盈 二数之后,再使用这个工具,将3.14159265表示成连分数,得到其渐近分数:3,22/7,333/106,355/113,102573/32650… 最后,取精确度很高但分子分母都较小的355/113作为圆周率的近似值。至于上面圆周率渐近分数的具体求法,这里略掉了。你不妨利用我们前面介绍的方法自己求求看。英国李约瑟博士持这一观点。他在《中国科学技术史》卷三第19章几何编中论祖冲之的密率说:“密率的分数是一个连分数渐近数,因此是一个非凡的成就。” 我国再回过头来看一下国外所取得的成果。 1150年,印度数学家婆什迦罗第二计算出 π= 3927/1250 = 3.1416。1424年,中亚细亚地区的天文学家、数学家卡西著《圆周论》,计算了3×228=805,306,368边内接与外切正多边形的周长,求出 π 值,他的结果是: π=3.14159265358979325 有十七位准确数字。这是国外第一次打破祖冲之的记录。 16世纪的法国数学家韦达利用阿基米德的方法计算 π 近似值,用 6×216正边形,推算出精确到9位小数的 π 值。他所采用的仍然是阿基米德的方法,但韦达却拥有比阿基米德更先进的工具:十进位置制。17世纪初,德国人鲁道夫用了几乎一生的时间钻研这个问题。他也将新的十进制与早的阿基米德方法结合起来,但他不是从正六边形开始并将其边数翻番的,他是从正方形开始的,一直推导出了有262条边的正多边形,约4,610,000,000,000,000,000边形!这样,算出小数35位。为了记念他的这一非凡成果,在德国圆周率 π 被称为“鲁道夫数”。但是,用几何方法求其值,计算量很大,这样算下去,穷数学家一生也改进不了多少。到鲁道夫可以说已经登峰造极,古典方法已引导数学家们走得很远,再向前推进,必须在方法上有所突破。 17世纪出现了数学分析,这锐利的工具使得许多初等数学束手无策的问题迎刃而解。 π 的计算历史也随之进入了一个新的阶段。分析法时期 这一时期人们开始摆脱求多边形周长的繁难计算,利用无穷级数或无穷连乘积来算 π 。 1593年,韦达给出这一不寻常的公式是 π 的最早分析表达式。甚至在今天,这个公式的优美也会令我们赞叹不已。它表明仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出 π 值。 接着有多种表达式出现。如沃利斯1650年给出:1706年,梅钦建立了一个重要的公式,现以他的名字命名:再利用分析中的级数展开,他算到小数后100位。 这样的方法远比可怜的鲁道夫用大半生时间才抠出的35位小数的方法简便得多。显然,级数方法宣告了古典方法的过时。此后,对于圆周率的计算像马拉松式竞赛,纪录一个接着一个: 1844年,达塞利用公式:算到200位。 19世纪以后,类似的公式不断涌现, π 的位数也迅速增长。1873年,谢克斯利用梅钦的一系列方法,级数公式将 π 算到小数后707位。为了得到这项空前的纪录,他花费了二十年的时间。他死后,人们将这凝聚着他毕生心血的数值,铭刻在他的墓碑上,以颂扬他顽强的意志和坚韧不拔的毅力。于是在他的墓碑上留下了他一生心血的结晶: π 的小数点后707位数值。这一惊人的结果成为此后74年的标准。此后半个世纪,人们对他的计算结果深信不疑,或者说即便怀疑也没有办法来检查它是否正确。以致于在1937年巴黎博览会发现馆的天井里,依然显赫地刻着他求出的 π 值。 又过了若干年,数学家弗格森对他的计算结果产生了怀疑,其疑问基于如下猜想:在 π 的数值中,尽管各数字排列没有规律可循,但是各数码出现的机会应该相同。当他对谢克斯的结果进行统计时,发现各数字出现次数过于参差不齐。于是怀疑有误。他使用了当时所能找到的最先进的计算工具,从1944年5月到1945年5月,算了整整一年。1946年,弗格森发现第528位是错的(应为4,误为5)。谢克斯的值中足足有一百多位全都报了销,这把可怜的谢克斯和他的十五年浪费了的光阴全部一笔勾销了。 对此,有人曾嘲笑他说:数学史在记录了诸如阿基米德、费马等人的著作之余,也将会挤出那么一、二行的篇幅来记述1873年前谢克斯曾把 π 计算到小数707位这件事。这样,他也许会觉得自己的生命没有虚度。如果确实是这样的话,他的目的达到了。 人们对这些在地球的各个角落里作出不懈努力的人感到不可理解,这可能是正常的。但是,对此做出的嘲笑却是过于残忍了。人的能力是不同的,我们无法要求每个人都成为费马、高斯那样的人物。但成为不了伟大的数学家,并不意味着我们就不能为这个社会做出自己有限的贡献。人各有其长,作为一个精力充沛的计算者,谢克斯愿意献出一生的大部分时光从事这项工作而别无报酬,并最终为世上的知识宝库添了一小块砖加了一个块瓦。对此我们不应为他的不懈努力而感染并从中得到一些启发与教育吗? 1948年1月弗格森和伦奇两人共同发表有808位正确小数的 π 。这是人工计算 π 的最高记录。计算机时期 1946年,世界第一台计算机ENIAC制造成功,标志着人类历史迈入了电脑时代。电脑的出现导致了计算方面的根本革命。1949年,ENIAC根据梅钦公式计算到2035(一说是2037)位小数,包括准备和整理时间在内仅用了70小时。计算机的发展一日千里,其记录也就被频频打破。1973年,有人就把圆周率算到了小数点后100万位,并将结果印成一本二百页厚的书,可谓世界上最枯燥无味的书了。1989年突破10亿大关,1995年10月超过64亿位。1999年9月30日,《文摘报》报道,日本东京大学教授金田康正已求到2061.5843亿位的小数值。如果将这些数字打印在A4大小的复印纸上,令每页印2万位数字,那么,这些纸摞起来将高达五六百米。来自最新的报道:金田康正利用一台超级计算机,计算出圆周率小数点后一兆二千四百一十一亿位数,改写了他本人两年前创造的纪录。据悉,金田教授与日立制作所的员工合作,利用目前计算能力居世界第二十六位的超级计算机,使用新的计算方法,耗时四百多个小时,才计算出新的数位,比他一九九九年九月计算出的小数点后二千六百一十一位提高了六倍。圆周率小数点后第一兆位数是二,第一兆二千四百一十一亿位数为五。如果一秒钟读一位数,大约四万年后才能读完。 不过,现在打破记录,不管推进到多少位,也不会令人感到特别的惊奇了。实际上,把 π 的数值算得过分精确,应用意义并不大。现代科技领域使用的 π 值,有十几位已经足够。如果用鲁道夫的35位小数的 π 值计算一个能把太阳系包围起来的圆的周长,误差还不到质子直径的百万分之一。我们还可以引美国天文学家西蒙·纽克姆的话来说明这种计算的实用价值: “十位小数就足以使地球周界准确到一英寸以内,三十位小数便能使整个可见宇宙的四周准确到连最强大的显微镜都不能分辨的一个量。” 那么为什么数学家们还象登山运动员那样,奋力向上攀登,一直求下去而不是停止对 π 的探索呢?为什么其小数值有如此的魅力呢? 这其中大概免不了有人类的好奇心与领先于人的心态作怪,但除此之外,还有许多其它原因。1、它现在可以被人们用来测试或检验超级计算机的各项性能,特别是运算速度与计算过程的稳定性。这对计算机本身的改进至关重要。就在几年前,当Intel公司推出奔腾(Pentium)时,发现它有一点小问题,这问题正是通过运行 π 的计算而找到的。这正是超高精度的 π 计算直到今天仍然有重要意义的原因之一。 2、 计算的方法和思路可以引发新的概念和思想。虽然计算机的计算速度超出任何人的想象,但毕竟还需要由数学家去编制程序,指导计算机正确运算。实际上,确切地说,当我们把 π 的计算历史划分出一个电子计算机时期时,这并非意味着计算方法上的改进,而只是计算工具有了一个大飞跃而已。因而如何改进计算技术,研究出更好的计算公式,使公式收敛得更快、能极快地达到较大的精确度仍是数学家们面对的一个重要课题。在这方面,本世纪印度天才数学家拉马努扬得出了一些很好的结果。他发现了许多能够迅速而精确地计算 π 近似值的公式。他的见解开通了更有效地计算 π 近似值的思路。现在计算机计算 π 值的公式就是由他得到的。至于这位极富传奇色彩的数学家的故事,在这本小书中我们不想多做介绍了。不过,我希望大家能够明白 π 的故事讲述的是人类的胜利,而不是机器的胜利。 3、还有一个关于 π 的计算的问题是:我们能否无限地继续算下去?答案是:不行!根据朱达偌夫斯基的估计,我们最多算1077位。虽然,现在我们离这一极限还相差很远很远,但这毕竟是一个界限。为了不受这一界限的约束,就需要从计算理论上有新的突破。前面我们所提到的计算,不管用什么公式都必须从头算起,一旦前面的某一位出错,后面的数值完全没有意义。还记得令人遗憾的谢克斯吗?他就是历史上最惨痛的教训。 4、于是,有人想能否计算时不从头开始,而是从半截开始呢?这一根本性的想法就是寻找并行算法公式。1996年,圆周率的并行算法公式终于找到,但这是一个16进位的公式,这样很容易得出的1000亿位的数值,只不过是16进位的。是否有10进位的并行计算公式,仍是未来数学的一大难题。 5、作为一个无穷数列,数学家感兴趣的把 π 展开到上亿位,能够提供充足的数据来验证人们所提出的某些理论问题,可以发现许多迷人的性质。如,在 π 的十进展开中,10个数字,哪些比较稀,哪些比较密? π 的数字展开中某些数字出现的频率会比另一些高吗?或许它们并非完全随意?这样的想法并非是无聊之举。只有那些思想敏锐的人才会问这种貌似简单,许多人司空见惯但却不屑发问的问题。 6、数学家弗格森最早有过这种猜想:在 π 的数值式中各数码出现的概率相同。正是他的这个猜想为发现和纠正向克斯计算 π 值的错误立下了汗马功劳。然而,猜想并不等于现实。弗格森想验证它,却无能为力。后人也想验证它,也是苦于已知的 π 值的位数太少。甚至当位数太少时,人们有理由对猜想的正确性做出怀疑。如,数字0的出现机会在开始时就非常少。前50位中只有1个0,第一次出现在32位上。可是,这种现象随着数据的增多,很快就改变了:100位以内有8个0;200位以内有19个0;……1000万位以内有999,440个0;……60亿位以内有599,963,005个0,几乎占1/10。 其他数字又如何呢?结果显示,每一个都差不多是1/10,有的多一点,有的少一点。虽然有些偏差,但都在1/10000之内。 7、人们还想知道: π 的数字展开真的没有一定的模式吗?我们希望能够在十进制展开式中通过研究数字的统计分布,寻找任何可能的模型――如果存在这种模型的话,迄今为止尚未发现有这种模型。同时我们还想了解: π 的展开式中含有无穷的样式变化吗?或者说,是否任何形式的数字排列都会出现呢?著名数学家希尔伯特在没有发表的笔记本中曾提出下面的问题: π 的十进展开中是否有10个9连在一起?以现在算到的60亿位数字来看,已经出现:连续6个9连在一起。希尔伯特的问题答案似乎应该是肯定的,看来任何数字的排列都应该出现,只是什么时候出现而已。但这还需要更多 π 的数位的计算才能提供切实的证据。 8、在这方面,还有如下的统计结果:在60亿数字中已出现连在一起的8个8;9个7;10个6;小数点后第710150位与3204765位开始,均连续出现了七个3;小数点52638位起连续出现了14142135这八个数字,这恰是的前八位;小数点后第2747956位起,出现了有趣的数列876543210,遗憾的是前面缺个9;还有更有趣的数列123456789也出现了。 如果继续算下去,看来各种类型的数字列组合可能都会出现。拾零: π 的其它计算方法在1777年出版的《或然性算术实验》一书中,蒲丰提出了用实验方法计算 π 。这个实验方法的操作很简单:找一根粗细均匀,长度为 d 的细针,并在一张白纸上画上一组间距为 l 的平行线(方便起见,常取 l = d/2),然后一次又一次地将小针任意投掷在白纸上。这样反复地投多次,数数针与任意平行线相交的次数,于是就可以得到 π 的近似值。因为蒲丰本人证明了针与任意平行线相交的概率为 p = 2l/πd 。利用这一公式,可以用概率方法得到圆周率的近似值。在一次实验中,他选取 l = d/2 ,然后投针2212次,其中针与平行线相交704次,这样求得圆周率的近似值为 2212/704 = 3.142。当实验中投的次数相当多时,就可以得到 π 的更精确的值。 1850年,一位叫沃尔夫的人在投掷5000多次后,得到 π 的近似值为3.1596。目前宣称用这种方法得到最好结果的是意大利人拉兹瑞尼。在1901年,他重复这项实验,作了3408次投针,求得 π 的近似值为3.1415929,这个结果是如此准确,以致于很多人怀疑其实验的真伪。如美国犹他州奥格登的国立韦伯大学的L·巴杰就对此提出过有力的质疑。 不过,蒲丰实验的重要性并非是为了求得比其它方法更精确的 π 值。蒲丰投针问题的重要性在于它是第一个用几何形式表达概率问题的例子。计算 π 的这一方法,不但因其新颖,奇妙而让人叫绝,而且它开创了使用随机数处理确定性数学问题的先河,是用偶然性方法去解决确定性计算的前导。 在用概率方法计算 π 值中还要提到的是:R·查特在1904年发现,两个随意写出的数中,互素的概率为6/π2。1995年4月英国《自然》杂志刊登文章,介绍英国伯明翰市阿斯顿大学计算机科学与应用数学系的罗伯特·马修斯,如何利用夜空中亮星的分布来计算圆周率。马修斯从100颗最亮的星星中随意选取一对又一对进行分析,计算它们位置之间的角距。他检查了100万对因子,据此求得 π 的值约为3.12772。这个值与真值相对误差不超过5%。 通过几何、微积分、概率等广泛的范围和渠道发现 π ,这充分显示了数学方法的奇异美。 π 竟然与这么些表面看来风马牛不相及的试验,沟通在一起,这的确使人惊讶不已。

数学史是研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系的一门科学。数学的发展决不是一帆风顺的,数学史是数学家们克服困难和战胜危机的斗争的记录,是蕴涵了丰富的数学思想的历史。无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明等等,无一不是经历了曲折艰难最终探索出来的。这样的例子在数学史上不胜枚举。在此奋斗的过程中所蕴涵的深刻的哲理,也不是通过学习通常的教科书中被“包装”过的定理就能轻而易举得到的。有一位学者曾收集了九百余条关于数学本质的言论,著成《数学家谈数学本质》一书。书中的各家众说纷纭,观点各不相同,但数学家们都认为对数学史的了解,包括对一些杰出的数学家的生平与事迹的了解会有助于吸收各种不同的数学经验,理解各种不同的数学思想观点,探求数学的本质。由此可见,数学史并不是单纯的数学成就的编年记录。 那么是不是只有研究数学的人才需要了解数学史呢?或者说了解了数学史只是对学习和研究数学的人才有好处呢? 数学科学作为一种文化,不仅是整个人类文化的重要组成部分,而且始终是推进人类文化的重要力量。它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也是密不可分的,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。对于每一个希望了解整个人类文明史的人来说,数学史是必读的篇章。著名的哲学家A.Whitehead在批评以往思想史家们忽视数学的地位时,曾打了一个比喻来说明数学是人类思想史的要素之一。他说:“假如有人说:编著一部思想史而不深刻研究每一个时代的数学概念,就等于是在《哈姆雷特》这一剧本中去掉了哈姆雷特这一角色,这一说法也许太过分了,我不愿说的这样过火。但这样做却肯定地等于是把奥菲莉这一角色去掉了。奥菲莉对整个剧情来说,是非常重要的[2]。”他仅是就思想史而言。实际上我们可以说:不了解数学史,就不可能全面了解整个人类文明史。 研究数学史对数学自身的发展所起的作用也是不可估量的。众所周知,2000年荣获首届国家最高科学技术奖的吴文俊院士是数学机械化研究的倡导者。他在示性类和示嵌类研究中取得了根本重要性的结果,在多种问题中被广泛应用。他提出的用计算机证明几何定理的方法,与常用的基于数理逻辑的方法根本不同,显现了无比的优越性,改变了国际上自动推理研究的面貌,被称为自动推论领域的先驱性工作,并因此获得Herbrand自动推论杰出成就奖。吴文俊教授在分析所取得的成绩时指出,“我们是遵循我国古代机械化数学的启示,把几何代数化,把非机械化的几何定理证明转化为多项式方程的处理,从而实现了几何定理的机器证明。”像这样认真研究数学思想将之用以指导数学研究并取得重大成绩的例子不胜枚举。即使对于高等数学的教学来说,数学史所起的作用也是不可低估的。 如果将整个数学比作一棵大树,那么初等数学是树根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。由此体现出了微积分的重要性以及它和各科之间的关系。因此,《微积分》总是作为高等院校理工类的一门重要的必修课。一般制订为两学期教学计划。它包含了微分学,积分学,空间解析几何,无穷级数和常微分方程的基础知识。我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。并由于受传统教学课时和内容上的安排的影响,高等数学的教学往往存在课时少,内容多的矛盾。所以,广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注意进行数学知识的传授,忽视了数学的思想性和趣味性。当代著名数学家Courant曾指出:“微积分,或者数学分析,是人类思维的伟大成果之一。它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具。遗憾的是,微积分的教学方法有时流于机械,不能体现出这门学科乃是一种撼人心灵的智力奋斗的结晶。” 作为高等数学的教师,我们也有过这样的经验,虽然仔细备课全面讲解下来,却发现教学效果并不理想,对一些抽象的概念难以理解,普遍反映听不懂。长此以往,个别同学甚至失去了能学好高等数学的信心,对学习失去了兴趣。经过几代人对高等数学教学方法的不断研究,数学史在高等数学教学中的所起的作用已被大家所认可。那些认为在教学中讲述数学史是华而不实的多余之举,是在浪费时间,任为应该多把“宝贵的时间”用在习题训练上的思想已经成为过去。在教师教学里,引进与主题相关的数学史题材,对学生的学习会有很正面的意义,不仅能调动了同学们的学习热情,尤其能协助学生将抽象观念具体化。因为不论在科技应用层面或思想突破方面,数学重要概念的演进确有其实用面的意义,因此具有启发性的数学史方面的教学实属必要。 基于以上的认识,近来,关于这方面已经取得了不少的研究成果。国内,国际上的交流活动也日益频繁。在一些学校已经将数学史设为一门选修课。系统的介绍数学的起源与发展。这对高等数学的教学起到了很好的辅助作用。但是由于这方面人材的短缺,也有一些学校并不能开出这门选修课。再者作为一门单独的选修课,它要系统的体现出数学的起源与发展,并不能做到与高等数学所授内容适时匹配。所以,这就要求我们广大教授高等数学的教师在平时高等数学的教学中就应该做到与数学史的有机结合。 怎样才能在繁重的教学任务和紧张的课堂教学时间里将数学知识的传授和数学史的介绍有机的结合起来呢?怎样才能在有限的课堂时间里既做到保证了教学任务的完成又做到通过数学史的介绍提升了大家的学习兴趣,传递了数学思想呢? 综观历史发展的长河,重要思想的诞生离不开重要的人物。对数学的发展也是如此。德国著名数学家H.Weyl说过:“如果不知道各位前辈所建立和发展的概念,方法和成果,我们就不能理解近50年数学的目标,也不能理解它的成就。”由此可见,研究数学人物在数学史的研究中的重要性。 在高等数学的教材中我们会接触到一些根本重要性的定理和概念。如“牛顿——莱布尼兹定理”、“拉格朗日中值定理”、“富里叶三角级数等等。”这些定理和概念的学习不仅对于学习高等数学知识来说是重要的,并且对于提高数学素质也是及其必要的。它们是微积分的精华,是高等数学教学的必讲内容。这些定理和概念大都是以重要数学人物的名字命名的。他们也恰恰是微积分的创立者和先驱们。这就提醒了广大教师,在课堂教学过程中适当的加入先驱们的生平和业绩的介绍就不仅能在有限的时间里完成我们的教学任务还可以起到提升大家的学习兴趣,传递了数学思想的作用。对我们的课堂教学起到了画龙点睛的作用。 牛顿[3](1642~1727)是英国数学家、物理学家、天文学家。他出身于农民家庭。1661年考入剑桥大学三一学院。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明,微积分,万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”牛顿的微积分理论主要体现在《运用无穷多项方程的分析学》、《流数术和无穷级数》、《求曲边形的面积》三部论著里。在《运用无穷多项方程的分析学》这一著作里,他给出了求瞬时变化率的普遍方法,阐明了求变化率和求面积是两个互逆问题,从而揭示了微分与积分的联系,即沿用至今的所谓微积分的基本定理。在《流数术和无穷级数》里,牛顿对他的微积分理论作出了更加广泛而深入的说明。例如,他改变了过去静止的观点,认为变量是由点、线、面连续运动而产生的。而在《求曲边形的面积》这一篇研究可积曲线的经典文献里,牛顿试图排除由“无穷小”造成的混乱局面。把求极限的思想方法作为微积分的基础在这里已出露端倪。牛顿还曾说过:“如果我之所见比笛卡儿等人要远一点,那只是因为我是站在巨人肩上的缘故。” 莱布尼兹[3](1646~1746)是德国数学家、自然主义哲学家、自然科学家。他的第一篇微分学论文《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》是历史上最早公开发表的关于微分学的文献。他也是历史上最伟大的符号学家。他曾说:“要发明,就得挑选恰当的符号,要做到这一点,就要用包义简明的少量符号来表达或比较忠实地描绘事物的内在本质,从而最大限度减少人的思维劳动。”例如,dx、dy、∫、log等等,都是他创立的。他的优越的符号为以后分析学的发展带来了极大的方便。 以上只是我们在浩瀚的数学人物的海洋中,采摘的两颗最耀眼的明珠,对他们的生平与业绩只进行了一些简介。这些内容的介绍在课堂上占用不了多少“宝贵”的时间,然而通过这些,使我们活生生的看到了数学的发展是曲折的,一个重要概念的产生是离不开实际问题的,只有对实际问题进行精力的思索,就可以找出问题的本质,抽象出数学思想。还有作者在解决实际问题时频繁运用的“无穷小”、“流数”等概念,使我们体会到正确、熟练掌握基本概念对于理解数学思想的重要性。对于平时我们视为枯燥的数学符号,却正是它是最直接、最简练表达数学思维的工具。并且从先驱们的言行里我们能感受到科学家的治学态度和对知识的执着追求,这往往能激发大家刻苦钻研,勇往直前的奋斗精神。 最后,我们相信,作为高等数学的教师,我们的目的不仅是为大家传授数学知识,更重要的是使大家在学习数学知识的过程中掌握数学思想,提高大家的数学素养。将数学史与数学知识的传授有机地结合起来就能很好地达到以上的目的。经过多年的教学实践,在高等数学的教学中适时地加入数学人物的介绍就能对高等数学的教学起到很好的辅助作用。我们相信,对于高等数学的教师,如果熟悉了数学人物的生平、业绩、治学态度、治学方法、趣闻轶事等等,对高等数学的教学来说有百利而无一害,一定会把高等数学讲授得更生动、有趣和富有哲理。而对于很多正在学习高等数学的学生,一旦了解了这些数坛前辈们的学术成就和道德风范,也必将从中受到鼓舞,继而提高学习兴趣,做出更大的成绩。

关于圆周率论文范文资料

分数分别产生于测量及计算过程中。在测量过程中,它是整体或一个单位的一部份;而在计算过程中,当两个数(整数)相除而除不尽的时候,便得到分数。 一般可分为五期: 上古期:(2700B.C.~200B.C.)对数学有所创见的有伏羲氏、黄帝、隶首、缍等人。其成就归纳如下: 1. 结绳:最古的记数方法,传为伏羲所创。 2. 书器:一种最古的记数工具,传为隶首所创。 3. 河图,洛书:相传分别为伏羲、夏禹所作,是为最初的魔方阵。 4. 八卦:传为周公所创,是最初的二进制法。 5. 规矩:传为伏羲或缍所创,用以作方圆,测量田地与勘测水道。 6. 几何图案:在金石陶器、石器时代的陶片、周秦时代的彝器已有简单 的几何图形出现,其种类不下数十种。 7. 九九:即个位数乘法表,传为伏羲所创。古代数学家以九九之术作为初等数学的代表。 8. 技术方法:当时是以累积之方法记数,已有百……亿,兆等大数产生,都是以十进制的;也已有分数的产生。当时盛行的筹算,演变为后来的珠算术。 9. 算学教育:周朝时,把算数列为六艺之一,再小学时就受以珠算。 初等数学在此时期已有相当基础,算数与几何由于人类实际生活的需要已初步形成,但并无形成一定逻辑关联的系统。 中古期:(200B.C.~600A.D.由汉至隋)中国数学家对于算学已有可考据的著作。 1. 而对圆周率寄算最有成就者为祖冲之。所得结果比之西方早一千多年。 2. 算经十书的编篡: 算经十书为:周髀,九章算术,孙子算经,张丘健算经,夏侯阳算经,五曹算经,海岛算经,五经算术,辑古算经及缀术,后因缀术亡失,而已数术记遗代之;其中辑古算经在唐朝才完成。此时期的数学成就,可以从这十本算经中之其概略。数学成就可归纳为以下各点: (1)分数论的应用 (2)整数勾股形的计算 (3) 平方零约数:已建立开方的方法有两种 (4)方程论:已有联立一次方程的解法。九章算数方程章为世界最早包含不只一个未知 数的算 式和联立方程组概念,并产生了正负数的概念。 (5)平面立体形的计算:一切直线图的面积和体积公式皆正确;圆面积、球体积为近似公式 (6)级数论上的成就:已有等差、等比问题产生。 (7)数论上的成就:孙子算经上的「物不知数」是一次同余式问题,由此以后所推广的中国剩余定理比西洋早了一千多年。 (8)数学教育制度的建立 近古期:(600A.D.~1367A.D.由唐到宋元) 分为前后两期,各以唐及宋元为代表。可以说是中国数学史的黄金时代;数学教育制度更臻完善,民间研究数学的风气很盛。数学成就归纳如下: (1) 代数学上的成就:中国古代数学家很早就知道利用代数方法解决实际问题;这时期天元术的产生促使代数学向前发展,使其成为更完整的数学体系。其它数学也获得更进一步的发展。数学家们掌握天元术之后,很快地把它应用到多元高次方程组而产生所谓的四元术;并利用天元术开方。开方数也推广到多乘方,比西洋数学家的发现早约五百年。求数学高次方程的正根方法也已建立起理论根据。 (2) 几何学与三角学的成就:割圆术得到进一步的推广,除了平面割圆术外,球面割圆术也已产生,球面三角由此而初步建立起来。 (3) 数论上的成就:一次同余的理论基础扩大了应用范围,有八次联立一次同余式的问题出现,在整数论上是一个伟大的成就。所用解一次同余式的方法为有名的辗转相除法,即西方数学家所谓欧几里得算法。 (4) 级数论上的成就:级数论在世界数学史上有着悠久的历史,中算家所论述的在此中占有一定位子。由高阶等差级数研究中发明了招差数、垛积数。 (5) 纵横图说的研究:一些有名的纵横图(所谓方阵图)已经产生。 由以上所述,可以看出,有系统的代数学已建立起来,更多的数学方法与数学概念也得到更进一步的推广与发展。 婆罗门、天竺数学输入中国,但中国的数学并没有受到影响;同时中国的数学也输入了百济和日本。 近世纪:(1367A.D.~1750A.D.明初到清初) 为中国算学衰落时期,统治者对数学教育不注重,民间研习数学风气不盛。 回回历法在元末明初输入中国,至明末,应用回回历法已近尾声。自利玛窦至中国之后,西洋历法、西洋数学也随之输入中国。当时还有人研究中算,但由于中算不如西算的简明有系统,故中国古算陷入停顿状态而得不到新的发展。 西洋数学输入的有笔算、筹算、代数学、对数术、几何学、平面及球面三角术、三角函数表、比例对数表、割圆术及圆锥曲线说。 著名的天元术停滞不前,珠算随着实际生活的需要而产生,很多有关珠算实用算数书陆续出版;珠算术的发明是中算的革命、我国的伟大成就。 清初的一些大数学家都致力于西洋数学的研究,编写了数学各科的入门书籍。中国数学输入朝鲜及把元明数学输入日本。 最近世期:(1750A.D.~1910A.D.清干隆三十七到清末) 西算输入告一段落。这时学术潮流偏向古典考证一路发展,数学研究也转到古代数学方面去,对算经十书与宋元算书加以传刻与研讨到达最高峰。当时数学家很多都能兼通中西数学,在高等数学方面获得相当的成就。 对圆周率解析法作深入的探讨,级数论、方程论及数论得到进一步的研究,理论更臻完善。对中算史加以研究与着成专书。数学教育制度重新建立起来。此期末,西方数学第二次输入中国,以补中算的不足,中国数学在此又进入另一阶段。

关于圆周率估算的研究性论文

π的历史 圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母π 来表示。1706年,英国人琼斯首次创用π 代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π 已成为圆周率的专用符号, π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。 在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将 π值改为 (约为3.16)。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π 值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得π 值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。 公元460年,南朝的祖冲之利用刘徽的割圆术,把π 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替π ,极大地简化了计算,这种思想比西方也早一千多年。 祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π 值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为卢道夫数。 之后,西方数学家计算 π的工作,有了飞速的进展。1948年1月,费格森与雷思奇合作,算出808位小数的π 值。电子计算机问世后, π的人工计算宣告结束。20世纪50年代,人们借助计算机算得了10万位小数的 π,70年代又突破这个记录,算到了150万位。到90年代初,用新的计算方法,算到的π 值已到4.8亿位。π 的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。

π=3.1415926……这是我们再熟悉不过的数字。最近,麻省理工学院的科学家却算出π≈3.115——一个明显偏离了正确答案的数字,而且这个毫无精确度可言的结果,还被写成了论文。

不用惊讶,这位天体物理学家的真正目的不是让π值更精确,而是从引力波中寻找π,进而验证广义相对论。

撰文 | 丹尼尔·加里斯托(Daniel Garisto)

翻译 | 王语嫣

至少在3700年前,巴比伦的数学家就估算出了圆的周长和直径之间的比值。他们将答案镌刻在一块朴素的泥板上:25/8,也就是3.125。最近,麻省理工学院的理论天体物理学家卡尔-约翰·哈斯特(Carl-Johan Haster)也得到了类似的结果:在一篇预印本论文中,他将π的值计算到了 3.115左右 。

等会……这个数值,似乎与我们记忆中π的数值有一些差距。近些年来,科学家利用高性能的计算机将π精确到了小数点后近500万亿位。虽然靠后的位数你可能不清楚,但对于3.1415926……,你一定背得滚瓜烂熟。哈斯特的估算,从精确度上来讲,可能落后了几千年。然而,精确度也的确不是他计算的目的——他真正的目的,是 通过π值检验爱因斯坦的相对论,这个将引力与时空结合起来的理论。

当两个大质量物体(比如黑洞)碰撞时,在时空中产生的涟漪就是引力波。引力波中暗含了大量关于物理定律的信息。哈斯特作为LIGO团队的成员,注意到π在描述波传播的函数中多次出现。

“卡尔的思路是,‘你看,这些函数都和π有关。所以咱们干脆把π变化一下,然后看看结果(和广义相对论)是否一致。’” 约翰·霍普金斯大学的理论物理学家埃马努埃莱·贝尔蒂(Emanuele Berti)说。

哈斯特想到,可以把π看作一个变量,而不是常数。这样,他就可以比较引力波方程与LIGO 的实验结果。理论上来讲,只有当π接近其原本的值(约为3.14)的时候,爱因斯坦的理论才能够与观测结果一致。 如果LIGO的观测在π等于其他值的情况下也符合广义相对论,那或许说明广义相对论还不够成熟。

哈斯特将π的测试范围定在了-20~20,并对比了20余起已观测到的引力波事件。他最终发现, π大约为3.115时,观测结果和理论相吻合 ,这一结果与π的实际数值相近。这样看来,爱因斯坦的理论并没有什么问题。“在我看来,这项研究可爱又迷人,同时还为广义相对论提供了相当有力的证明。”哈斯特说。

π无处不在,它不仅出现在圆中,还与氢原子的能级和针落下的方式有关(布丰投针问题:如果将一把针撒落在一张画有等间距横线的纸上,针掉落在线上的概率与π相关)。π出现在引力波的方程中的原因则更复杂一些: 引力波与其自身相互干渉。

“引力波在传播时,会遇上时空弯曲,其中就包括引力波之前所造成的弯曲。”贝尔蒂说。就好像朝平静的水面扔一块石头,涟漪就会在水面上传播开来;如果此时再扔一块石头,水波就会发生变化——上一块石头造成的涟漪与这块石头的发生了干涉。引力波的原理与此类似,只是介质不是水,而是时空本身。

描述这种自相干现象的方程中也出现了π。在2016年LIGO对爱因斯坦理论的检验中,他们只改变了单一项,而不是π这样的公因子。尽管2016年的研究足以验证爱因斯坦的广义相对论,但科学家还是想知道当方程中的几项同时变化时会有什么结果,而哈斯特的研究正好提供了一种方法。

然而,这个证明的确还存在一些问题。其中之一就是哈斯特的结果存在较大误差:他对π的估计值大约在3.027到3.163之间。要得到更精确的答案,需要观测质量更轻的物体的合并事件,比如中子星合并,这类事件所产生的引力波波长是黑洞合并所产生的300倍。就好比听一首歌,听得时间越长,认出这首歌的可能性就越高。目前,科学家只观测到两次中子星合并事件。而在因疫情而暂时关闭的LIGO重启之前,这个数字都不会改变。

尽管该研究结果精度不足,并不是每个人都对此表示担心。“有些人说我们或许应该把‘圆周率日’(3月14日)改成‘圆周率周’(3月2日-3月15日),以代表现有的误差。”西北大学的天体物理学家克里斯·贝里(Chris Berry)开玩笑地说,他也是此项研究和LIGO团队的一员。

当然,随着这项研究即将正式发表,那些爱好圆周率的物理学家们又可以“饱餐一顿”了。贝里开玩笑地说,“多多产粮”并不是一件坏事:至少盛宴过后,研究者们又多了种估算圆周率的新方式——测量自己圆润的体型。

原文链接:

本文由微信公众号“环球科学”(ID:huanqiukexue)授权转载

转载请先联系

古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。阿基米德用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;鲁道夫用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其它公式和由这些经典公式衍生出来的公式,就不一一列举了。

1、马青公式

π=16arctan1/5-4arctan1/239

这个公式由英国天文学教授约翰·马青于1706年发现。他利用这个公式计算到了100位的圆周率。马青公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。

还有很多类似于马青公式的反正切公式。在所有这些公式中,马青公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,马青公式就力不从心了。

2、拉马努金公式

1914年,印度天才数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。

1989年,大卫·丘德诺夫斯基和格雷高里·丘德诺夫斯基兄弟将拉马努金公式改良,这个公式被称为丘德诺夫斯基公式,每计算一项可以得到15位的十进制精度。1994年丘德诺夫斯基兄弟利用这个公式计算到了4,044,000,000位。丘德诺夫斯基公式的另一个更方便于计算机编程的形式是:

3、AGM(Arithmetic-Geometric Mean)算法

高斯-勒让德公式:

这个公式每迭代一次将得到双倍的十进制精度,比如要计算100万位,迭代20次就够了。1999年9月,日本的高桥大介和金田康正用这个算法计算到了圆周率的206,158,430,000位,创出新的世界纪录。

4、波尔文四次迭代式:

这个公式由乔纳森·波尔文和彼得·波尔文于1985年发表的。

5、bailey-borwein-plouffe算法

这个公式简称BBP公式,由David Bailey, Peter Borwein和Simon Plouffe于1995年共同发表。它打破了传统的圆周率的算法,可以计算圆周率的任意第n位,而不用计算前面的n-1位。这为圆周率的分布式计算提供了可行性。

6、丘德诺夫斯基公式[1]

这是由丘德诺夫斯基兄弟发现的,十分适合计算机编程,是目前计算机使用较快的一个公式。以下是这个公式的一个简化版本:

<算法设计与分析> 这类书上有的.

数学论文圆结尾

曾经有数学家说:圆是最完美的形状.在日常生活中也有许多地方要用圆:汽车、火车的轮子都是圆的,我们在搬重物的时候可以把物体放在圆柱或圆管上.有其他形状可以代替圆吗?在不断的探索失败和进一步探索中,我逐渐发现了一个与圆有着许多相似作用的图形——“等宽曲线”.并在这次数学的探索之旅中体会到了探求数学之谜的艰辛,感受到了探索成功的喜悦.一、问题的提出:大街上车水马龙,车来车往,每一辆汽车的轮子都是圆的;我们在搬重物的时候,会把物体放在圆柱或圆管上.看到这些,我非常疑惑:为什么它们都是圆的而不是其他形状的呢?这个问题困扰我很久,直到这个学期我们学习“圆”这一课时,老师在课件中为我们演示了三角形轮子与正方形轮子的可笑表演后,我才明白:把车轮做成圆形,车轴安在圆心上,车轴离开地面的距离,就总是等于车轮半径那么长.这样车轮在地面上就容易滚动了.假如这个轮子是方形、三角形的,从轮缘到轮子圆心的距离各不相等,那么,这种车子走起来,一定会忽高忽低,震动的很厉害.因此车轮都是圆的,搬东西时我们也会选择圆管垫在下面.可我还是在想:真的只有是圆吗?有没有其他形状可以代替圆呢?二、思考与探索:趁着周末,我找了一辆玩具车、一块泡沫板、小刀等,开始了我的探索之旅.1、第一次探索:增加边数我注意到在课件中正方形的轮子虽然也颠簸,但比三角形的轮子平稳了很多,于是我想:如果把轮子做成正六边形,会不会更平稳呢?于是,我做了四个正六边形的轮子,试了试,果然平稳多了.我不由得兴奋起来:只要把边数做得更多,不就更平稳了吗?我开始在脑子里幻想“轮子边数越来越多,车子越来越平稳”的情形,可是想着想着,我觉得不对劲了:边数不断增多,不就慢慢变成圆了吗?这和“圆的面积”中学到的“分的份数越多,拼成的图形就越接近平行四边形”是一个道理啊,这应该就是老师说的“极限”吧.想到这儿,我有些沮丧:这个方法行不通.2、第二次探索:圆的模仿秀一计不成,再生一计.我又想:轮子之所以做成圆的,是因为中心到周围的距离都是一样的.三角形和正方形的轮子会颠簸则是因为中心到边上的距离比到顶点短,如果我们增加中心到边上的距离,使它们一样长,不就行了吗?想到这儿,我画了一个正三角形,找到它的中心(三条中线的交点),以它为圆心,以中心到顶点的长度为半径,分别画了三段弧.我心中暗暗得意,这样一来,距离不就相等了吗?可画好后一看,我不由得傻眼了:它就是一个圆啊!我不死心,又画了一个正方形,找出中心,画了四段弧.结果,还是一个圆.看来,此路不通.3、第三次探索:换个圆心第二次的失败让我体会到:不能把原来的中心作为圆心,因为这样会让它变成圆.那么圆心定在哪儿比较合适呢?看着面前的几个图形,一个念头油然而生:用顶点作圆心如何?说干就干,我先画了一个正三角形,再将它的三个顶点分别作为圆心,以边长为半径,分别作了三段弧.于是一个怪模怪样的家伙就“诞生”了.我迫不及待地做了四个这样的轮子,试验的结果却让我的满腔希望化为泡影:这种轮子比三角形、正方形、正六边形等平稳了很多,但还是上下起伏,没有达到圆形轮子的效果.4、爸爸的怪主意:接二连三的失败让我非常沮丧,我心灰意冷地呆坐在那儿,一种山穷水尽的感觉涌上心头:也许真的只有圆才能做轮子.爸爸注意到了我沮丧的表情,走过来询问我,我强打精神向他倾述了我的疑惑与几次尝试,希望爸爸能给我出个主意.爸爸边听边饶有兴趣地看着我的“杰作”,过了许久才说:“你的想法都很好,失败了也不要紧,而且你的这个作品很有趣.”他指着我最后做出的怪模怪样的家伙说,“你拿块木板放在它上面试试,注意:要直接放在轮子上,别放在轴上.”“什么?直接放在轮子上?”我简直不相信自己的耳朵,“这真是个怪想法.”尽管心中疑惑,但我相信爸爸不会无缘无故地这么说,于是就照着做了,做好后我推着它前进了一段.怪了!小车是平的!小车居然走得很平稳!就和车轮是圆形的一样平稳!我跳起来,惊讶地看着爸爸,希望他能给我一个答案.爸爸看着我惊愕的表情,呵呵笑着说:“你小子不简单,你“创造”的这个东西叫等宽曲线,有兴趣的话可以上网去找找相关的资料.”三、答案与新的疑惑:我迫不及待地上网查找资料,在网上,我找到了等宽曲线的解释:“等宽曲线是指非圆的等宽曲线,一条相对于“支持线”之间的距离为一固定常数的封闭曲线,当形状为等宽曲线的轮子作水平滚动时,其表现为最高点的高度保持不变.”确实如此,只有当它滚动时最高点不变,才能象刚才这样让小车保持稳定.更让我意外和惊喜的是:等宽曲线也可以当轮子!下面是我在网络上看到的文章和图片:操作:按下启动按钮,观察车轮为等宽曲线形状的小车的运行状况.原理:车轮并非一定要做成圆的,形状近似于“三角形”的等宽曲线车轮,也能使车子平稳行驶.如果在等宽曲线上作两根平行线与之相切,不管瞄在什么位置,夹在这两根平行线之间的距离都相等.所以,当形状为等宽曲线的轮子作水平滚动时,其表现为最高点的高度保持不变.通过本展品的演示,能形象地揭示等宽曲线的奇妙特性及与圆的内在联系,引起观众突破常规的思维方式. 几经周折,终于找到了圆的代替图形——“等宽曲线”,这让我非常高兴,在这次数学的探索之旅中,我既体会到了探求数学之谜的艰辛,又感受到了探索成功的喜悦.这种感觉正像数学家陈省声爷爷说的:数学真好玩!欣喜之余,一个新的疑问慢慢浮现出来:这辆小车的车轴显然不能在中心位置,那它在哪儿呢?

Then he held it with his hands trying.

到处都是 车轮 ...

只要我们留心思考就能发现其中的奥妙,多思考,我们就会有新的发现!

初三数学圆的论文

“圜,一中同长也!”在古时人们对于圆的认识主要是圆心到圆上距离相等,从而做成了车轮等物品,而今圆已成为我们生活中必不可少的模具,人们广泛运用的东西大多由圆构成。毕达哥拉斯说过,一切立体图形中最美的是球形,一切平面图形中最美的是圆形。由此可见

当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。这是我为大家整理的关于圆的学术论文,仅供参考!

无以圆心,何以圆

[摘 要]道德和法律就好比圆心与圆,道德为圆心,法律为圆圈,没有圆心,作不出圆,也没有无圆心的圆,即,没有道德则作不出法律,也没有不以道德为支撑的法律。正所谓“法的生发起点在于道德,法的价值核心也在于道德,从某种意义上说,法就是基本道德的国家强制。”同时“法律的自觉遵守的落脚点实为一种道德自律”。

[关键词]法律;道德;道德支撑

一、道德与法的含义

法就是以权利义务为内容的、具有概括性并且由公共权力机构制定或者认可的、以国家强制力为后盾,通过法律程序保证实现的、用以约束和调整人们日常行为的社会规范。

道德是关于人们思想和行为的善恶、美丑、正义与非正义、公平与偏私、诚实与虚伪、荣誉与耻辱等观念、规范、原则和标准的总和。道德是人们最熟悉的一种社会现象,每个人处处生活在各种道德关系中。它是做人的根本,也是社会文明进步的重要标准之一。[1]

二、简述道德与法的异同

现代意义上的道德就是关于人们思想和行为善恶、美丑、正义与非正义、公正与偏私、诚实与虚伪、荣誉与耻辱等观念、规范,原则和标准的总和,是构建和谐社会重要准则之一。关于法与道德的联系,主要是在本质、功能、内容上存在着相互一致的地方。因此,在构建和谐社会中起直接和间接的作用。对市场经济,政治体制改革都起着规范和引导作用。

三、关于法律的道德支撑问题的分析

(一)自然法学派与实证法学派的主张

1.自然法学派关于法律与道德关系的基本观点

自然法观念成熟于古罗马时期,它的渊源可以追溯到古希腊荷马时代。而在近代,格劳秀斯是第一个比较系统论述自然法问题的思想家,其理论贡献之一在于他把法学从神学中分离出来,使法学摆脱了中世纪神学的桎梏而获得了独立的地位,为人本主义的自然法理论奠定了基础。他的那句“上帝不存在,自然法仍将存在”的名言,廓清了笼罩在自然法问题上的神学迷雾,否定了上帝之永恒法高于自然法的神学法观念。[2]

2.实证法学派对于法律与道德的基本理解

与自然法学派相对立的是实证法学派,在这个问题持有完全不同的见解。他们质疑自然法学派所主张的法律与道德之间的必然联系,认为这种关系只是一种“错觉”。实证主义法学家主张区分“应该”和“是”,认为法理学应当致力于研究法律实际上“是”什么,而不是它“应该”是什么。在道德信仰已然瓦解的情况下,实证主义法学否定法律与道德之间的必然联系、反对将法律作为道德的附庸也就顺理成章。[3]

(二)我国思想家对法律的道德支撑问题的基本主张

1.德治的主张者和法家的主张

一个饶有意味的情形是,德治的操作和论证往往建立在下面两个前提之上:其一,法和道德的工具主义,其共同本质在于不以人为目的;其二,法不具有道德价值和属性。历史上德治主张者主张德治天下,不主张法治于民,认为德为教化,法为刑杀,不益于安享太平和长治久安;尽管两家均有其理,但将法律与道德对峙起来,实为偏激。

2.法治论者的主张

我国古代思想家及统治者们强调道德、礼仪在治理社会中的核心规则作用,这是由自给自足的自然经济形态所决定的。自然经济要求人们固守在土地上,人与土地等不动产的结合是创造财富和人们赖以生存的基本条件,统治者所期望的是一个秩序井然的社会,他们把秩序作为法与道德所追求的首要目标。这突出体现在宪法中明确将尊重社会公德规定为公民的基本义务,民法通则中将公序良俗原则确立为民法的基本原则。[4]

(三)法律的运行过程需要道德支撑

1.立法过程需要道德支撑

道德的法律化是中西立法实践中常见的现象,其实质是把一些道德义务转化为法律义务,把道德原则转化成法律原则。立法产生的法乃是法中极小的一部分,而法律又是道德基础之上的社会规范体系,故此立法过程非常需要道德这一大的环境来支撑。作为良法,一般都要体现正义的追求、对人类幸福的追求、对法治实现的追求。也正因有了道德灌注于法律中并作为精神支柱,法律才有意义和生机。[5]

2.执法与司法过程需要道德支撑

执法与司法过程中主要有两个方面,一是恪守实体法与道德正义的冲突;二是恪守程序法与道德上正义的冲突。执法体系是由不同机关组织的执行法律而构成的互相分工与配合的和谐整体,我国行政执法要求遵循合法性原则、合理性原则、高效率原则、正当程序原则等;司法是国家司法机关依据法定职权和法定程序,具体应用法律处理案件的专门活动,其过程中必须遵循法治原则、平等原则、司法独立原则、司法责任原则等。[6]

四、案例解析

众所周知留日学生机场刺母事件阴霾还未褪尽,学生砍杀父母致一死一伤的血案,为何接连发生这样的恶性事件?究其本质,当事学生游离于社会道德体系之外,原因主要有三:一是我们家长灌输给孩子的思想是“只要学习好,啥都不重要”,这也就滋长了孩子的骄纵之情,让孩子觉得他的一切要求家长都应该满足。二是唯分数论英雄的应试教育疏忽了学生的社会道德培育,自然学生人格塑造也就多了一份功利,少了一些社会责任。三是我们家长与孩子之间缺乏了最起码的沟通,他们认为只要孩子穿得好、吃得好、上的学校好,孩子们就很知足了、很高兴了、很幸福,其实他们跟本不知道孩子们心里是怎么想的,他们最需要什么,这样孩子的人格塑造自然也就出现了短板。[7]

广东“小悦悦事件”之后,有很多人认为健全和完善社会道德的自我救济和相关司法制度成了

当务之急,又有不少人认为道德与法律根本是两个范畴事情,不能靠法律来挽救道德。

笔者认为法律不仅仅是一把利剑,法律和道德更是一条双行线,下面一条是我们所公认的道德底线,以惩处和减少犯罪;而上面那条则应该就是道德的保障,它防止的是社会道德和公共诚信的流失。同时,在立法本质上,道德是圆心,法律是圆圈,法律的制定与实施离不开道德这个圆心的定位与支撑,道德的弘扬与传承离不开法律这个圆圈的强制与规圈。因此,无以圆心,何以圆,没有道德做底线,法律也不能够空洞的存在。

[参考文献]

[1]巴尔.三种不同竞争的价值理念体系[J].现代外国哲学社会科学文摘,1993.

[2] 刘泽君.论法的价值取向[J].北方工业大学学报. 1997(04) .

[3]博登海默.法理学:法律哲学与法律方法[M].邓正来・北京:中国政法大学出版社:18.

[4]庞德.通过法律的社会控制―――法律的任务[M].北京:商务印书馆,1984:73.

[5]谷口安平.程序正义与诉讼[M].北京:中国政法大学出版社,1996:5.

[6]米而恩.人的权力与人的多样性―――人权哲学[M]:35.

[7]丹宁勋爵.法律的正当程序[M].,杨百揆,刘庸安.北京:群众出版社,1993:60.

[作者简介]郭三龙(1980―),男,甘肃庆阳人,甘肃林业职业技术学院教师,讲师,主要从事法学、森林保护专业课程的教学与研究工作。

圆曲线测设

摘要:在公路、铁路的路线中,一般是在测设出曲线各主点后,随之在直圆点或圆直点进行圆曲线详细测设。本文通过仪器安置不同地方进行多种,提出了交点偏角法详细测设圆曲线的 方法 ,其中主要运用了偏角法测设法。

关键词:安置 交点 偏角法 圆曲线 测设

前 言

《礼记》有云:大学之道,在明德,在亲民。在提笔撰写我的毕业设计 论文的时候,我也在向我的大学生活做最后的告别仪式。我不清楚过去的一切留给现在的我一些什么,也无从知晓未来将赋予我什么,但只要流泪流汗,拼过闯过,人生才会少些遗憾!

非常幸运能够加入水利工程这个古老而又新兴的行业,即将走向 工作岗位的时刻,我仿佛感受到水利行业对我赋予新的 历史 使命,水利是一项以除害兴利、趋利避害,协调人与水、人与大 自然 关系的高尚事业。水利工作,既要防止水对人的侵害,更要防止人对水的侵害;既要化解自然灾害对人类生命财产的威胁,又要善待自然、善待江河、善待水,促进人水和谐,实现人与自然和谐相处。这种使命,更让我用课堂中的知识用于实际生产中来。特别是这两个月来的毕业设计,我越发感觉到学会学精测量基础知识对于我贡献水利是多么的重要。所以,我越发不愿放弃不多的大学时光,努力提高自己的 实践动手能力,而本学期的毕业设计,为我提供了绝好的机会,我又怎能放弃?

刚刚从老师那里得到毕业设计的题目和任务时,我的心里真的没底。作为毕业设计的主体工作,我们主要运用 电子 水准仪对某幢 建筑物进行变形观测与 计算 ,布设控制点进行平面控制测量和高程控制测量;用全站仪进行了中心多边行角度和距离的测量,并用条件平差原理进行平差,通过控制点的放样来计算土的挖方量,还有圆曲线的计算与测设。而我 研究 的毕业课题是。

大学的最后一个学期过得特别快,几乎每天扛着仪器,奔走在校园的每个角落,生活亦很有节奏。今天我提笔写毕业论文,我的毕业设计也接近尾声。不管成果如何,毕竟心里不再是没底了,挑着两个多月的辛苦换来的数据和成果,并不断的完善他们,心里感觉踏实多了。

在本次毕业设计论文的设计中要感谢水利系为我们的工作提供了测量仪器,还有各指导老师的教导和同学的帮助。

开 题 报 告

一、研究课题:《微分曲线的 应用 》

二、学科地位和研究应用领域

1.学科定义

工程测量学是研究地球空间中具体几何实体的测量描绘和抽象几何实体的测设实现的 理论 方法和技术的一门应用性学科。它主要以建筑工程、机器和设备为研究服务对象。

2.学科地位

测绘 科学 和技术(或称测绘学)是一门具有悠久历史和 现代 发展 的一级学科。该学科无论怎样发展,服务领域无论怎样拓宽,与其他学科的交叉无论怎样增多或加强,学科无论出现怎样的综合和细分,学科名称无论怎样改变,学科的本质和特点都不会改变。

3.研究应用领域

目前 国内把工程建设有关的工程测量按勘测设计、施工建设和运行 管理三个阶段划分;也有按行业划分成:线路(铁路、公路等)工程测量、水利工程测量、桥隧工程测量、建筑工程测量、矿山测量、海洋工程测量、军事工程测量、三维 工业 测量等,几乎每一行业和工程测量都有相应的著书或教材。

国际测量师联合会(FIG)的第六委员会称作工程测量委员会,过去它下设4个工作组:测量方法和限差;土石方计算;变形测量;地下工程测量。此外还设了一个特别组:变形 分析 与解释。现在,下设了6个工作组和2个 专题组。6个工作组是:大型科学设备的高精度测量技术与方法;线路工程测量与优化;变形测量;工程测量信息系统;激光技术在工程测量中的应用;电子 科技 文献 和 网络 。2个专题组是:工程和工业中的特殊测量仪器;工程测量标准。

工程测量学主要包括以工程建筑为对象的工程测量和以设备与机器安装为对象的工业测量两大部分。在学科上可划分为普通工程测量和精密工程测量。

工程测量学的主要任务是为各种工程建设提供测绘保障,满足工程所提出的要求。精密工程测量代表着工程测量学的发展方向,大型特种精密工程建设是促进工程测量学科发展的动力。

工程测量仪器的发展工程测量仪器可分通用仪器和专用仪器。通用仪器中常规的光学经纬仪、光学水准仪和电磁波测距仪将逐渐被电子全测仪、电子水准仪所替代。电脑型全站仪配合丰富的 软件,向全能型和智能化方向发展。带电动马达驱动和程序控制的全站仪结合激光、通讯及CCD技术,可实现测量的全自动化,被称作测量机器人。

三、工程测量理论方法的发展

1.测量平差理论最小二乘法广泛应用于测量平差。最小二乘配置包括了平差、滤波和推估。附有限制条件的条件平差模型被称为概括平差模型,它是各种经典的和现代平差模型的统一模型。测量误差理论主要表现在对模型误差的研究上,主要包括:平差中函数模型误差、随机模型误差的鉴别或诊断;模型误差对参数估计的 影响 ,对参数和残差 统计性质的影响;病态方程与控制网及其观测方案设计的关系。由于变形监测网 参考 点稳定性检验的需要,导致了自由网平差和拟稳平差的出现和发展。观测值粗差的研究促进了控制网可靠性理论,以及变形监测网变形和观测值粗差的可区分性理论的研究和发展。

2.工程控制网优化设计理论和方法网的优化设计方法有解析法和模拟法两种。解析法是基于优化设计理论构造目标函数和约束条件,解求目标函数的极大值或极小值。一般将网的质量指标作为目标函数或约束条件。模拟法优化设计的软件功能和进行优化设计的步骤主要是:根据设计资料和地图资料在图上选点布网,获取网点近似坐标(最好将资料作数字化扫描并在微机上进行)。值精度,可进一步模拟观测值。计算网的各种质量指标如精度、可靠性、灵敏度。

3.变形观测数据处理工程建筑物及与工程有关的变形的监测、分析及预报是工程测量学的重要研究 内容 。其中的变形分析和预报涉及到变形观测数据处理。但变形分析和预报的范畴更广,属于多学科的交叉。

(1)变形观测数据处理的几种典型方法根据变形观测数据绘制变形过程曲线是一种最简单而有效的数据处理方法,由过程曲线可作趋势分析。如果将变形观测数据与影响因子进行多元回归分析和逐步回归计算,可得到变形与显著性因子间的函数关系,除作物理解释外,也可用于变形预报。

(2)变形的几何分析与物理解释传统的方法将变形观测数据处理分为变形的几何分析和物理解释。几何分析在于描述变形的空间及时间特性,主要包括模型初步鉴别、模型参数估计和模拟统计检验及最佳模型选取3个步骤。变形监测网的参考网、相对网在周期观测下,参考点的稳定性检验和目标点和位移值计算是建立变形模型的基础。变形模型既可根据变形体的物理力学性质和地质信息选取,也可根据点场的位移矢量和变形过程曲线选取。

(3)变形分析与预报的系统论方法用现代系统论为指导进行变形分析与预报是目前研究的一个方向。变形体是一个复杂的系统,它具有多层次高维的灰箱或黑箱式结构,是非线性的,开放性(耗散)的,它还具有随机性,这种随机性除包括外界干扰的不确定性外,还表现在对初始状态的敏感性和系统长期行为的混沌性。此外,还具有自相似性、突变性、自 组织性和动态性等特征。

四、工程测量学的发展展望展望21世纪,工程测量学在以下方面将得到显著发展:

1.测量机器人将作为多传感器集成系统在人工智能方面得到进一步发展,其应用范围将进一步扩大,影像、图形和数据处理方面的能力进一步增强;

2.在变形观测数据处理和大型工程建设中,将发展基于知识的信息系统,并进一步与大地测量、地球物理、工程与水文地质以及土木建筑等学科相结合,解决工程建设中以及运行期间的安全监测、灾害防治和 环境保护的各种 问题 。

3.工程测量将从土木工程测量、三维工业测量扩展到人体科学测量,如人体各器官或部位的显微测量和显微图像处理;

4.多传感器的混合测量系统将得到迅速发展和广泛应用,如GPS接收机与电子全站仪或测量机器人集成,可在大区域乃至国家范围内进行无控制网的各种测量工作。

5.GPS、GIS技术将紧密结合工程项目,在勘测、设计、施工管理一体化方面发挥重大作用。

6.大型和复杂结构建筑、设备的三维测量、几何重构以及质量控制将是工程测量学发展的一个特点。

7.数据处理中数学物理模型的建立、分析和辨识将成为工程测量学专业 教育 的重要内容。综上所述,工程测量学的发展,主要表现在从一维、二维到三维、四维,从点信息到面信息获取,从静态到动态,从后处理到实时处理,从人眼观测操作到机器人自动寻标观测,从大型特种工程到人体测量工程,从高空到地面、地下以及水下,从人工量测到无接触遥测,从周期观测到持续测量。测量精度从毫米级到微米乃至纳米级。

工程测量学的上述发展将直接对改善人们的生活环境,提高人们的生活质量起重要作用。文 献 综 述

一、圆曲线的详细测设

在各类线路工程弯道处施工,常常会遇到圆曲线的测设 工作。 目前 ,的 方法 已有多种,如偏角法、切线支距法、弦线支距法等。然而,在实际工作中测设方法的选用要视现场条件、测设数据求算的繁简、测设工作量的大小,以及测设时仪器和工具情况等因素而定。另外,上述的几种测设方法,都是先根据辅点的桩号(里程)来 计算 测设数据,然后再到实地放样。因此,在实际工作中利用上述传统测设方法,有时会因地形条件的限制而无法放样出辅点(如不通视或量距不便等),或放样出的辅点处无法设置标桩。

在本次毕业设计的 论文课题中介绍的几种的新方法,不仅计算简单、测设便捷,而且可在不需要知道曲线上某点里程的情况下进行,从而避免了按预先给定的曲线点反算的测设数据放样不通视而转站的麻烦。同时,利用本文介绍的新方法,还可以根据线路工程施工进度的要求,灵活地选择性地放样出部分曲线;也可以用于快速地确定曲线上某一加桩的位置;若用于线路验收测量,则更加方便,验测结果更具有代表性、更可靠。

二、全站仪在任意站测设圆曲线及方法交点偏角法测设方法

用全站仪任意站测设圆曲线,安置一次仪器就能完成全部工作。虽然外业计算麻烦,但对于不能设站的转点,可谓方便灵活。但它的不足之处仍然是计算烦锁,对于不熟悉内业的外业工作者,很难实际操作。如果利用一些程序计算器,编制输入:AB 的四组坐标和半径、九个数据的程序,可迅速得出放样数据,简化了外业工作。

为了放样工作的便利,可在平面控制网中纳入一些放样点,构成GPS同级全面网。由于放样点间距离较近,在进行同步环和闭合环检验时可仅考虑各分量的较差,而不考虑相对闭合差。因为,用相对闭合差来衡量是不合理的。由于GPS接收机的固定误差,相位中心偏差以及观测时的对中误差均在1mm~5mm之间,对于几十米的短边,其相对闭合差值势必较大。3)平面控制网的设计主要考虑独立基线的选择以及异步闭合环的设计,要考虑构成尽可能多的闭合图形,并将网中处于边缘的观测点用独立基线连接起来,形成封闭图形。

同理,采用上述思路,也可测设缓和曲线。

在道路、渠道、管线等工程建设中,受地形、地质等条件的限制,线路总是不断转向。为使车辆、水流等平稳运行或减缓冲击,常用圆曲线连接,因而是线路测设的重要 内容 。在公路、铁路的路线中,一般是在测设出曲线各主点后,随之在直圆点或圆直点进行圆曲线详细测设。其测设的方法很多,诸如偏角法、切线支距法、弦线支距法、延弦法等。这些方法有一个共同点:均是在定测阶段放样出的线路交点处设站,以路线后视方向定向,在实地定出曲线主点,然后将仪器置于曲线主点(一般是在曲线起点)处,以路线交点为后视方向定向,进行圆曲线详细测设。这些方法在实际施测过程中,由于各种地形条件的限制以及施测方法的特点,可能会出现以下三种情况:

(1) 在曲线主点处无法设站。

(2) 后视方向太近,定向不准。

(3) 误差积累较大。

为此,在交点可以设站的情况下,可以采用一种新的测设方法—交点偏角法。

本文提出的交点偏角法详细测设圆曲线方法,从上述的计算,测设的方法得知,它具有以下优点:

(1)计算方便、工作量省、易于实现公路测量的自动化。从上述公式推导得知,只要知道待测设点至圆曲线中点间的弧长,便可计算出测设所需的数据;而且上述情况1.1和1.2的计算偏角和待测设点至交点水平距离公式相同,只是外矢距的计算方法不同,容易通过 计算机 语言编程实现公路测量的自动化。另外,本方法不需在圆曲线主点重新设站,可以在测设圆曲线主点时,同时进行圆曲线详细测设,故工作量省。

(2)测设方法简易、易于达到较高的测设精度。一般的测设方法是在交点处设站测设出圆曲线的主点后,再在ZY(或YZ)点设站,以交点方向定向进行圆曲线细部测设。由于圆曲线主点难免会存在误差,因此测设出的圆曲线误差会更大;而且在主点设站,后视方向可能较近,定向不准。而交点偏角法只需在交点设站,以线路后视方向定向,容易达到较高的测设精度。

月是别时圆清渺的舞步,在真实和虚幻间旋转.是否为那永久的别离而难过,心从来不是完整的.总在等待着时间把它磨得圆润而有光泽! 心不是完整的.只因它是个半圆,当你在前方的路上找到了自己的理想或是未来,那么你的心将变得完整,它也将闪烁出最为耀眼的光辉~! 心不是完整的,只因你还不懂放弃.一个人不是总能同时抓住几种东西的,在人生的分岔口,你应该停一停,听一听你内心的声音,在那绿灯变成红灯的瞬间做出决定,那也同时意味着你该对什么放手了,此时你不得不放开一边对比起来不那么重要的东西~!抉择莫过于是生活中最痛苦但同时也是最重要的事了.或许你人生的黑白全在于你的这次决定~! 心不是完整的,只因你总要和一些东西别离,你总要放手的但你又舍不得.当时间从指间匆匆流过,你发现了你能看到更远的风景了,因为你长高了,你发现你能判断事情的是与非了,那是因为你成熟了.但你也即将告别你的童年了,你不再是那个家中最小最惹人疼惹人宠的小孩了,你要学会自己面对一切,学会跌倒了自己站起来~! 别离,不仅仅是对一切美好事物的告别,同时也是对明天阳光的憧憬. 月光仍凄迷,但不是也很是美丽吗~? 我们似乎是在做圆周运动,从一个质点开始,沿着一条漫长的轨迹,走到累了,走到倦了,然后停下来,这时才恍然发现,自己竟然还在原地。路程有了,但位移为零。 这会不会被称做一种悲哀?未知的空白将我淹没,无法逃生,单纯与复杂也早已没有原来的意味,都一样了。在某个瞬间对着某个人微笑,在下一个瞬间却已物是人非。面对与逃避的后果始终是一样的,总是下一站的背弃。 我们像一个个的圆圈,在不断自转的同时似乎还围绕着一点什么公转,在这个旋转的过程中,我们会遇到很多人,于是两个圆相切,然后相交,只是最终还是会相离。这也许是一种宿命,于是没有谁可以永远陪着谁,我们可以相交,甚至在某一时刻完全重合,只是结局已经注定。 生命似乎是一部既知结局的小说,我们的不断编织只不过是修筑着不同的轨道。我们离出发点越来越远,也在享受着火热的、冰冷的情节,可惜结局只有一种,无法变更。 当有一点我与某个人相交而后分离,我不知该感到欣慰还是失落。来来往往的陌生人不断地与我擦身而过,但所有人都只是在扮演过客这一角色。 我开始变得很乖巧,一瞬间将自己缩小,然后安分地沿着自己的轨道,不再感动,也不再患得患失。这也许是一条禁锢之路,只是谁在禁锢谁,还是未知。 一条条的曲线,蜿蜒盘绕,密集地交织,杂乱而无法拆分,乱如麻,理不清却又斩不断。足下踏的土地,也许被无数人践踏过,尘埃被带往何处,亦不知道。 漫无边际的黑与白,漫无边际的哀伤与幸福,总在一瞬之间向我涌来,挥之不去,琉璃般的色彩刹那间复苏铺天盖地而来的只是伤痛。 中华民族像一个圆。 远古先人曾认为我们生活的世界是天圆地方,如一个圆圆的鸡蛋。在这个鸡蛋里,万物被包容,百川被海纳,而这个鸡蛋,就是包容的象征。 自从炎黄合并,有了中华民族。这个民族中占主导地位的汉族就从未停止过被“他族”的“侵略”。上溯西昌之二周,西戎之大秦,北疆之燕韩;匈奴契丹、女真党项、最后至蒙古后金,其中大小厮杀,血肉场面,比比皆是。奥斯曼灭了拜占庭,将其一切先进技术,生产工具乃至封建制度本身销毁殆尽,除了一座孤零零的圣索非亚大教堂,拜占庭的遗风几乎无处可寻。取而代之的是他们落后的生产方式,野蛮的管理制度,和必须忠贞不渝的本族文化。但反观中华民族,野蛮尚武的少数民族在取得领导权后,却把汉民族所创造的一切保留下来。几乎每个曾入主中原的民族都将汉语定为国语,以较先进的封建制度取代他们的奴隶制度,这在世界历史上是独一无二的,由此,华夏民族的文化可以延绵不断,并能蓬勃发展,开花结果。而在同一时期的古埃及、古印度,最后都四分五裂,支离破碎,如破墙残垣,不成一体。 外国民族很强调“纯”,一个民族和另一个民族在领土、文化、经济上很难完全彻底的融合。原本都属于斯拉夫族系的塞尔维亚族和阿尔巴尼亚族是两个斗了数百年,至今仍在纠缠不休的冤家,区区南斯拉夫的弹丸小地上到处是两族毫不相让,不能包容的伤疤。一个美丽的南斯拉夫也就一直在这种民族仇恨中喘息前进,低颓于世界民族之林。元统治中国九十七年,清则长达二百六十一年。一次次的占有,数百年的统治,那些“野蛮”的“靼虏”怎么样?不全都融入到了中华民族这个大家庭中,成为这个家庭的一员。中华民族包容了这些来自边陲的“靼虏”,让他们适应中华民族习惯,让他们与其他民族和睦相处,是中华民族的先进与宽广折服了他们,让他们乐意成为中华民族的一员。如果说,塞尔维亚民族和阿尔巴尼亚民族是两种互不相溶,分界线分明的液体,那么中华民族则像一个特殊的大大的圆形容器。各个民族,各种文化,各道风情,被巧妙地恰到好处地调和。在此的多种液体互不相斥,互不稀释,但又彼此扩散,进入对方,增进了解,共同“繁荣”。不过,作为一个独立的、综合的整体,中华民族的本质没有变化,就像一个圆,无论你在圆上画多少条直线,圆的轮廓依然清晰。其还是保持着他原有的特性,而那些直线,只有与圆发生关系,才具有一定的意义,否则他们只是一条直线,一条孤立的线,就会缺少一个共同的载体,。就如千百年前的北匈奴一般,任性地脱离了期待团圆的大家庭,独自外出觅食,结果在六世纪全军覆没,惨遭灭亡。 有一个很有意思的例子,始自秦、赵、楚修长城以来,长城一直在被不停地修葺,不停地完复,直至康熙年间才废置不用。而在此前的两千多年,许多族的士兵站在同一个烽火台上监视着下一个烽火台上的士兵。许多族的工匠用自己智慧的双手协力打造出中华民族龙脉不息的标志。这是多民族智慧的结晶,这是整个中华民族的结晶,愿这个大圆的半径不在缩小,圆我们这个大家庭日益富强! 2.圆的联想 由圆我想到了养育我们的地球妈妈,她把一切都无私地奉献给了人类,让我们在一天快乐地成长,我们应该保护它。 由圆我想到了头盔,四川省汶川县发生的8.0级的大地震,我希望那些被压住的人有一个头盔,保护头部不受伤。 由圆我想到了奥林匹克的五环旗,第29届奥运会将在中国北京举行,那将是中国人最自豪,最骄傲的时刻。 由圆我想到了西瓜,西瓜圆圆的,切开墨绿皮,里面是鲜红鲜红的果肉,吃一口满嘴都沾满了红红的西瓜汁,让人吃了还想吃。 由圆我想到了太阳,太阳给了我们温暖和生的希望,假若没有太阳,地球上将什么也没有,假若没有太阳,就不会有人类的生存。 由圆我想到了手表,在白天里,它提醒我珍惜时间,晚上虽然在一边沉默不语,但一直坚守自己的岗位,这不正是老师默默无闻的精神吗? 由圆我想到了硬币,我要把我所有的硬币都捐给四川灾区的人民,让他们也能早日建设好自己的家园,过上好日子。 这就是我脑海中对“圆”的想象,现在我要画一个小小的圆,那就是句号了。

一.准确得体要求论文题目能准确表达论文内容,恰当反映所研究的范围和深度。常见毛病是:过于笼统,题不扣文。如:'金属疲劳强度的研究'过于笼统,若改为针对研究的具体对象来命题。效果会好得多,例如'含镍名牌的合金材料疲劳强度的研究',这样的题名就要贴切得多。再如:'35Ni-15Cr型铁基高温合金中铝和钛含量对高温长期性能和组织稳定性能的影响的研究'这样的论文题目,既长又不准确,题名中的35Ni-15Cr是何含义,令人费解,是百分含量?是重量比?体积比?金属牌号?或是其它什么,请教不得而知,这就叫题目含混不清,解决的办法就是要站在读者的角度,清晰地点示出论文研究的内容。假如上面的题目中,指的是百分含量,可放在内文中说明,不必写在标题中,标题中只需反映含Ni和Cr这一事实即可。可参考的修改方案为:'Ni、Cr合金中Al和Ti含量对高温性能和组织稳定性的影响'。关键问题在于题目要紧扣论文内容,或论文内容民论文题目要互相匹配、紧扣,即题要扣文,文也要扣题。这是撰写论文的基本准则。二.简短精炼力求题目的字数要少,用词需要精选。至于多少字算是合乎要求,并无统一的'硬性'规定,一般希望一篇论文题目不要超出20个字,不过,不能由于一味追求字数少而影响题目对内容的恰当反映,在遇到两者确有矛时,宁可多用几个字也要力求表达明确。常见了繁琐题名如:'关于钢水中所含化学成分的快速分析方法的研究'。在这类题目中,像'关于'、'研究'等词汇如若舍之,并不影响表达。既是论文,总包含有研究及关于什么方面的研究,所以,上述题目便可精炼为:'钢水化学成分的快速分析法'。这样一改,字数便从原21个安减少为12个字,读起来觉得干净利落、简短明了。若简短题名不足以显示论文内容或反映出属于系列研究的性质,则可利用正、副标题的方法解决,以加副标题来补充说明特定的实验材料,方法及内容等信息,使标题成为既充实准确又不流于笼统和一般化。如?quot;(主标题)有源位错群的动力学特性--(副标题)用电子计算机模拟有源位错群的滑移特性'。

  • 索引序列
  • 数学史论文圆周率
  • 关于圆周率论文范文资料
  • 关于圆周率估算的研究性论文
  • 数学论文圆结尾
  • 初三数学圆的论文
  • 返回顶部