首页 > 学术发表知识库 > 三重积分的计算方法总结毕业论文

三重积分的计算方法总结毕业论文

发布时间:

三重积分的计算方法总结毕业论文

其实,三重积分,就是把一重积分和二重积分的扩展 三重积分及其计算 一,三重积分的概念 将二重积分定义中的积分区域推广到空间区域,被积函数推广到三元函数,就得到三重积分的定义 其中 dv 称为体积元,其它术语与二重积分相同 若极限存在,则称函数可积 若函数在闭区域上连续, 则一定可积 由定义可知 三重积分与二重积分有着完全相同的性质 三重积分的物理背景 以 f ( x, y, z ) 为体密度的空间物体的质量 下面我们就借助于三重积分的物理背景来讨论其计算方法. 二,在直角坐标系中的计算法 如果我们用三族平面 x =常数,y =常数, z =常数对空间区域进行分割那末每个规则小区域都是长方体 其体积为 故在直角坐标系下的面积元为 三重积分可写成 和二重积分类似,三重积分可化成三次积分进行计算 具体可分为先单后重和先重后单 ①先单后重 ——也称为先一后二,切条法( 先z次y后x ) 注意 用完全类似的方法可把三重积分化成其它次序下的三次积分. 化三次积分的步骤 ⑴投影,得平面区域 ⑵穿越法定限,穿入点—下限,穿出点—上限 对于二重积分,我们已经介绍过化为累次积分的方法 例1 将 化成三次积分 其中 为长方体,各边界面平行于坐标面 解 将 投影到xoy面得D,它是一个矩形 在D内任意固定一点(x ,y)作平行于 z 轴的直线 交边界曲面于两点,其竖坐标为 l 和 m (l < m) o x y z m l a b c d D .(x,y) 例2 计算 其中 是三个坐标面与平面 x + y + z =1 所围成的区域 D x y z o 解 画出区域D 解 除了上面介绍的先单后重法外,利用先重后单法或切片法也可将三重积分化成三次积分 先重后单,就是先求关于某两个变量的二重积分再求关于另一个变量的定积分 若 f(x,y,z) 在 上连续 介于两平行平面 z = c1 , z = c2 (c1 < c2 ) 之间 用任一平行且介于此两平面的平面去截 得区域 则 ②先重后单 易见,若被积函数与 x , y 无关,或二重积分容易计算时,用截面法较为方便, 就是截面的面积,如截面为圆,椭圆,三角形,正方形等,面积较易计算 尤其当 f ( x , y , z ) 与 x , y 无关时 希望对你有帮助

其实,三重积分,就是把一重积分和二重积分的扩展 三重积分及其计算 一,三重积分的概念 将二重积分定义中的积分区域推广到空间区域,被积函数推广到三元函数,就得到三重积分的定义 其中 dv 称为体积元,其它术语与二重积分相同若极限存在,则称函数可积 若函数在闭区域上连续, 则一定可积 由定义可知 三重积分与二重积分有着完全相同的性质 三重积分的物理背景 以 f ( x, y, z ) 为体密度的空间物体的质量 下面我们就借助于三重积分的物理背景来讨论其计算方法. 二,在直角坐标系中的计算法 如果我们用三族平面 x =常数,y =常数, z =常数对空间区域进行分割那末每个规则小区域都是长方体 其体积为 故在直角坐标系下的面积元为 三重积分可写成 和二重积分类似,三重积分可化成三次积分进行计算 具体可分为先单后重和先重后单

此类问题有两种列式方法:1、截面法,先确定0≤z≤1,然后用垂直于z轴的截面截取积分区域,得到下图中红色的截面,整个积分区域由一层层的截面堆积出来。此过程也可以叫做先二后一法。2、投影法,先确定最大投影面x^2+y^2=1,然后用一条垂直投影面的线穿过积分区域,得到一些列曲顶柱体,整个积分区域由一个个柱体堆积出来。此过程也可以叫做先一后二法。希望可以帮助你掌握此类方法。

不定积分计算方法毕业论文

总结不定积分的运算方法如下:

1、公式法

公式法,顾名思义就是一些常用的不定积分的公式。如果遇到这样的形式可以直接套用。当然,这些不定积分都可以一步步求解得到结果。

2、换元法

换元法有两类,第一类换元积分法又称为凑微分法,第二类换元积分法又称为变量代换法。凑微分法的关键是”凑“,其目的是把被积函数的中间变量变得与积分变量一致,即把dx凑成du。

∫f[φ(x)]φ′(x)dx=∫f[φ(x)]dφ(x)=∫f(u)du,u=φ(x)。变量代换法则是先换元,再积分,最后回代。相比而言,凑微分的步骤是先凑微分后换元(熟练以后也可以直接计算,省略换元的过程)。

3、分部积分法

前面两种方法可以解决大量的不定积分的计算问题,但是对于被积函数是两个不同函数乘积的这种形式采用上述两种方法就失效了。此时需要使用分部积分法来进行求解。换元积分法是在复合函数求导法则的基础上得到的,而分部积分法则是利用两个函数乘积的求导法则来推导的。

4、有理函数积分法

f(x)=Pn(x)Qm(x) ,其中 、Pn(x)、Qm(x) 分别为x的n次多项式和m次多项式。当m>n时,f(x)为真分式,反之,则为假分式。

计算过程如下:

原式=∫secxdtanx

=secx*tanx-∫(tanx)^2secxdx

=secx*tanx-∫[(secx)^2-1]*secxdx

=secx*tanx-∫(secx)^3dx+∫secxdx

2∫(secx)^3=secx*tanx+∫secxdx

∫(secx)^3=(1/2)secx*tanx+(1/2)ln|secx+tanx|+C

不定积分的性质:

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。

若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

定积分的计算方法毕业论文论文

拆开来算即可,详情如图所示

定积分的计算方法摘要定积分是积分学中的一个基本问题, 计算方法有很多, 常用的计算方法有四种: ( 1) 定义法、 (2)牛顿—莱布尼茨公式、 (3)定积分的分部积分法、 (4)定积分..

定积分分解为两个,其中前面一个为奇函数。而奇函数在对称区间上的定积分为零

定积分的计算方法如下:1、; 2、常数可以提到积分号前;3、代数和的积分等于积分的代数和;4、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有又由于性质2,若f(x)在区间D上可积,区间D中任意c(可以不在区间[a,b]上)满足条件;5、Risch算法;6、如果在区间[a,b]上,f(x)≥0,则;7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点t在(a,b)内使;

定积分计算方法的研究毕业论文

数学领域中的一些著名悖论及其产生背景

太少啦,你给的财富值太少啦!要知道财富值与人民币的比值是1400:1

简析高等数学中的数学结构与数学理解【摘要】文章从分析高等数学的内容结构出发,代写论文 对数学结构与数学理解所起的作用,作了简单的剖析。【关键词】高等数学;数学结构;数学理解对数学来说,结构无处不在,结构是由许多节点和联线绘成的稳定系统。代写毕业论文 数学中最基本的就是概念结构,它们之间的联系组成了知识网络的结构,剖析高等数学的知识结构,有助于加深对高等数学的理解。由于理解是学习数学的关键,学生可以通过对数学知识、技能、概念与原理的理解和掌握来发展他们的数学能力。从认知结构,特别是结构的建构观点来看,学习一个数学概念、原理、法则,如果在心理上能够组织起适当的、有效的认知结构,并使其成为个人内部知识网络的一部分,那么这才是理解。而其中所需要做的具体工作,就是需要寻找并建立恰当的新、旧知识之间的联系,使概念的心理表象建构得比较准确,与其它概念表象的联系比较合理,比较丰富和紧密。在学习一个新概念之前,头脑里一定要具备与之相关的储备知识,它们是支撑新概念形成的依托,并且这些有关概念的结构,是能够被调动起来的,使之与新概念建立联系,否则就不会产生理解。所以要使新旧知识能够互相发生作用,建立联系,有必要建立一个相应的数学结构,以加强对基础知识的理解。布鲁纳的认知结构学习论认为,知识结构的学习有助于对知识的理解和记忆,也有助于知识的迁移。在微积分的学习中,通过对其结构的剖析,使学习者头脑中的数学结构处于不断形成和发展之中,并将其发展的结构与已形成的结构统一起来,以达到对数学知识的真正理解。1高等数学内容的结构特点高等数学以极限思想为灵魂,以微积分为核心,包括级数在内,它们都是从量的方面研究事物运动变化的数学方法,本质上是几种不同性质的极限问题。连续性质是自变量增量趋于零时,函数对应增量的极限;导数是自变量增量趋于零时,函数的增量(偏增量)与自变量增量之比(差商)的极限;一元或多元积分都是和式的极限,而无穷级数则是密切联系序列极限的另一种极限。微分是从微观上揭示函数的有关局部性质,积分则从宏观上揭示函数的有关整体性质,它们之间通过微积分基本定理联系起来;广义积分把无穷级数与积分的内部沟通起来;而微分方程又从方程的角度把函数、微分、积分有机地联系起来,展示了它们之间的内在的依赖转化关系。2如何利用结构加强理解2.1注重整体结构理解当代著名的认知心理学家皮亚杰认为“知识是主体与环境或思维与客体相互交换而导致的知觉建构,代写硕士论文 知识不是客体的副本,也不是有主体决定的先验意识。”虽然现今的教材基本上按一定框架编写,但其中相关的知识点要在学生的头脑中形成一个网络,并达到真正理解,还需要一个很长的过程,在这个过程中需要师生的共同努力。在教学中教师应将数学逻辑结构与心理结构统一起来,把学生看成是学习活动的主体,引导学生根据自己头脑中已有的知识结构和经验主动建构新的知识结构。心理学家J.R安德森认为:通过多种方式应用我们从自己的经验中得到知识,认知才能进行。理解知识的前提是理解它如何在头脑中表征的,这个过程主要表现为学生对概念的理解和掌握,在此基础上再加以运用,达到更深意义上的掌握。由于高等数学具有清晰的数学结构,因而其相关知识学习中也充满了知识的同化过程。在高等数学知识结构中,微积分建立在极限的基础之上。因此在高等数学中,新知识获得要依赖于认知结构中原有的适当观念,同时新旧知识还必须要有相互作用,即新旧意义的同化,才能形成高度分化的认知结构。如微分是差商的极限,积分为微分的逆运算,而定积分则为和的极限,只有将这些新旧概念在头脑中不断同化作用,才能形成新的高级知识结构网络,才能加强对相应数学知识的真正理解。这个过程实际上是一个内部认知过程,它要求学习者要有积极主动的精神,即有意义学习倾向;同时还要在学习者的认知结构中找到适当的同化点。学生的认知结构是从所接受的知识结构转化而来的,因此教学是一个动态的过程。2.2注重结构中的概念理解数学结构是有许多个结构所组成的,而个别的概念一定要融人其它概念,合成的概念结构才有用。数学中的概念往往不是孤立的,它们之间存在着一定的联系,理清概念之间的联系,既有助于数学结构的建立,有助于新的概念地自然引入,从而有助于对数学知识的理解与掌握。在微积分这部分内容中,多元函数的极限、连续、偏导数、全微分、方向导数这组概念之间的联系,与一元函数中的极限、连续、偏导数、微分概念之间的联系,这两者之间既有相同之处,又有不同之处,而且每个相对的概念之间又存在一定的联系与区别,多元函数中许多微分概念是在一元函数基础上的推广与发展,它们是密不可分。积分学中的定积分、重积分、二类曲线积分、二类曲面积分之间也存在着类似的关系。通过联想,可以从二维空间进入到三维空间,直至到更多维的空间,从有形进入无形,从现实世界进入虚拟世界,这样步步渗入,步步构建,不断引入新概念,不断更新组建数学结构,使学生头脑中的数学结构不断更新,不断完善,从而达到对知识的真正理解与掌握。2.3在教学中利用数学结构加强学生的数学理解教师对数学结构的理解对学生建立起自身的数学结构起着不可缺少的作用,代写医学论文 只有理解数学结构,才能领会到数学逻辑结构所隐含的精神思想,才能建立自己的数学结构,才能理解数学。首先,在数学中利用高等数学结构的纵向与横向联系,有意识地帮助学生建立自己的知识结构,如在利用求曲边梯形的面积来引入定积分的概念时,其基本思维方法是:分割、近似代替,求和、取极限,最后得出定积分的概念。而这一方法同样可解决求曲顶柱体的体积、空间物体的质量、曲线段的质量等问题,区别仅在于取极限时趋向于零的元素不同而已。在具体每一章的讲解中,要着重介绍此章知识的数学结构中的内在联系及其本章的关键与核心的处理方法,使学生能够抓住本质,真正做到变被动学习为主动学习,主动建构自己本章的数学结构,并能用框图展现出知识间的内在联系,只有这样才能提高学生学习高等数学的兴趣和积极性,增加对高等数学知识的理解,提高高等数学学习的质量。帮助学生建立自己的数学结构,也有利于培养学生的思维能力、归纳能力、分析问题、解决问题的能力,还能促进其自学,调动和增强学生学习高等数学的信心和自觉程度。[参考文献][1]邵瑞珍,皮连生.教育心理学[M].上海:上海教育出版社,1988.[2]李士琦.PME:数学教育心理[M].北京:高等教育出版社.[3]毛京中,高等数学概念教学的一些思考[J].数学教育学报,2003,12(2).[4]陈琼,翁凯庆.试论数学学习中的理解学习[J].数学教育学报,2003,12(1)[5]张定强.剖析高等数学结构,提高学生数学素质[J].数学教育学报,1996,5(1)[6]刘继合.简析高等数学结构与化归[J].聊城师范学院学报(自然科学版),1999,12(3).

重积分的计算毕业论文

The second surface integral calculation is a difficulty and key content of higher mathematics. The second curved surface integral, also known as sitting target surface integral, it said the physical significance of the steady flow of incompressible fluid flow to the surface side of the flow. The second kind of surface integral calculation problem is a comprehensive calculus problem, involves the surface side and the normal vector, partial derivative of function of many variables, double integral and triple integrals, the first kind of curved surface integral and gauss formula, and other knowledge.This article, we respectively from two traditional calculation method and an innovative method to calculate the direction of generalizations about the second type of surface integral calculation method, and combined with typical examples illustrate the use of different methods, easy to master by the techniques of.

利用极坐标计算二重积分,有公式 ∫∫f(x,y)dxdy=∫∫f(rcosθ,rsinθ)rdrdθ ,其中积分区域是一样的. I=∫dx∫(x^2+y^2)^-1/2 dy x的积分上限是1,下限0 y的积分上限是x,下限是x² 积分区域D即为直线y=x,和直线y=x²在区间[0,1]所围成的面积,转换为极坐标后,θ的范围为[0,π/4],下面计算r的范围: 因为y=x²的极坐标方程为:rsinθ=r²cos²θ r=sinθ/cos²θ 因为直线y=kx和曲线y=x²的交点为(0,0),(k,k²),所以在极坐标中r的取值范围为[0,sinθ/cos²θ],则积分I化为极坐标的积分为 I=∫dθ∫1/√(rcosθ)²+(rsinθ)²rdr =∫dθ∫dr (θ范围[0,π/4],r范围[0,sinθ/cos²θ]) =∫(sinθ/cos²θ)dθ(θ范围[0,π/4]) =∫(-1/cos²θ)dcosθ =|1/cosθ|(θ范围[0,π/4]) =1/cos(π/4)-1/cos0 =√2-1

  • 索引序列
  • 三重积分的计算方法总结毕业论文
  • 不定积分计算方法毕业论文
  • 定积分的计算方法毕业论文论文
  • 定积分计算方法的研究毕业论文
  • 重积分的计算毕业论文
  • 返回顶部