首页 > 学术发表知识库 > 有关高阶常微分方程的毕业论文

有关高阶常微分方程的毕业论文

发布时间:

有关高阶常微分方程的毕业论文

列几个题目引导一下你吧,呵呵,我不是学这能帮助你的也只能这样了。抽象代数中的若干问题[数学专业论文]复变函数积分方法探究[数学专业论文]高阶微分方程解的分布问题[数学专业论文]几类函数的留数定理[数学与应用数学]与复积分有关的几个定理[数学与应用数学]证明等边三角形的几种复数方法[数学与应用数学]浅谈新课标下小学数学应用题的改革对了,要查更多的内容的话,在网站关键字输入“数学”就可以如果对你有帮助,请加分哦。

基于高阶常微分方程模型饿狼追兔问题分析 1 -基于高阶常微分方程模型饿狼追兔问题分析朱云龙1,赵娜2,孙利杰1,王勃1,程明1,白海滔1,王建1,李开1,赵福兴1,王铁柱11 辽宁工程技术大学采矿工程系,辽宁阜新(123000)2 辽宁工程技术大学生物工程(食品科学)系,辽宁阜新(123000)E-mail:摘要:利用高阶常微分模型饿狼是否能追上兔子。首先,建立狼和兔子的运动轨迹模型,兔子是向正北方向的洞穴直线跑去,狼沿曲线追去。接着,利用matlab 画出狼和兔子的运动轨迹图形。然后,利用解析方法求解x=0时y 的值,依次来判断狼是否能够追上兔子。最后,再用数值微分方法求解x=0时y 的值判断狼是否能够在兔子进洞之前将其擒获,美餐一顿。常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解。关键词:高阶常微分;数值微分;数学模型中图分类号:O172.11 引言在我们现实生活中,有很多追击问题,如赛车比赛,田径比赛,鹰抓兔子等等追击现象。那么这些问题是否成立,是否能成功呢?再次将要论述与验证狼和兔子的模型,看看是否能追的上,并通过MATLAB 画出狼和兔子曲线[1]。在我们实现实生活中有很多地方要用到这些追击模型。虽然狼无暇顾及兔子的洞穴所在,并计算怎样才能追上兔子,可它丢掉的仅仅是一顿美餐而已,再寻其它猎物即可。可是我们人类就不同了,如在军事上,跟中导弹追击敌机问题,恰与饿狼追兔问题模型相似。根据追击者和被追击者相差距离和被追击者得逃亡范围,通过计算,适当调整速度,即可追上。倘若不假思索的追击,后果将不堪设想,失去的将不仅仅时一顿每餐那么简单。所以,通过本模型分析将要得到清晰的MATLAB 曲线,使结果明确的显现在计算机上,一目了然,希望此模型能用到我们现实生活中,得到一定用处,提高国民经济和科学技术的应用。2 问题的提出神秘的大自然里,处处暗藏杀机,捕猎和逃生对动物的生存起着至关重要的作用,而奔跑速度和路线是能否追上和逃生的关键因素。这里就讨论一对老冤家的追逃问题,快速奔跑的狼能否追上不远处有洞穴的兔子。有一只兔子、一匹狼,兔子位于狼的正西100 米处,假设兔子与狼同时发现对方并一起起跑,兔子往正北60 米处的巢穴跑,而狼在追兔子。已知兔子、狼是匀速跑且狼的速度是兔子的两倍。试建立数学模型[2]研究以下问题:(1)根据已知条件,建立狼的运动轨迹微分模型。(2)画出兔子与狼的运动轨迹图形。(3)用解析方法求解,判断兔子能否安全回到巢穴。(4)用数值方法求解,判断兔子能否安全回到巢穴。3 模型建设假设狼不知道兔子远处是否有洞穴,故狼的速度方向应该始终是朝向兔子,而兔子是不中国科技论文在线- 2 -断奔跑的,所以狼的速度方向不断的改变,运动轨迹应该是一条光滑的曲线。设兔子的速度为v,以t=0 时刻兔子的位置为原点,兔子朝向狼的方向为x 轴,逆时针旋转90 度的方向为y 轴方向建立平面直角坐标系,t 时刻狼的坐标为(x,y),兔子的坐标为(0,vt),狼的速度方向与x 轴负半轴的夹角为θ。3.1 问题的分析与模型建立3.3.1 建立狼的运动轨迹微分模型作出狼的运动轨迹草图如下:图1 狼的运动轨迹草图Figure 1 the trajectories of a wolf plant 时刻y 对x 求导等于曲线在点(x,y)处的切线斜率,即Y= − tanθ (1)又由于狼的运动方向指向兔子,所以,xvt − ytanθ = = − tanθdxdy(2)由(1)和(2)得,xy vtdxdy −=(3)将狼的速度分解成为沿x 轴和y 轴方向,即x v =dxdt ,yv dydt=,所以,22 2(2v)dtdxdtdy = ⎟⎠⎞⎜⎝+ ⎛ ⎟⎠⎞⎜⎝⎛(4)由(3)式可得,y = x dxdy+ vt (5)两边对t 求导得,中国科技论文在线 3 -vdtdxdxx d ydxdydtdxdxdy = ∗ + ∗ + 22(6)整理,得dtdxdxx d y ∗ 22= −v (7)将(4)式左右两边同乘以2 dtdx⎛ ⎞⎜ ⎟⎝ ⎠,得2 dydx⎛ ⎞⎜ ⎟⎝ ⎠+1=22 4 ⎟⎠⎞⎜⎝⎛dxv dt (8)由(7)、(8)两式得22dxd yvxdxdt = −(9)(9)式即为狼的运动轨迹微分模型。3.3.2 画出兔子与狼的运动轨迹图形根据上述微分方程,利用 matlab 软件中的ode45 函数即可求出二阶微分方程(9)中x值对应的y 值,再利用绘图函数plot 即可画出狼的运动轨迹图像[3]。程序如下:先建立matlab 函数:function f=odefun(x,y)f(1,1)=y(2);f(2,1)=sqrt(1+y(2).^2)./(2.*x);再在主程序中输入下列程序:t=100:-0.1:0.1;y0=[0 0];[T,Y] = ode45('odefun',t,y0);plot(T,Y(:,1),'-')即可得到如下曲线,即为狼的运动轨迹图形。中国科技论文在线 4 -图2 狼的运动轨迹图形Figure 2 the trajectories of a wolf graphics兔子的运动轨迹是一条从(0,0)点到其洞穴(0,60)的直线,所以,再在主程序中输入以下程序即可将兔子和狼的运动轨迹绘制出来。x1=[0 0];y1=[0 60];plot(T,Y(:,1),'-',x1,y1,’r’)绘制出来的图像如下图:(其中蓝色代表狼的运动轨迹,红色代表兔子的运动轨迹)中国科技论文在线 5 -图3 狼和兔子的运动轨迹图形Figure 3 wolves and rabbits trajectories graphics4 模型求解4.1 用解析法求解兔子能否安全回到巢穴判断狼是否能追上兔子,可先假设没有洞穴,看看狼再什么位置可以追上兔子,若追上时兔子运动的距离已经超过60 米,那就是说再狼追上兔子之前,兔子已经安全的逃回洞穴之中。用解析法判断狼是否能追上兔子的具体过程[4]如下:可假设p dxdy= ,则22dp d ydx dx= ,那么(9)式可变为22 2 4 1 ⎟⎠⎞⎜⎝+ = ⎛− ∗dxdpvp v x (10)整理得22 2 4 1 ⎟⎠⎞⎜⎝+ = ⎛dxp v dp (11)dxp2 +1 = 2x dp (12)xdxpdp2 1 2=+(13)再对等式两边积分,得( ) '1 ln p + p2 +1 = ln x + C (14)也即中国科技论文在线 6 -p + p2 +1 =C x 1 (15)因为x=100 时,狼的速度方向沿y 轴负向,所以此时p=0,可求得1 C =110(15)式可变为p + p2 +1 = x101(16)两边平方1002 p2 +1+ 2 p p2 +1 = x (17)移项2 p p2 +1 = (2 1)100x − p2 +(18)再次平方(2 1)1004 4 1 2100004 4 4 2 22p4 + p2 = x + p + p + − x p + (19)整理( ) 1 01004 21000022x − p + x + =(20)求p222 1010100 2100210014 10000 ⎟ ⎟⎠⎞⎜ ⎜⎝⎛− = + − = −+=xxxxxxp(21)xp x 520= − (22)因为p dxdy= ,所以(22)式可变为xxdxdy 520= − (23)两边积分即可得到y 与x 的函数关系式3 12 221 1030y = x − x +C (24)因为x=100 时,y=0,所以3 12 220 1 100 10 10030= ∗ − ∗ +C解得2 C =2003=66.67中国科技论文在线 7 -故(24)式可变为3 11 2 10 2 20030 3y = x − x + (25)令x=0,可求得y=2003=66.67因为y=66.67>60,所以在狼追上兔子之前,兔子已经安全逃回到洞穴之中,饿狼只能干瞪眼了。4.2 用数值方法求解兔子能否安全回到巢中前面已经用解析法判断出狼并没有追上兔子,那么我们现在再用数值微分法求出(9)式中x=0 时y 的值,再将y 值与60 比较,若y 大于60,则也说明在兔子安全逃回洞穴之前,狼没有追上兔子,下面就是用数值微分法并借助matlab 软件判断狼是否能够追上兔子的方法:利用matlab 软件中的ode45 函数求出二阶常微分方程的初值,并求出x=100 时y 的值即可判断出狼是否能够追上兔子[5]。具体matlab 程序如下:先建立odefun 函数:function f=odefun(x,y)f(1,1)=y(2);f(2,1)=sqrt(1+y(2).^2)./(2.*x);再在主程序中输入如下程序:t=100:-0.1:0.1;y0=[0 0];[T,Y] = ode45('odefun',t,y0);n=size(Y,1);Y(n,1)即可输出结果:ans =63.5007x=0.1 时,y=63.5007>60,而当x=0 时y>63.5007 当然也大于60,所以狼在兔子进洞之前并没有能够追上兔子,一顿美餐就这样从它眼前没了。5 结果分析从图 2 可以粗略的看出x=0 时y 的值大于60,用数学解析法也算出y 值等于66.67 大于60,用数值微分法算出来的y 值也大于60。所以,从种种计算方法表明,在兔子就如洞穴之前,狼时无法将其擒获的。如果换个角度考虑,假设狼知道兔子的洞穴所在,直接跑向其洞穴处守洞待兔。那么根据勾股定理[6],狼运动的距离s= 6 0 2 + 1 0 0 2 =116.6m,此时兔子运动距离为s/2=58.3<60。也就是说兔子还没有逃进洞里,而狼已经再其洞口等待,那么兔子就不敢进洞,只要兔子没法进洞,狼的速度是兔子的2 倍,狼就可将其擒获。可惜,饥饿而又贪婪的狼只想着怎么样快速的追上兔子美餐一顿,哪里有时间而且也不会进行这么复杂的计算,并且很多情况下狼是不知道兔子的洞穴所在,所以,狼只能在快要追到兔子的时候看着兔子溜掉而干瞪眼了

举例说明常微分方程模型是各类数学建模竞赛中常见的模型, 并通过列举一些参考文献来说明此类模型的建模方法和求解求解技巧不仅相同. 从而得出"常微分方程在数学建模中的应用"是值得研究的.

微分方程在力学中的应用是非常广泛的。但是你的问题问得太不着边际了,很难回答。微分方程分为常微分方程和偏微分方程。一般来说,后者应用更为广泛。常系数常微分方程通常用来解一些最简单、最基本的动力学问题,例如速度、加速度、弹簧受力分析等等。例如:F=m*d(ds/dt)/dt就是牛顿第二定律。这些方程一般都可以解出。最常见的非常系数常微分方程有贝赛尔方程、薛定鄂方程以及非线性薛定鄂方程等,这些方程一般应用在边界条件为圆柱或圆球形状的波的振动描述上。偏微分方程是分析波动、二维受力分析等常见的方程了。如果你要写论文,可以考虑以下两方面的应用:1 牛顿定律分析2 波动分析

常微分方程毕业论文

根据我搜集的一些网站来看,建议看看这个,要做毕业论文以及毕业设计的,推荐一个网站 ,里面的毕业设计什么的全是优秀的,因为精挑细选的,网上很少有,都是相当不错的毕业论文和毕业设计,对毕业论文的写作有很大的参考价值,希望对你有所帮助。 别的相关范文很多的,推荐一些比较好的范文写作网站,希望对你有帮助,这些精选的范文网站,里面有大量的范文,也有各种文章写作方法,注意事项,应该有适合你的,自己动手找一下,可不要照搬啊,参考一下,用自己的语言写出来那才是自己的。 如果你不是校园网的话,请在下面的网站找: 毕业论文网: 分类很细 栏目很多 毕业论文: 毕业设计: 开题报告: 实习论文: 写作指导:

1500字太夸张了,给你一下提示吧! 1、运用微分方程或微分方程组,可以描述经济系统的动态运行规律。2、运用微分方程,可以分析经济系统的均衡与稳定性。3、在微分方程中加入控制变量,将经济学问题转化为最优控制问题,可以分析经济系统的最优控制策略。目前比较常用的微分方程在经济学中的应用有:(1)最早的哈罗德-多马经济增长模型、索罗模型等均属于微分方程(或转化为差分方程)模型。(2)后来的经济增长的世代交替模型等也是运用的微分方程。(3)技术扩散的巴斯模型,以及分析竞争洛克塔-瓦塔利亚模型也是微分方程模型。(4)亚瑟的路径依赖与锁定模型是随机微分方程。(5)布莱克-斯科尔斯期权定价模型,源于随机微分方程和变分法。(6)各种进化博弈模型中的复制动态方程是微分方程。

要的话请联系我邮箱(点我可见)。13 【篇名】 偏微分方程组的对称群及其在弹性力学方程组中应用 CAJ原文下载 PDF原文下载 【作者】 张鸿庆. 朝鲁. 唐立民. 【刊名】 大连理工大学学报 1997年03期 编辑部Email 《中文核心期刊要目总览》来源期刊 “中国期刊方阵”入选期刊 ASPT来源刊 CJFD收录期刊 【机构】 大连理工大学数学科学研究所. 大连理工大学工程力学研究所. 【关键词】 偏微分方程. 弹性力学. 对称群/不变向量场. 符号运算. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 给出了非退化线性偏微分方程组及二次型泛函对称群的不变向量场的一般形式和一类特殊形式非线性偏微分方程组对称群的简化计算条件;利用以上结论及作者以往工作,借助符号运算语言MathematicaTM计算了平面弹性力学方程组一阶Lie-Bactlund对称群的不变向量场,以及应力函数对应的三维弹性力学方程组的Lie代数.为构造弹性力学方程组的一类广泛精确解及守恒律提供了必要的基础,并说明了结论对计算偏微分方程组对称群时的简化作用 【光盘号】 SCTC9706 14 【篇名】 力学中一类变系数微分方程可调参数模型解法 CAJ原文下载 PDF原文下载 【作者】 赵文福. 封营儒. 连星耀. 黎明安. 【刊名】 西安理工大学学报 1995年02期 编辑部Email CJFD收录期刊 【机构】 西安理工大学机械工程系. 【关键词】 可调参数. 变系数微分方程. 非均匀控制参数. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 结合一种非均匀控制参数,提出了一种变系数微分方程的可调整参数模型解法,可以很方便地处理由于物理上、几何上的非均匀、非线性而导致数学上的变系数微分方程,应用这种模型可以用非常少的单元得到较满意的数值结果。 【光盘号】 SCTC9508 31 【篇名】 材料力学弯曲问题中集中量与分布量的统一处理 CAJ原文下载 PDF原文下载 【作者】 周锡勤. 张存道. 【刊名】 现代电力 1995年02期 编辑部Email CJFD收录期刊 【机构】 北京动力经济学院. 【关键词】 集中量. 分布量. 弯曲变形. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 介绍了利用δ函数统一处理集中量与分布量的一般方法。着重讨论了这种方法在建立含集中量的杆件弯曲时的平衡微分方程的应用,从而推广了材料力学中杆件弯曲时的平衡微分方程。该方程更全面更精确地反映了杆件弯曲这一物理现象。作者把它称为梁弯曲时的广义平衡微分方程。 【光盘号】 SCTC95S5 38 【篇名】 双相材料空间中平片界面裂纹问题的超奇异积分-微分方程 CAJ原文下载 PDF原文下载 【作者】 乐金朝. 汤任基. 【刊名】 科学通报 1996年15期 编辑部Email 《中文核心期刊要目总览》来源期刊 “中国期刊方阵”入选期刊 ASPT来源刊 CJFD收录期刊 【机构】 郑州工学院道路检测与CAE技术研究中心. 上海交通大学工程力学系 郑州 450002 . 上海 200030. 【关键词】 双相材料. 平片界面裂纹. 超奇异积分-微分方程. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 <正> 随着复合材料的广泛应用,界面断裂力学成为国际断裂界的前沿研究课题,该领域的研究工作引起了国内外力学家、金属物理学家及材料科学家的广泛关注,并取得了许多新进展。据作者所知,目前的工作主要是研究二维问题,由于数学和力学等方面的困难,三维界面断裂力学方面的研究工作报道较少。本文利用双相材料空间在集中力作用下的弹性力学基本解,使用边界元法,在有限部积分的意义下将任意形状的平片界面裂纹问题归结为一组以裂纹面上的位移间断为未知函数的超奇异积分-微分方程。此组方程对于进一步开展三维界面断裂力学问题的研究具有重要意义。 【光盘号】 SCTA96S4 39 【篇名】 常微分方程的不变式在量子力学中的应用 CAJ原文下载 PDF原文下载 【作者】 杨进. 【刊名】 大学物理 1998年08期 编辑部Email 《中文核心期刊要目总览》来源期刊 CJFD收录期刊 【机构】 成都气象学院基础科学系. 【关键词】 常微分方程. 不变式. 库仑场. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 利用常微分方程的不变式,非常方便地求解了一些量子力学问题. 【光盘号】 SCTA9809 40 【篇名】 保守力系的变形拉格朗日方程及其应用 CAJ原文下载 PDF原文下载 【作者】 梁志强. 【刊名】 泰安师专学报 2000年06期 编辑部Email CJFD收录期刊 【机构】 泰安师专物理系!山东泰安271000. 【关键词】 Lagrandge方程. 轨道微分方程. 轨道方程. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 从保守力系的拉格朗日方程出发 ,导出一种用于求解保守系统轨道微分方程的变形拉格朗日方程。并将其应用于有心力问题及抛体问题 ,导出了有心力问题的轨道微分方程Binet公式及抛体轨道方程。保守力系的变形拉格朗日方程提供了求解运动物体轨道方程的新方法 ,同时也丰富了分析力学的教学内容。 【光盘号】 SOCI0105

高阶线性微分方程论文开题报告

阶线性微分方程的一般形式为这里假设系数 都在区间 上连续. 当 时方程(3.22)变为齐次线性微分方程若令则方程(3.22)可以转换成一阶线性微分方程组其中当 时,方程组(3.25)变为齐次线性微分方程组显然,由方程(3.22)的任一解 可得到方程组(3.25)的一个解反之,方程组(3.25)的任一解的第一个分量就是方程(3.22)的解. 特别地,方程(3.22)满足初值条件的解在区间 上存在并且唯一. 考虑方程它等价于方程组这里 可以验证为方程组(3.29)对应的齐次线性方程组的基解矩阵. 并且利用常数变易公式可得方程组(3.29)的通解为因此方程(3.28)的通解为其中 为任意常数. 由于 阶线性微分方程(3.22)利用上述转化方式可变换为与之等价的一阶线性微分方程组(3.25),因此我们可以把前几节的主要结果平行地推广到方程(3.22). 与方程组(3.25)相对应的,假设函数 是齐次线性微分方程(3.23)的 个解,我们称为解组 的 Wronski 行列式. 齐次线性微分方程(3.23)的 个线性无关的解的全体称为该方程的一个基本解组. 利用关系式(3.24),我们可以把关于方程组(3.26)的定理自然转述到高次方程(3.23)上. 阶齐次线性微分方程(3.23)的解组 线性无关的充要条件是它的 Wronski 行列式 在区间 上恒不为零,而这等价于 在区间 的某点 处不为零,并且方程(3.23)的任一解组 的 Wronski 行列式满足 Liouville 公式这里由于与方程(3.23)等价的方程组(3.26)中矩阵函数 的迹 ,因此由于关于方程组的 Liouville 公式(3.32),就可以求出方程(3.23)的通解. 设 是二阶齐次线性方程的的一个非零解,其中 和 是 上的连续函数,则方程(3.33)的通解为证明 为简便起见,假设 在区间 上恒不为零. 设 为方程(3.33)的任一解,则由 Liouville 公式(3.32)可得亦即上式两端同乘以积分因子 ,可得积分上式,就可得公式(3.34). 这个例子告诉我们一个利用 Liouville 公式降阶的方法. 一般地,如果事先能够知道齐次高阶方程(3.23)的一个非平凡解 ,即 ,我们还可以用变量替换 把方程化成关于函数 的低一阶的齐次线性微分方程. 事实上,对这个变量替换求导并带入(3.23),可得到形如的方程,它一定有解 ,因此 是方程(3.23)的解. 由此推出, ,因此远方还曾可化为如下的 阶线性微分方程根据非齐次线性方程组(3.25)与非齐次线性高阶微分方程(3.22)的关系,我们把非齐次线性微分方程的常数变易公式应用到方程(3.22)上,容易得到下面的结果. 设 是 阶齐次线性微分方程(3.23)在 上的一个基本解组,则非齐次线性微分方程(3.22)在 上的通解为其中 为任意常数,而是方程(3.22)的一个特解, 是解组 的 Wronski 行列式, 是 中第 行第 列元素的代数余子式.

基于高阶线性微分方程的物理原理不多,但是关于多个未知函数的微分方程组可以转化为高阶线性微分方程,反之一样。由于常系数高阶线性微分方程好解,有时借助它求解多个未知函数的微分方程组。

有关微分方程的论文题目

在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考

与常微分有关的毕业论文论文

完整题目发到如下邮箱,我帮你看看。

这很明显是数学建模方面的问题,你可以查看一下数模竞赛方面的论文,记得有一年的竞赛和这个挺相似

要的话请联系我邮箱(点我可见)。13 【篇名】 偏微分方程组的对称群及其在弹性力学方程组中应用 CAJ原文下载 PDF原文下载 【作者】 张鸿庆. 朝鲁. 唐立民. 【刊名】 大连理工大学学报 1997年03期 编辑部Email 《中文核心期刊要目总览》来源期刊 “中国期刊方阵”入选期刊 ASPT来源刊 CJFD收录期刊 【机构】 大连理工大学数学科学研究所. 大连理工大学工程力学研究所. 【关键词】 偏微分方程. 弹性力学. 对称群/不变向量场. 符号运算. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 给出了非退化线性偏微分方程组及二次型泛函对称群的不变向量场的一般形式和一类特殊形式非线性偏微分方程组对称群的简化计算条件;利用以上结论及作者以往工作,借助符号运算语言MathematicaTM计算了平面弹性力学方程组一阶Lie-Bactlund对称群的不变向量场,以及应力函数对应的三维弹性力学方程组的Lie代数.为构造弹性力学方程组的一类广泛精确解及守恒律提供了必要的基础,并说明了结论对计算偏微分方程组对称群时的简化作用 【光盘号】 SCTC9706 14 【篇名】 力学中一类变系数微分方程可调参数模型解法 CAJ原文下载 PDF原文下载 【作者】 赵文福. 封营儒. 连星耀. 黎明安. 【刊名】 西安理工大学学报 1995年02期 编辑部Email CJFD收录期刊 【机构】 西安理工大学机械工程系. 【关键词】 可调参数. 变系数微分方程. 非均匀控制参数. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 结合一种非均匀控制参数,提出了一种变系数微分方程的可调整参数模型解法,可以很方便地处理由于物理上、几何上的非均匀、非线性而导致数学上的变系数微分方程,应用这种模型可以用非常少的单元得到较满意的数值结果。 【光盘号】 SCTC9508 31 【篇名】 材料力学弯曲问题中集中量与分布量的统一处理 CAJ原文下载 PDF原文下载 【作者】 周锡勤. 张存道. 【刊名】 现代电力 1995年02期 编辑部Email CJFD收录期刊 【机构】 北京动力经济学院. 【关键词】 集中量. 分布量. 弯曲变形. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 介绍了利用δ函数统一处理集中量与分布量的一般方法。着重讨论了这种方法在建立含集中量的杆件弯曲时的平衡微分方程的应用,从而推广了材料力学中杆件弯曲时的平衡微分方程。该方程更全面更精确地反映了杆件弯曲这一物理现象。作者把它称为梁弯曲时的广义平衡微分方程。 【光盘号】 SCTC95S5 38 【篇名】 双相材料空间中平片界面裂纹问题的超奇异积分-微分方程 CAJ原文下载 PDF原文下载 【作者】 乐金朝. 汤任基. 【刊名】 科学通报 1996年15期 编辑部Email 《中文核心期刊要目总览》来源期刊 “中国期刊方阵”入选期刊 ASPT来源刊 CJFD收录期刊 【机构】 郑州工学院道路检测与CAE技术研究中心. 上海交通大学工程力学系 郑州 450002 . 上海 200030. 【关键词】 双相材料. 平片界面裂纹. 超奇异积分-微分方程. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 <正> 随着复合材料的广泛应用,界面断裂力学成为国际断裂界的前沿研究课题,该领域的研究工作引起了国内外力学家、金属物理学家及材料科学家的广泛关注,并取得了许多新进展。据作者所知,目前的工作主要是研究二维问题,由于数学和力学等方面的困难,三维界面断裂力学方面的研究工作报道较少。本文利用双相材料空间在集中力作用下的弹性力学基本解,使用边界元法,在有限部积分的意义下将任意形状的平片界面裂纹问题归结为一组以裂纹面上的位移间断为未知函数的超奇异积分-微分方程。此组方程对于进一步开展三维界面断裂力学问题的研究具有重要意义。 【光盘号】 SCTA96S4 39 【篇名】 常微分方程的不变式在量子力学中的应用 CAJ原文下载 PDF原文下载 【作者】 杨进. 【刊名】 大学物理 1998年08期 编辑部Email 《中文核心期刊要目总览》来源期刊 CJFD收录期刊 【机构】 成都气象学院基础科学系. 【关键词】 常微分方程. 不变式. 库仑场. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 利用常微分方程的不变式,非常方便地求解了一些量子力学问题. 【光盘号】 SCTA9809 40 【篇名】 保守力系的变形拉格朗日方程及其应用 CAJ原文下载 PDF原文下载 【作者】 梁志强. 【刊名】 泰安师专学报 2000年06期 编辑部Email CJFD收录期刊 【机构】 泰安师专物理系!山东泰安271000. 【关键词】 Lagrandge方程. 轨道微分方程. 轨道方程. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 从保守力系的拉格朗日方程出发 ,导出一种用于求解保守系统轨道微分方程的变形拉格朗日方程。并将其应用于有心力问题及抛体问题 ,导出了有心力问题的轨道微分方程Binet公式及抛体轨道方程。保守力系的变形拉格朗日方程提供了求解运动物体轨道方程的新方法 ,同时也丰富了分析力学的教学内容。 【光盘号】 SOCI0105

  • 索引序列
  • 有关高阶常微分方程的毕业论文
  • 常微分方程毕业论文
  • 高阶线性微分方程论文开题报告
  • 有关微分方程的论文题目
  • 与常微分有关的毕业论文论文
  • 返回顶部