好吧,十三求救,于是我尝试着讨论一下。这个问题谁也不敢说回答。我可以先把我们中科院神经所所长蒲慕明老师去年为牛顿科学世界刊物《潜入大脑》专刊写的卷首语转发一下,蒲老师是美国加州大学伯克利分校教授,美国科学院院士,中科院外籍院士,世界著名神经科学学家。对大脑结构与功能的理解是人类认知自然界及自身的终极挑战。大脑以其卓绝的能力使人类能够在各种环境下生存,能改造自然以趋利避害,并且能建立一个能将知识进行积累和传承的社会形态;因此,正是大脑使得人类能够从万物中脱颖而出。人类大脑这些独特的能力是如何在一个相对较短的进化过程中演化而来的呢?这些独特的能力又是如何在大脑结构的基础上产生的呢?因人而异的经历如何塑造了个人不同的个性与能力呢?这些有意思的问题已让科学家们着迷多年。在过去的一个世纪中,主要通过两种途径对大脑的结构和功能进行了研究。第一种途径是去发现特定的脑功能是由哪些脑区负责的。以前,这一途径是通过识别人类(实验动物)中针对特定脑区的脑损伤或脑疾病会对哪些特定脑功能造成伤害而实现的。而如今,得益于近期脑成像技术所取得的进展,已经实现对参与了执行正常脑功能的各个脑区非侵入性的识别。在第二种途径中,通过对动物大脑在细胞层次的解剖学和生理学研究,我们不仅了解了构建大脑的基石--神经细胞的特性和功能,而且了解了由特定神经细胞组成的神经网络如何能够进行感觉信号处理中运动的协调和一些简单的认知功能。 虽然这两种途径取得的巨大进展实现了自上而下(top-down)的对脑功能定位的了解,以及自下而上(bottom-up)的对神经细胞和神经网络功能的理解;在这两层面的了解之间仍然存在着一个巨大的沟壑。我们甚至还不清楚在我们脑中由成千上万个神经元组成的神经网络具体是如何实现一些简单的功能。比如说如何记住你奶奶的面容,下次见到她时如何能认识她,或者告诉她你爱她。从这一期大脑专刊的内容我们可以看出:在过去的数十年中,不论是对宏观脑功能还是微观神经环路特性的理解,脑科学研究在各个领域均取得了快速的进展。然而,这两个层次的研究之间的沟壑仍然有待填补,而那里正是大脑奥秘的所在。在未来数十年中,脑科学家将要面对大量而困难的工作,因为揭开大脑奥秘需要整合不同学科的实验手段和一些新的概念构架(目前这些基本还没有)来联系在不同层次对大脑的了解。为什么在大脑的宏观和微观理解之间那尚未填补的沟壑上架起一座桥梁是如此重要呢?因为这是现代科学的目标 — 理解自然就是要理解一个自然现象如何从它组成部分的特性中呈展产生。所以,任何从认知、环路、细胞·分子等单一层次上对一个神经的现象进行的描述,若不能联系上与更高或更低层次上的因果关系,这种描述都是不完整的,也不可能令人满意。目前,神经科学家对某些脑区参与了某个特定脑功能的这种描述已不会感到满意。我们更需要知道的是实现这些脑功能的神经环路,神经元类型和塑造这些神经环路的突触联系方式,以及负责这些个体神经元发育、功能和可塑性的遗传和分子机制。这期专刊中介绍的脑科学研究进展为我们呈现了几个窥视大脑奥秘的窗口。如何破解这些大脑的奥秘正是未来几代人,可能包括读者您自己,所要面对的最令人兴奋和最具挑战性的任务。华丽的分割线.==============================对于楼下,我可以把这些进展都讨论一下,比较其中一个还是我们所的,复旦马兰老师也是非常熟悉的前辈工作,还在一起合作来着。慢慢写啊,时间有限。满意请采纳
突触传递机制研究新进展 摘要:最近的几年里,科研人员一直致力于突触传递机制的研究,他们对有关的各种生物现象中寻找突触传递在其中的机制。本文将从对突出传递机制的新进展做一个小小的综述。 关键词:突触可塑性;视网膜;调控机制;tau蛋白;伏隔核谷氨酸能;可卡因;大鼠VTA区DA神经元;脑胶质瘤致癫病;长时程增强(LTP);膜片钳;GluR2 缺失的AMPARs 视网膜突触可塑性调控机制研究进展#突触可塑性的变化影响着中枢神经系统的发育,损伤和修复等多种功能。研究发现,在视网膜发育、损伤修复过程中可出现突触可塑性改变,而自发性眼波、光线刺激、视觉经验、神经营养因子和胶质细胞等因素均参与了视网膜突触可塑性的调节。突触连接的改变是经验依赖性脑神经回路重排的基础,突触可塑性的变化影响着神经系统的发育,神经的损伤和修复等多种脑功能,目前突触可塑性的调节机制还未完全阐明。近30 多年来,对于视觉系统发育和可塑性的研究取得了很大的发展,尤其是对于视神经突触水平的变化有了较清晰的认识,但还有很多问题尚待深入研究:各种神经生长因子参与视觉发育可塑性的确切机制;在基因水平上还需进一步通过对多种相关基因的反应时程和强度进行分析, 研究其对视网膜突触可塑性的影响;视网膜突触可塑性中胶质细胞增殖、分裂、分泌生物活性物质等功能的调控。随着脑科学、发育生物学及神经生物学等边缘学科的迅猛发展,相信不远的将来,人类一定会在该领域取得突破性进展,并给治疗相关视网膜疾病及视网膜损伤后的修复治疗研究提供新思路和理论依据。兴奋性突触传递对tau蛋白表达和省略响及其在阿尔茨海默病发病中的作用兴奋性突触传递是神经元最基本的功能,NMDA受体(N-Methyl-D-aspartate receptor, NMDAR)是神经系统中最主要的兴奋性离子型受体之一,其在学习记忆,突触可塑性,神经发育等方面具有重要作用,但NMDA受体过度激活导致谷氨酸聚集于突触间隙所诱导的神经毒性作用也是许多神经退行性疾病的共同发病机制。阿尔茨海默病(Alzheimer’s disease, AD)是成人痴呆症最主要的病因,其中tau蛋白过度磷酸化和聚集是AD脑内的主要病理特征之一。兴奋性突触传递与tau病变之间的联系目前少见报道。本研究探讨了谷氨酸能兴奋性突触传递增强对tau蛋白表达和磷酸化的影响及其在AD样神经退行性变中的作用。本文第一部分探讨了短时间突触传递增强对tau蛋白磷酸化的影响和内在机制。成人脑内约有一半的谷氨酸能神经元是谷氨酸-锌能神经元,即突触兴奋时锌离子与谷氨酸一起释放至突触间隙。本研究阐明了谷氨酸-锌能神经元兴奋时突触释放的锌离子通过抑制蛋白磷酸酯酶2A (Proteinphosphatase2A, PP2A)的活性导致tau蛋白过度磷酸化。 慢性吗啡处理对伏隔核谷氨酸能突触传递的影响药物成瘾和自然的奖赏效应(食物、性等)共享同样的神经基础——中脑边缘多巴胺系统,该系统主要涉及杏仁核、弓状核、蓝斑、中脑导水管周围灰质、腹侧被盖区(ventraltegmental area, VTA)、伏隔核(nucleus accumbens,NAc)等脑区,其外延包括额叶皮层、海马等与情绪、学习和记忆密切相关的结构。目前的观点认为奖赏性刺激是通过对脑内奖赏系统发挥作用,最终引起NAc区多巴胺(dopamine,DA)释放量增多,从而产生奖赏效应。NAc在成瘾中起着至关重要的作用。NAc中神经元因在吗啡成瘾及戒断的过程中产生适应性变化而备受关注。前额叶皮质(prelimbicprefrontal cortex,PFC)的功能之一是对有利刺激的重要性进行评估,并抑制在当前环境中不适当的行为,该脑区在成瘾药物的精神依赖中发挥着对觅药动机进行评估和抑制的重要作用。Mark EJackson等研究发现,利用接近生理条件下的刺激频率来刺激PFC后抑制了NAc中多巴胺的释放,提示了前额叶中存在着对NAc中的多巴胺的释放的抑制性调节 单次可卡因注射对大鼠VTA区DA神经元兴奋性突触传递和内在兴奋性的影响中脑皮质边缘多巴胺系统(mesocorticolimbicdopamine system)与奖赏和药物成瘾有十分密切的关系。该系统包括腹侧被盖区(ventraltegmental area, VTA)多巴胺能神经元的两条主要投射通路:一条由腹侧被盖区投射到伏隔核(nucleusaccumbens, NAc)和纹状体,称为中脑边缘多巴胺系统(mesolimbicdopamine system);另外一条由腹侧被盖区投射到前额叶皮质(prefrontal cortex),称为中脑皮质多巴胺系统(mesocortical dopamine system)。这两条通路合称为中脑皮质边缘多巴胺系统。药物成瘾的解剖基础是奖赏系统,中脑边缘多巴胺系统是其关键,中脑腹侧被盖区(VTA)及其投射区伏隔核(NAc)是主要的神经基础,多巴胺(DA)是非常重要的神经递质。除了参与天然和成瘾性药物的奖赏刺激,当今更多的研究发现中脑边缘多巴胺系统还与成瘾的渴求和复发有关。在VTA区域微量注射吗啡、可卡因等都能诱导产生条件性位置偏爱(CPP)。VTA区注射吗啡还可点燃海洛因、可卡因等的自给药行为。 LTP 的分子机制研究进展LTP机制的研究热点由单一兴奋性递质机制过渡到兴奋性递质与抑制性递质联160 合机制。目前,已证明突触可塑性的改变与多种疾病相关,如阿尔茨海默病、癫痫、慢性痛、药物成瘾性和精神分裂症等。常用在体LTP技术和膜片钳脑片LTP技术两种检测方法。在体海马LTP的优势在于能较真实地反映生理状态下神经突触活动的情况,在整体条件下观察神经突触活动的变化,利于从宏观角度研究和探讨相关机理。其进展体现在:CaM-CaMKII,Ca2+作为胞浆第二信使,与钙调蛋白(Calmodulin, CaM)结合形成Ca2+-CaM复合物,进一步激活CaMKⅡ。CaMKⅡ被认为是一个分子开关,在静息状态时,自身抑制区封闭催化部位而处于非活化状态。但当神经元受刺激时,Ca2+-CaM复合物与CaMKⅡ的自身抑制区结合,改变此酶的构象,从而具有活性。MEK-ERK,细胞外信号调节激酶(extracellularsignal-regulated kinase,ERK)是丝裂原活化蛋白激酶(micogen activated procein kinases,MAPKs)家族中的重要成员,和细胞的生长、发育、分化有关。最近研究表明,ERK通过影响相关核转录因子在LTP和学习记忆过程发挥着调节作用。PKA-CREB,长时记忆(Long term memory,LTM)需要新蛋白质的合成,PKA-CREB信号通路被认为在新蛋白质的合成过程中起重要作用。PKA的激活可以引发CREB的转录,并促使ERK向细胞核发生移位,表达参与到晚期LTP(Late-LTP, L-LTP)和LTM的发生机制。BDNF(脑源性神经营养因子),FanM等发现,BDNF与蛋白激酶Mδ(PKMδ)相关,两者相互影响。在蛋白质合成及强直性刺激的参与下,BDNF能够在一定程度上提高PKMδ的水平,从而影响 L-LTP的维持过程。但是在抑制神经元及突触活性后,BDNF则对PKMδ的稳态水平没有影响。PKMδ对BDNF介导的L-LTP是必不可少的。TrkB作为BDNF的受体,需要通过新蛋白质的合成被激活,从而参与到L-LTP的表达过程中。Munc13Munc13系列蛋白是一种基因调控蛋白,在突触囊泡胞吐和神经递质释放中发挥重要作用,对于目前Munc13与LTP相关性的研究成为热点。 脑胶质瘤致癫病的化学突触机制研究进展脑胶质瘤致病是由于胶质瘤对瘤周组织产生的一系列影响所引起的。然而这其中的病理生理学机制还有待于进步研究和探讨,主要涉及继发于胶质瘤后的结构学、生物化学及组织病理学方面的改变。而胶质瘤致病在临床治疗过程中属于难治型癫病,主要是由于抗癫病药物对胶质瘤致病的病理生理过程干预较少甚至是不干预,因此,揭示胶质瘤致病的病理生理过程可能为临床上肿瘤致桶的药物干预和治疗提供分子靶点和治疗依据。 GluR2 缺失的AMPARs在突触可塑性机制中的研究进展与活性依赖的突触的AMPARs 数目改变不同,活性依赖的AMPARs 亚基的修饰引起Ca2+信号转导的改变,通道传导和动力学的改变,使突触产生了不仅量而且是质的改变。这些重要的问题仍然需要进一步研究,如为何抑制性中间神经元和元棘突神经元中AMPARs 的GluR2 亚基低表达;GluR2亚基在活性依赖的细胞特异的改变的是什么机制;除了受体受到调节运输外,另→个重要的未解决的问题是AMPARs 介导的Ca2+内流有什么特殊功能,有力的证据的表明Ca2+内流可以激发LTP ,然而关于Ca竹在突触后的靶向目标却很少了解。因此关于GluR2 缺失的AMPARs 与突触可塑性的相关特异机制仍有待进一步研究。 [参考文献][1] Wahlin KJ, Moreira EF, Huang H, et al. Molecular dynamicsof photoreceptor synapse formation in thedeveloping chick retina. J CompNeurol[J]. 2008, 506(5): 822-837[2] Justin Elstrott, Anastasia Anishchenko, MartinGreschneretal.Direction selectivity in the retina is establishedindependentofvisual experience and early cholinergic retinal waves. Neuron[J]. 2008,58(4): 499-506[3] 罗佳,王慧,黄菊芳,陈旦;《视网膜突触可塑性调控机制研究进展#》;Q422[4] Bliss TV, Lomo T. Long-lasting potentiation of synaptictransmission in the dentate area of the anaesthetized rabbit followingstimulation of the perforant path. J Physiol[J]. 1973,232;331-356 [5] Whitlock JR, HeynenAJ, Shuler MG, Bear MF. Learning induces long-term potentiation in thehippocampus. Science[J]. 2006,313:1093-1097.[6]魏显招,王雪琪,《GluR2 缺失的AMPARs 在突触可塑性机制中的研究进展》,DOI: 10. 3724/SP. J. 1008. 2009. 00437
“灵魂出窍”的生物学解释 20201227很久以前,老何在大学读书的时候就学习了关于脑电波的一些基本知识,2015年,老何在一个自我催眠学习班上有缘了解到人在睡眠过程中各种状态下的脑电波变化,如精神紧张和情绪激动亢奋时14~30Hz的β波;人在清醒、安静并闭眼时8~13Hz(平均数为10Hz)的α波;也了解到人在婴儿期或智力发育不成熟、成年人在极度疲劳和昏睡或麻醉状态下,可在颞叶和顶叶记录到的,频率为1~3Hz的δ波。 最近,老何在王立铭老师的《巡山报告》中了解到一个生命科学的新发现:关于“灵魂出窍”的生物学解释。联想起多年以前读过的史蒂芬·科特勒/杰米·威尔《盗火:硅谷、海豹突击队和疯狂科学家如何变革我们的工作和生活》和王立铭老师解读关于镜像神经元的生物学研究进展,确实令人脑洞大开,非常值得对脑神经科学和静坐冥想有兴趣的朋友学习和思考!“灵魂出窍”的生物学解释“灵魂出窍”这个词,我们日常也会用,一般就是用来描述很爽、很嗨、很过瘾的情绪而已。但有意思的是,实际上有人真的能体验到这种感觉。 比如说,有一类叫作“解离型精神障碍”的疾病,患者就会出现类似灵魂出窍、灵魂和身体分离的感觉。还有某种精神类的药品,服用下去也有类似的效果。据说,它们会让人感觉自己的灵魂慢慢飞升、离开身体,甚至能回过头静静观察自己的四肢如何摆放、自己的脑子出现了什么想法。有时候,还会产生各种真实场景里没有的幻觉,比如看到小人跳舞、空间扭曲,听到五颜六色的声音等。至少根据当事人的描述,这种灵肉分离、灵魂出窍的感觉是实实在在的。因此,这类精神类药物也被称为“解离型药物” 每年,新闻上都有人吃了云南山里的蘑菇,出现各种奇奇怪怪的幻觉。在不少传统宗教里,巫师们会用各种植物和蘑菇做成药物,诱导信徒体验灵魂出窍的感觉。可以想象,一般人哪里扛得住这种经历,很容易就臣服在某种宗教教义的解释之下了。 当然,在现代科学的框架下,人的智慧不管再神奇,也无非是大脑中几百亿个神经细胞活动的结果而已,我们当然不相信人的脑袋里真的住着一个能够独立存在的灵魂,更不相信这东西在特殊条件下能够离开身体到处漂浮,还长了眼睛能回头观察自己的身体。但是不相信归不相信,这种体验的生物学解释又是什么呢? 你可能觉得这个问题有点太科幻,科幻到不属于我们这个时代。但2020年9月16日,美国斯坦福大学的科学家们在《自然》杂志发表了一篇论文,居然真的为灵魂出窍找到了一个看起来很靠谱的解释[9] 。 这项研究的逻辑其实挺容易理解的。既然这种解离型药物能够引起灵魂出窍的体验,科学家们为了科研需要,就给小鼠注射这种解离型药物,然后通过显微镜观察小鼠大脑不同区域的神经电活动有没有什么变化。结果他们发现,在整个大脑皮层区域,只有一个叫作“压后皮层”的区域,在注射该解离型药物以后,很快出现了频率很低、只有1-3赫兹的规律脑电波活动,有点像一个小灯泡以每秒钟亮1-3次的频率闪烁。等过了45分钟,也就是该精神类药物渐渐失效的时候,这种规律闪烁就停止了。 这个压后皮层的区域大概在小鼠大脑中间偏后的位置,可能和学习记忆这些功能有关,本来根本没有人觉得,它会和灵魂出窍这种玄乎的东西有关。因此,看到这个现象,科学家们自然需要进一步确认。结果他们发现,除了该种解离型药物之外,别的解离型药物对压后皮层的活动也有类似的调节作用,而别的药品,麻醉剂也好,致幻剂也好,抗焦虑药物也好,都没用。 难道说灵魂出窍的体验,就是这个压后皮层区域的这种规律性活动导致的? 为了回答这个问题,科学家们利用微型电极对数以百计的大脑神经细胞进行了更精细的活动记录,结果发现了一个更有意思的变化—— 在服用这种解离型药物之后,压后皮层的神经细胞的活动和大脑其他区域的神经细胞,出现了明显的脱节。具体来说,在正常状态下,因为大脑神经细胞之间存在大量直接或者间接的联系,它们的活动总是或多或少会步调一致,一起开启,一起关闭,因此就产生了我们熟悉的脑电波。但该种解离型药物注射下去,别的神经细胞还好,压后皮层的神经细胞却开始自作主张了,它们自己内部还仍然会步调一致,产生1-3赫兹的规律活动,但是这种活动和大脑其他区域脱节了。当然必须强调一句,这里所有注射该解离型药物的操作,都是为了科研中实验的需要。 这就很有意思了。我们刚刚描述了灵魂出窍的体验,听起来就是一种灵魂离开身体,还能回头观察自己的身体和思想的过程对吧?这个状态和压后皮层的神经细胞活动脱节,似乎有那么点像? 小鼠不会说话,当然无法描述自己的精神体验。但是,科学家们用了一个很有意思的办法,来测试这种灵魂出窍的感觉在小鼠体内到底存在不存在。 正常情况下,如果让小老鼠的前爪触碰一块很热的金属板,小老鼠挨了烫,会快速收回前爪,同时忍不住去舔舔爪子。你要是养过小狗、小猫、小孩子,可能会知道我在说什么。这两种反应听起来好像差不多,但性质有点不同——缩爪子,是遇到危险的本能逃避反应;而舔爪子,则带了那么点儿受伤以后自我安慰的感情色彩。 科学家们发现,注射该种解离型药物以后,小老鼠遇热缩爪子的反应没变,但是却不怎么舔爪子了。对此,研究者的解释是,小老鼠可能进入了灵魂出窍的状态,身体基本的防御反应还在,但是飞升的灵魂却感觉不到痛苦悲伤了,只是冷静地做个旁观者,因此就不再疗伤了。 当然,这个解释肯定是有点牵强的。毕竟老鼠不乐意舔爪子可以有各种各样的解释,说不定人家就是不喜欢这个动作了呢,扯不到灵魂出窍上。 不过比较幸运的是,这群科学家恰好找到了一个正在接受治疗的癫痫患者,他时不时就会出现灵魂出窍的体验。 在这位患者大脑里,科学家们居然发现了一模一样的现象。在患者说自己正体验灵肉分离、白日飞升、大脑里分出了几个小人彼此聊天的时候,他大脑里的压后皮层区域也出现了非常类似的现象——频率在3赫兹左右的规律神经活动。尽管只有一个人类患者的数据,但还是让科学家们更坚信自己找到了灵魂出窍的生物学解释。 但是请注意,截止到现在,所有的数据都仅仅还是相关性数据——老鼠或者人,在出现灵魂出窍的体验的时候,大脑压后皮层的神经细胞会出现规律活动,并且和其他大脑区域的活动脱节。这本身不说明两者有因果关系。 想要证明因果关系,我们就得人工操纵压后皮层的神经电活动,模拟出那种1-3赫兹的规律活动,然后看看老鼠或者人是不是真的灵魂出窍了。神经科学的技术进步,使这件事已经不是问题了。在这篇论文里,科学家们先是用了一种叫作“光遗传学”的办法,在小鼠脑袋里利用蓝光和黄光交替闪烁,刺激小鼠的压后皮层神经细胞,人为创造出2赫兹的规律性神经活动,果然就发现,小老鼠遇热也不太愿意舔爪子了。然后他们又用微电极,在那位人类患者脑袋里激发了类似的电活动,那位患者确实立马体会到了灵魂离体的感觉。 这样一来,数据就形成了闭环。灵魂离体的时候,大脑一个特殊区域的神经细胞出现了一种特殊的电活动;而如果人为诱发这种电活动,也能够人为诱导出灵魂出窍的体验。 不知道听到这儿你有什么想法,我反正读论文的时候是很兴奋的。灵魂出窍可能是人脑出现的最神奇的一种体验,原本我很难想象,居然能在有生之年看到对它的生物学解释。但是没想到,就在刚刚过去的这个月,我竟然有机会看到这样一个很简单但是合乎逻辑的科学解释。做科学研究的快乐可能正在于此吧,在走向未知世界的道路上,天知道你每天都会碰到什么。 当然,和所有重要的发现一样,这项研究在解决了一些问题的同时,提出了更多的新问题。 为啥压后皮层这么特别呢?这个区域为啥会出现这种1-3赫兹的规律性活动?这种活动意味着啥?和人类的自我意识有什么关系?为什么当这个压后皮层和其他大脑区域活动脱节,人就会出现灵魂出窍的体验?是不是说压后皮层本来就扮演了一个大脑其他区域观察者和指挥者的角色,负责监督其他大脑区域的活动?还有,为啥该种精神类药物会专门干扰这个地方的活动?人类的多重人格障碍和这个区域有没有关系…… 我甚至觉得,这些问题的背后,其实隐藏着人类智慧的关键秘密,特别是咱们人类如何产生自我意识,如何建立起独一无二的身份认知,如何形成复杂的社会并展开合作和交流。但这些,我们只能等待后续的研究进展了。附阅读推荐:《盗火:硅谷、海豹突击队和疯狂科学家如何变革我们的工作和生活》——[美]史蒂芬·科特勒 杰米·威尔这是本刚出版的新书,书名《盗火》源于古希腊神话人物普罗米修斯的故事,他为人类从天上盗来火种,使人成为万物之灵。因此触怒了宙斯,被锁链缚在高加索山脉的一块岩石上,每天被恶鹰啄食内脏,而他的内脏又总是重新长出来。本书所探讨的“火种”便是类似于心理学家所说的“心流”的状态,也称之为“出神”。一种让人能够全身心投入一项活动,忘记自己,忘记时间,毫不费力,发挥特别好还充满愉悦的感觉。在这种状态下的人仿佛获取了天神的力量,对别人构成一个非常不公平的竞争优势。而现在在美国,从特种部队到很多高科技公司则将大量人力、物力、财力投入到这个项目的研究中,并取得了一定成果。海豹突击队员曾经利用这一技术成功地完成了许多看似无法完成的任务,而他们所运用的则是一种随时关闭自我与集体融合,进行意识切换,做出战略调整来取得战争的胜利的被称之为“集体心流”的“出神”状态。从生理学角度分心,当人们体验一次完整的心流状态时,大脑会分泌六种愉悦感激素(多巴胺、去甲肾上腺素、大麻素、血清素、内啡肽及催产素),这也是大脑能产生的全部愉悦感激素。这意味着,如果我们进入心流状态,在工作中也能体会到兴奋和快乐。在这一状态下,大脑前额叶皮层的广泛活动没有了,取而代之的是这块区域某些特定的部分要么亮起来、异常活跃,要么就暗下去、活动减弱。与此同时,脑电波从活跃的β波,慢慢降低到平和的α波,进入到类似白日梦的状态,以及更深度的类似催眠状态的θ波。在神经化学物质上,像去甲肾上腺素和皮质醇这样的重力化学物质被能够加强表现、产生愉悦感的类似于多巴胺、内啡肽、大麻素、血清素和催产素等化合物替代。 从这一机制来看,“出神”状态其实可以通过三种途径进入。 第一种是用药物(吸食或注射刺激性药物)来激发这种状态。比如在人类历史上,某些宗教或团体就曾经在举行某一仪式前要求参加者摄入含有兴奋药成分的食物。比如如果能成功激发人体催产素的分泌,参与者就会感受到前所未有的仪式感,进而影响其一生。 第二种,也是最古老的神秘的一种,就是通过冥想等方式进入。但这种状态很难达到,据说西藏密教的某些得到高僧才能随意控制这种状态。而我们普通人如果想利用冥想来持续性地形成一种自我消失的状态,没有几十年的时间是达不到的。 第三种是经过科学训练,并借助某些现代科学手段和仪器来实现“出神”,这也是之前所提到的美国各大公司和军方正在着力研究的项目。据说现在已经有一种头戴式的仪器,戴上它之后可以有效地控制你的大脑活动,从而让人更专注于一件事,大幅提升办事效率,并能产生强烈的愉悦感。 本书通过数据、实例,以及当代心理学,神经生物学,工程技术和药理学几个领域的最新研究成果,将我们带入了一个全新的领域,标志着人类对自身的了解越来越深入。但我们也应该清醒的认识到,“出神”体验也有很大的副作用,比如:出神体验带来的多巴胺能让我们产生极端的自我意识,这时我们会认为再大的事业也可以一蹴而就(类似传销的体验),从而决心去做,这样可能会产生悲剧;在出神状态下,我们很难平衡好“放纵”和“克制”的关系,做不到收放自如,这样,便无法做到真正的“自由”;有些出神状态的进入可以通过之前提到的吸毒,或者从事剧烈的、危险的运动来实现,而这样很可能会给我们带来难以预料的危害。附:脑电波(Electroencephalogram,EEG)是一种使用电生理指标记录大脑活动的方法,大脑在活动时,大量神经元同步发生的突触后电位经总和后形成的。它记录大脑活动时的电波变化,是脑神经细胞的电生理活动在大脑皮层或头皮表面的总体反映。[1] 脑电波来源于锥体细胞顶端树突的突触后电位。脑电波同步节律的形成还与皮层丘脑非特异性投射系统的活动有关。脑电波是脑科学的基础理论研究,脑电波监测广泛运用于其临床实践应用中。[1] 2020年3月30日,美国加州大学旧金山分校的科研团队把人的脑电波转译成英文句子,最低平均错误率只有3%,发表在《自然·神经科学》杂志上。[2] 概念 人的大脑是由数以万计的神经元组成的,脑电波就是这些神经元之间的活动产生的电信号,这些神经元之间的连接有的是兴奋的,有的是抑制的;思维活动就是反应这些神经元之间的联系,大脑中的神经元会接收来自其他神经元的信号,当这I些信号的能量积累量超过一定的阐值时,就会产生脑电波,为了检测到脑电波,人’们通常将电极放置在人的头皮上来检测脑电波信号,再应用相关的设备进行脑波的收集与处理。[4] 脑电波中单导联脑电信号确定性较差、随机性强,非线性研究受到一定的限制,识别结果较差;而多导联脑电信号包含着更多的脑活动的信息,它更能反映脑活动的整体信息。[1]波段划分 现代科学研究表明,人脑工作时会产生自发性电生理活动,该活动可通过专用的脑电记录仪以脑电波的形式表现出,在脑电研究中,至少存在有四个重要的波段。[5] 脑电波是一些自发的有节律的神经电活动,其频率变动范围在每秒1-30次之间的,可划分为四个波段,即δ(1-3Hz)、θ(4-7Hz)、α(8-13Hz)、β(14-30Hz)。除此之外,在觉醒并专注于某一事时,常可见一种频率较β波更高的γ波,其频率为30~80Hz,波幅范围不定;而在睡眠时还可出现另一些波形较为特殊的正常脑电波,如驼峰波、σ波、λ波、κ-复合波、μ波等。[5] δ波 频率为1~3Hz,幅度为20~200μV。当人在婴儿期或智力发育不成熟、成年人在极度疲劳和昏睡或麻醉状态下,可在颞叶和顶叶记录到这种波段。[5] θ波 频率为4~7Hz,幅度为5~20μV。在成年人意愿受挫或者抑郁以及精神病患者中这种波极为显著。但此波为少年(10-17岁)的脑电图中的主要成分。[5] α波 频率为8~13Hz(平均数为10Hz),幅度为20~100μV。它是正常人脑电波的基本节律,如果没有外加的刺激,其频率是相当恒定的。人在清醒、安静并闭眼时该节律最为明显,睁开眼睛(受到光刺激)或接受其它刺激时,α波即刻消失。[5] β波 频率为14~30Hz,幅度为100~150μV。当精神紧张和情绪激动或亢奋时出现此波,当人从噩梦中惊醒时,原来的慢波节律可立即被该节律所替代。[5] 在人心情愉悦或静思冥想时,一直兴奋的β波、δ波或θ波此刻弱了下来,α波相对来说得到了强化。因为这种波形最接近右脑的脑电生物节律,于是人的灵感状态就出现了。[5]
从简单地剪切致病基因,到开发出不再传播疾病的工程动物,基因编辑技术已经释放出巨大的潜力。随着研究的深入,科学界还发现,除了编辑具有遗传讯息的DNA片段,编辑RNA可以在不改变基因组的情况下,帮助调整基因表达方式,此外,RNA的寿命是相对短暂的,这也意味着它的变化是可以逆转的,从而避免基因工程中的巨大风险。
2017年10月,来自Broad研究所的张锋研究团队在《自然》期刊上发表了题为“RNA targeting with CRISPR-Cas13”的文章,首次将CRISPR-Cas13系统公之于众,证实了CRISPR-Cas13可以靶向哺乳动物细胞中的RNA。仅仅时隔三周,又一篇名为“RNA editing with CRISPR-Cas13”的力作发表于《科学》期刊。在该研究中,张锋研究团队再次展示了这一RNA编辑系统,能有效地对RNA中的腺嘌呤进行编辑。
在CRISPR出现之前,RNAi是调节基因表达的理想方法。但是Cas13a酶一大优势在于更强的特异性,而且这种本身来自细菌的系统对哺乳动物细胞来说,并不是内源性的,因此不太可能干扰细胞中天然的转录。相反,RNAi利用内源性机制进行基因敲除,对本身的影响较大。但CRISPR-Cas13系统还有一个重要的问题,Cas13a酶本质上是一种相对较大的蛋白质,因此很难被包装到靶组织中,这也可能成为RNA编辑技术临床应用的一大障碍。
2018年3月16日,一项发表在《细胞》期刊的重磅成果为RNA编辑技术带来一大步飞跃,来自美国Salk研究所的科学家利用全新的CRISPR家族酶扩展了RNA编辑能力,并将这个新系统命名为“CasRx”。
CasRx(品红色)在人类细胞核中靶向RNA(灰色),Salk研究所
“生物工程师就像自然界的侦探一样,在DNA模式中寻找线索来帮助解决遗传疾病。CRISPR彻底改变了基因工程,我们希望将编辑工具从DNA扩展到RNA。”研究领导者Patrick Hsu博士表示,“RNA信息是许多生物过程的关键介质。在许多疾病中,这些RNA信息失去了平衡,因此直接靶向RNA的技术将成为DNA编辑的重要补充。”
除了高效性且无明显脱靶效应,新系统的一个关键特征是其依赖于一种比以前研究中物理尺寸更小的酶。 这对RNA编辑技术至关重要,这使得该编辑工具能够更容易被包装到病毒载体,并进入细胞进行RNA编辑。来自东京大学的科学家Hiroshi Nishimasu并未参与这项研究,他表示:“在这项研究中,研究人员发现了一种较Cas13d更加‘紧凑’的酶CasRx。从基础研究到治疗应用,我认为CasRx将成为非常有用的工具。”
此外,在这项研究中,研究人员还展示了利用这种新型RNA编辑系统来纠正RNA过程的能力。他们将CasRx包装到病毒载体中,并将其递送到利用额颞叶痴呆(FTD)患者干细胞中培养的神经细胞,最终使tau蛋白水平恢复到健康水平上,有效率达到80%。
Patrick Hsu博士最后说道:“基因编辑技术通过对DNA的切割带来基因序列的改变。在经过基因编辑的细胞中,其效果是永久的。虽然基因编辑技术能够很好地将基因完全关闭,但对调节基因的表达上并不那么优秀。展望未来,这一最新工具将在RNA生物学研究中发挥重要作用,并有望在未来凭借该技术对RNA相关疾病进行治疗。”
该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默。
3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默,证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性,通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向Pscsk9的sgRNA到小鼠肝脏,有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平。这为治疗后天性的代谢疾病提供了新方案。
同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。
近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比,Cas13d没有脱靶)和敲除效率(Cas13d达到96%,shRNA达到65%)。而与Cas9介导的基因敲除技术相比,Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。
此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低Pten的质粒、尾静脉注射敲低Pcsk9的AAV8病毒、眼部注射敲低Vegfa的AAV病毒。对注射后的小鼠进行相应分析,分别得到Pten基因下调及其下游蛋白AKT的磷酸化上调,Pcsk9下调造成血清胆固醇下调;Vegfa下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。
2020年3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向 Pten 基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了 Pten 的高效沉默, 证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性, 通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向 Pscsk9 的sgRNA到小鼠肝脏, 有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平 。这为治疗后天性的代谢疾病提供了新方案。
同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也 探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低 Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积**,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。
近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比, Cas13d没有脱靶)和敲除效率(Cas13d达到96% ,shRNA达到65%)。而与Cas9介导的基因敲除技术相比, Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的 ,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。
此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性 。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低 Pten 的质粒、尾静脉注射敲低 Pcsk9 的AAV8病毒、眼部注射敲低 Vegfa 的AAV病毒。对注射后的小鼠进行相应分析,分别得到 Pten 基因下调及其下游蛋白AKT的磷酸化上调, Pcsk9 下调造成血清胆固醇下调; Vegfa 下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。
图1 CasRx介导的 Pten 体内体外的下调( Protein & Cell )
A.质粒示意图;B.N2a细胞中 Pten 的下调;C.Western检测PTEN及AKT的表达; D.CasRx与shRNA脱靶比较;E.尾静脉注射质粒示意图;F.G.H.免疫荧光,qPCR,western分别检测 Pten 及p-AKT的表达
图2 血清胆固醇的调节以及 Pcsk9 的可逆调控( Protein & Cell )
A.针对 Pcsk9 的AAV8病毒注射示意图;B.肝组织中 Pcsk9 的表达量;C.血清 PCSK9 的表达量;D.血清胆固醇水平;E.F.血清ALT和AST的测定;G.可逆调节注射示意图; H. Pcsk9 的动态调控。
图3 AAV介导CasRx减少了AMD小鼠模型中CNV的面积(National Science Review)
A.小鼠和人序列比较以及sgRNA示意图;B.C.在293T和N2a细胞中敲低 Vegfa ;D.VEGFA蛋白的表达;E.AAV病毒质粒示意图;F.实验流程图;G.CasRx的mRNA表达水平;H.I.激光烧伤之前或之后7天的 Vegfa mRNA水平;J.CNV诱导3天后的VEGFA蛋白水平;K.激光烧伤7天后,用PBS或AAV-CasRx- Vegfa 注射的代表性CNV图像;L.M.CNV面积统计。
2020 年 4 月 8 日, Cell 期刊在线发表了题为 《Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice》 的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室 杨辉 研究组完成。
该项研究通过运用最新开发的 RNA 靶向 CRISPR 系统 CasRx 特异性地在视网膜穆勒胶质细胞中敲低 Ptbp1 基因的表达,首次在成体中实现了视神经节细胞的再生,并且恢复了永久性视力损伤模型小鼠的视力。同时,该研究还证明了这项技术可以非常高效且特异地将纹状体内的星形胶质细胞转分化成多巴胺神经元,并且基本消除了帕金森疾病的症状。该研究将为未来众多神经退行性疾病的治疗提供一个新的途径。
人类的神经系统包含成百上千种不同类型的神经元细胞。在成熟的神经系统中,神经元一般不会再生,一旦死亡,就是永久性的。神经元的死亡会导致不同的神经退行性疾病,常见的有阿尔兹海默症和帕金森症。此类疾病的病因尚不明确且没有根治的方法,因此对人类的健康造成巨大威胁。据统计,目前全球大约有 1 亿多的人患有神经退行性疾病,而且随着老龄化的加剧,神经退行性疾病患者数量也将逐渐增多。
在常见的神经性疾病中,视神经节细胞死亡导致的永久性失明和多巴胺神经元死亡导致的帕金森疾病是尤为特殊的两类,它们都是由于特殊类型的神经元死亡导致。我们之所以能看到外界绚烂多彩的世界,是因为我们的眼睛和大脑中存在一套完整的视觉通路,而连接眼睛和大脑的神经元就是视神经节细胞。
作为眼睛和大脑的唯一一座桥梁,视神经节细胞对外界的不良刺激非常敏感。研究发现很多眼疾都可以导致视神经节细胞的死亡,急性的如缺血性视网膜病,慢性的如青光眼。视神经节细胞一旦死亡就会导致永久性失明。据统计,仅青光眼致盲的人数在全球就超过一千万人。
帕金森疾病是一种常见的老年神经退行性疾病。它的发生是由于脑内黑质区域中一种叫做多巴胺神经元的死亡,从而导致黑质多巴胺神经元不能通过黑质-纹状体通路将多巴胺运输到大脑的另一个区域纹状体。目前,全球有将近一千万人患有此病,我国尤为严重,占了大约一半的病人。 如何在成体中再生出以上两种特异类型的神经元,一直是全世界众多科学家努力的方向。
该研究中,研究人员首先在体外细胞系中筛选了高效抑制 Ptbp1 表达的 gRNA,设计了特异性标记穆勒胶质细胞和在穆勒胶质细胞中表达 CasRx 的系统。所有元件以双质粒系统的形式被包装在 AAV 中并且通过视网膜下注射,特异性地在成年小鼠的穆勒胶质细胞中下调 Ptbp1 基因的表达。
大约一个月后,研究人员在视网膜视神经节细胞层发现了由穆勒胶质细胞转分化而来的视神经节细胞,并且转分化而来的视神经节细胞可以像正常的细胞那样对光刺激产生相应的电信号。
研究人员进一步发现,转分化而来的视神经节细胞可以通过视神经和大脑中正确的脑区建立功能性的联系,并且将视觉信号传输到大脑。在视神经节细胞损伤的小鼠模型中,研究人员发现转分化的视神经细胞可以让永久性视力损伤的小鼠重新建立对光的敏感性。
为进一步发掘 Ptbp1 介导的胶质细胞向神经元转分化的治疗潜能,研究人员证明了该策略还能特异性地将纹状体中的星形胶质细胞非常高效的转分化为多巴胺神经元,并且证明了转分化而来的多巴胺神经元能够展现出和黑质中多巴胺神经元相似的特性。
在行为学测试中,研究人员发现这些转分化而来的多巴胺神经元可以弥补黑质中缺失的多巴胺神经元的功能,从而将帕金森模型小鼠的运动障碍逆转到接近正常小鼠的水平。
需要指出的是,虽然科学家们在实验室里取得了重要进展,但是要将研究成果真正应用于人类疾病的治疗,还有很多工作要做:人类的视神经节细胞能否再生?帕金森患者是否能通过该方法被治愈?这些问题有待全世界的科研工作者共同努力去寻找答案。
(上)CasRx 通过靶向的降解 Ptbp1 mRNA 从而实现 Ptbp1 基因表达的下调。
(中)视网膜下注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将视网膜穆勒胶质细胞转分化为视神经节细胞,转分化而来视神经节细胞可以和正确的脑区建立功能性的联系,并且提高永久性视力损伤模型小鼠的视力。
(下)在纹状体中注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将星形胶质细胞转分化为多巴胺神经元,从而基本消除了帕金森疾病模型小鼠的运动症状。
RNA-editing Cas13 enzymes have taken the CRISPR world by storm. Like RNA interference, these enzymes can knock down RNA without altering the genome , but Cas13s have higher on-target specificity. New work from Konermann et al. and Yan et al. describes new Cas13d enzymes that average only 2.8 kb in size and are easy to package in low-capacity vectors! These small, but mighty type VI-D enzymes are the latest tools in the transcriptome engineering toolbox.
Microbial CRISPR diversity is impressive, and researchers are just beginning to tap the wealth of CRISPR possibilities. To identify Cas13d, both groups used very general bioinformatic screens that looked for a CRISPR repeat array near a putative effector nuclease. The Cas13d proteins they identified have little sequence similarity to previously identified Cas13a-c orthologs, but they do include HEPN nuclease domains characteristic of the Cas13 superfamily. Yan et al. proceeded to study orthologs from Eubacterium siraeum (EsCas13d) and Ruminococcus sp. (RspCas13d), while Konermann et al. characterized orthologs from “Anaerobic digester metagenome” (AdmCas13d) and Ruminococcus flavefaciens (nicknamed CasRx), as well as EsCas13d.
Like other Cas13 enzymes, the Cas13d orthologs described in these papers can independently process their own CRISPR arrays into guide RNAs. crRNA cleavage is retained in dCas13d and is thus HEPN-independent. These enzymes also do not require a protospacer flanking sequence, so you can target virtually any RNA sequence ! In bacteria, Cas13d-mediated cleavage promotes collateral cleavage of other RNAs. As with other Cas13s, this collateral cleavage does not occur when Cas13d is expressed in a mammalian system.
Since Cas13d is functionally similar to previously discovered Cas13 enzymes - what makes these orthologs so special? The first property is size - Cas13d enzymes have a median length of ~930aa - making them 17-26% smaller than other Cas13s and a whopping 33% smaller than Cas9! Their small size makes then easy to package in low-capacity vectors like AAV, a popular vector due to its low immunogenicity. But these studies also identified other advantages, including Cas13d-specific regulatory proteins and high targeting efficiency, both of which are described below.
The majority of Type VI-D loci contain accessory proteins with WYL domains (named for the three conserved amino acids in the domain). Yan et al. from Arbor Biotechnologies found that RspCas13d accessory protein RspWYL1 increases both targeted and collateral RNA degradation by RspCas13d. RspWYL1 also increased EsCas13d activity, indicating that WYL domain-containing proteins may be broader regulators of Cas13d activity. This property makes WYL proteins an intriguing counterpart to anti-CRISPR proteins that negatively modulate the activity of Cas enzymes, some of which are also functional in multiple species (read Arbor Biotechnologies' press release about their Cas13d deposit here ).
Not all Cas13d proteins are functional in mammalian cells, but Konermann et al. saw great results with CasRx and AdmCas13d fused to a nuclear localization signal (NLS). In a HEK293 mCherry reporter assay, CasRx and AdmCas13d produced 92% and 87% mCherry protein knockdown measured by flow cytometry, respectively. Cas13d CRISPR array processing is robust, with CasRx and either an unprocessed or processed gRNA array (22 nt spacer with 30 nt direct repeat) mediating potent knockdown. Multiplexing from the CRISPR array yielded >90% knockdown by CasRx for each of four targets, including two mRNAs and two nuclear long non-coding RNAs.
One interesting twist to Cas13d enzymes is their cleavage pattern: EsCas13d produced very similar cleavage products even when guides were tiled across a target RNA, indicating that this enzyme does not cleave at a predictable distance from the targeted region. Konermann et al. show that EsCas13d favors cleavage at uracils, but a more detailed exploration of this cleavage pattern is necessary.
Konermann et al. compared CasRx to multiple RNA regulating methods: small hairpin RNA interference, dCas9-mediated transcriptional inhibition (CRISPRi), and Cas13a/Cas13b RNA knockdown. CasRx was the clear winner with median knockdown of 96% compared to 65% for shRNA, 53% for CRISPRi, and 66-80% for other Cas13a and Cas13b effectors. Like previously characterized Cas13 enzymes, CasRx also displays very high on-target efficiency; where shRNA treatment produced 500-900 significant off-targets, CasRx displayed zero. Unlike Cas9, for which efficiency varies widely across guide RNAs, each guide tested with CasRx yielded >80% knockdown. It seems that CasRx may make it possible to target essentially any RNA in a cell.
Since catalytically dead dCasRx maintains its RNA-binding properties, Konermann et al. tested its ability to manipulate RNA species through exon skipping. Previous CRISPR exon-skipping approaches used two guide RNAs to remove a given exon from the genome, and showed success in models of muscular dystrophy . In this case, Konermann et al. targeted MAPT , the gene encoding dementia-associated tau, delivering dCasRx and a 3-spacer array targeting the MAPT exon 10 splice acceptor and two putative splice enhancers. After AAV-mediated delivery to iPS-derived cortical neurons, dCasRx-mediated exon skipping improved the ratio of pathogenic to non-pathogenic tau by nearly 50%, showing proof-of-concept for pre-clinical and clinical applications of dCasRx.
The identification of Type VI Cas13d enzymes is another win for bioinformatic data mining. As we continue to harness the natural diversity of CRISPR systems, only time will tell how large the genome and transcriptome engineering toolbox will be. It is, however, certain that the impact of CRISPR scientific sharing will continue to grow, and we at Addgene appreciate our depositors for making their tools available to the broader community.
References
Konermann, Silvana, et al. “Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.” Cell (2018) pii: S0092-8674(18)30207-1. PubMed PMID: 29551272
Yan, Winston X., et al. “Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.” Mol Cell. (2018) pii: S1097-2765(18)30173-4. PubMed PMID: 29551514
\1. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors
\2. CRISPR genetic editing takes another big step forward, targeting RNA
\3. How Editing RNA—Not DNA—Could Cure Disease in the Future
[ https://www.obiosh.com/kyfw/zl/aav/209.html](
动物神经疾病研究一直是一个活跃的研究领域,最近的研究集中在治疗神经疾病的新方法和技术,以及改善动物的神经系统功能的新疗法。研究人员正在研究新的药物,以改善动物的神经系统功能,并使用新的技术来诊断和治疗神经疾病。此外,研究人员还在研究如何使用基因治疗来治疗动物神经疾病,以及如何使用药物和其他技术来改善动物的神经系统功能。
目前,动物神经疾病的研究取得了一定的进展。主要的研究领域包括神经发育紊乱、神经系统炎症、神经退行性疾病以及神经精神疾病。首先,神经发育紊乱是一类复杂的神经疾病,它们可能与遗传因素、环境因素、感染病毒有关。目前,研究者正在进行大量的研究,以深入了解这些疾病的发病机制,以及可能的治疗方法。其次,神经系统炎症是一类常见的神经疾病,它们可能是由于病毒感染、免疫系统失调、神经细胞损伤等因素引起的。研究者正在努力找到有效的治疗方法,以缓解症状和改善病情。
调查近年来,动物神经疾病的研究受到了很多关注,如脊髓小脑萎缩症(SMA)、脊髓性肌萎缩症(ALS)、多动症等等。国内外学者经过大量研究,多次取得重大进展。一方面,基于基因编辑技术,研究者可以模拟各种疾病的突变,研究各种疾病的生物学机制。例如,研究者可以通过基因编辑将脊髓发育不良的基因抑制,模拟脊髓小脑萎缩的病变;通过基因编辑将神经退行性疾病,如阿尔茨海默病、帕金森病相关的基因抑制,可以模拟出神经退行性疾病的病理特征。另一方面,研究者结合大数据等新技术,通过功能基因组学分析,对疾病发生率、致病基因、疾病诊断及靶向治疗的可能性进行预测及研究,分析动物模型中的突变基因及其他重要物质,为人类神经疾病的在诊断和治疗提供策略性思路。此外,研究人员还利用神经疾病动物模型研究药物作用,探索新药、新技术及新疗法,为疾病的治疗和预防提供理论依据。例如,一些研究者利用ALS动物模型,探索可能的ALS治疗药物,并根据治疗效果进行临床试验,研发出新型ALS治疗药物。总而言之,从动物模型的研究来看,目前国内外的动物神经疾病研究取得了显著的进展。此外,基因编辑技术、大数据及其他新技术的应用大大促进了疾病的研究,帮助我们更好地理解动物神经疾病的病理生理机制,并为人类神经疾病的诊断和治疗提供新的思路和方法正在显现。
①记忆具有短暂性的最直观原因是为新记忆腾地方。②然而,大脑有很多的神经元和突触,似乎能存储的记忆比一个人实际能存储的要多很多。据估计,人类大脑中大约有800-900亿个神经元(Azevedo et al., 2009).,如果只为特定事件的记忆保留十分之一的容量,那么根据对自联想网络容量的计算估计,一个人可以可靠地存储大约10亿个人的记忆 (Amit et al., 1985)。 此外,当我们考虑稀疏编码的记忆时,这个数字可以增加几个数量级 (Amari, 1989)。③显然,记忆的容量比实际上要的多,那为什么进化却让人的大脑不能如实记忆信息?换言之,既然记忆的持久性有看似明显的好处,那记忆的短暂性是否有其他好处?①我们认为,在这一个既变化又嘈杂的世界中,记忆短暂性是必需的。在不断变化的环境中,遗忘是适应性的,因为它允许更灵活的行为;在嘈杂的世界中,遗忘是适应性的,因为它防止了对特殊事件的过度拟合。②基于这一观点,记忆的永久性并不总是有用的,例如,对于世界上短暂或不常见的方面,记忆的持久性将是有害的,因为它可能导致不灵活的行为、不正确的预测;而只有在保持经验的那些相对稳定、预测新经验的方面时,持久性才是有用的。③因此,只有通过持久性和短暂性的相互作用,记忆才能表现出真正的目的:利用过去智能指导决策(Dudai and Carruthers,2005; Schacter et al., 2007).④下面,我们回顾了使用短暂性来增加行为灵活性和促进泛化的计算案例。此外,我们还确定了短暂性在计算上的使用方式和它在大脑中的实现方式之间的相似性。 神经网络: 对于使用分布式表示的神经网络,新的学习是一个重大的挑战(French,1999;Lewandowsky and Li, 1995; McCloskey and Cohen, 1989; Ratcliff,1990)。挑战有两个方面:新的学习可能会覆盖以前的记忆(即灾难性干扰);新的学习又会受到已有记忆的阻碍(即积极主动的相互干扰) (Burgess et al., 1991; McCloskey and Cohen, 1989; Palm, 2013; Siegle and Hasselmo, 2002)。这是神经网络中的“稳定性与可塑性”困境(Abraham and Robins, 2005; Carpenter and Grossberg, 1987)。根据传统的观点,记忆的持久性与行为的灵活性是不相容的,因为一个善于保持持久记忆的网络将很难学习新的信息,特别是如果它与以前的经验相冲突的话。 然而,最近使用外部记忆设备或突触的神经网络模型在多个时间尺度上变化,挑战了这种困境的普遍性 (Graves et al., 2016; Kirkpatrick et al., 2017; Santoro et al., 2016)。此外,大脑可以用来解决这个难题的另一个策略是使用正交表示,对经验进行稀疏编码,这可能是由模式分离过程引起的(Yassa and Stark, 2011)。记忆的语境依赖性就是这种策略的一个例子:通过保持正交模式,在特定语境中编码的记忆更可能在该语境中表达,而不是在其他语境中 (Maren et al.,2013)。这种策略最大限度地增加了可以在不受干扰的情况下可以存储在神经网络中的模式数量(Amari, 1989).。 大脑: 然而,在动态环境中,无论容量有何限制,丢弃过时的信息也很重要 (Kraemer and Golding, 1997)。如果环境改变了,但我们的记忆没有改变,那么我们可能会坚持旧记忆,损害我们自己。因此,短暂性可以通过消除过时的信息来促进决策,从而使有机体能够更有效地应对其环境的变化。 最近的研究提供了证据,证明遗忘是动态环境中灵活行为所必需的(Dong et al., 2016; Epp et al., 2016; Shuai et al., 2010)。Shuai和他的同事训练苍蝇辨别两种气味(A和B),并发现抑制Rac1能减缓遗忘。抑制RAC1的苍蝇组表现出逆转学习(A-或B+)受损,说明保留的记忆影响了新的学习;激活RAC1的苍蝇组结果相反,旧记忆的遗忘促进了逆转学习。这种模式的结果扩展到五种不同的苍蝇,它们被设计来表达与自闭症谱系障碍相关的突变,而自闭症谱系障碍也会干扰Rac的活动,所有这些Rac功能受损的苍蝇都表现出遗忘受损,而这反过来又损害了反向学习(Shuai et al., 2010) 别的研究也表明了相同的结果。Epp and colleagues (2016)研究了遗忘(由神经发生介导)后的逆转学习,实验中,他们训练老鼠在水迷宫中找到位置固定的平台,随后在同一个迷宫中对小鼠进行再训练,但平台被移到相反的位置。结果是,海马神经发生水平增强的小鼠能更有效地找到新的平台位置(海马神经发生的增加将会导致最初位置的遗忘);而海马神经发生水平降低的小鼠时,观察到相反的模式,因为神经发生的抑制维持了最初位置的记忆,干扰了新位置的学习。 在情境-气味配对任务中也观察到类似的结果 (Epp et al., 2016)。训练后,神经发生的增加会导致已学的成对关联的遗忘,但有助于随后的反向学习。但是,这种促进并不是在任何学习中都适用,只有在与原始学习有明显冲突的情况下,才能观察到新学习的益处,比如,神经发生增加的小鼠若接受的是一种新的环境-气味配对训练时,没有表现出益处。这些发现表明,成人海马神经发生促进遗忘,遗忘通过去除或削弱过时信息增强行为灵活性。研究神经发生和灵活性之间关系的相关论文有:Burghardt et al. (2012); Garthe et al. (2009), (2016); Luu et al. (2012); Swan et al. (2014); and Winocur et al. (2012).引用文献: Azevedo et al., 2009:我们发现成年男性大脑中平均含有861±81亿个神经细胞(神经元)和846±98亿个神经细胞(非神经元)。就神经元和非神经元细胞的数量而言,人类大脑是一个等距放大的灵长类大脑。Amari, 1989:当要存储的编码模式的大部分组件是0,只有一小部分组件的比率是1时,编码方案被称为稀疏的。详细分析了稀疏编码联想存储器的存储容量和信息容量,证明了其与神经元数目n logn的比例关系,与一般的非稀疏编码方案(约0.15n)相比,该比例关系非常大。Dudai and Carruthers,2005:研究表明记忆可能是过去的印记,对未来的认知过程至关重要。Schacter et al., 2007:想象未来在很大程度上依赖于可以记忆过去的神经机制。这些发现引出了前瞻性大脑的概念,即大脑的一个关键功能是利用存储的信息来想象、模拟和预测未来可能发生的事件。根据这个想法,我们认为,像记忆这样的过程可以有效地重新概念化。French,1999:本文研究了神经网络中灾难性遗忘问题的产生原因、后果及多种解决方法。这篇综述将考虑大脑是如何克服这个问题的,同时也将探讨这个解决方案对分布式连接网络的影响McCloskey and Cohen, 1989:本文讨论连接主义网络中的灾难性干扰。当网络按顺序训练时,新的学习可能会对旧的学习产生灾难性的干扰。对干扰原因的分析表明,当新的学习可能改变表示旧学习所涉及的权值时,至少会发生一些干扰,仿真结果仅表明在某些特定的网络中,干扰是灾难性的。Ratcliff,1990:利用反向传播学习规则对基于编码器模型的多层存储器连接模型进行了评价。这些模型被应用到标准的识别记忆过程中,在这些过程中,项目被依次研究,然后测试其保留率。这些模型中的顺序学习导致两个主要问题。首先,学得好的信息会随着新信息的学习而迅速被遗忘。第二,学习项目和新项目之间的区别要么随着学习的进行而减少,要么是非单调的。为了解决这些问题,我们研究了多层模型中的网络操作和多层模型的几种变体,包括一个带有预学习内存的模型和一个上下文模型,但是没有一个解决了这些问题。所讨论的问题对应用于人类记忆和任务的连接主义模型提供了限制,在这些任务中,要学习的信息在学习过程中并不全部可用。Burgess et al., 1991:建立了一个神经网络模型,该模型能将人类记忆实验的结果记录在学习项目表上。综述了学习列表的心理学实验。Hopfield-Parisi型神经网络被用来模拟序列回忆中顺序效应的许多简单特征。用模拟的方法研究了项目的召回率与其数量、在列表中的位置和相似度的函数关系。更复杂的实验涉及不同类别的项目,使用相关的活动模式进行建模。通过考虑权重分布和信噪比参数,了解模型的工作原理。 Palm, 2013:介绍了近40年来神经联想记忆的理论、实践和技术发展。指出了关联记忆模式稀疏编码的重要性。文中还提到了联想记忆网络在大规模脑建模中的应用。Siegle and Hasselmo, 2002:连接主义模型被认为是理解心理障碍的本质和指导其评估的有希望的工具。具体来说,连接主义模型可以指导评估过程的以下方面:了解哪些结构与评估相关,设计评估这些结构的方法,以及了解评估数据中的个体差异。Abraham and Robins, 2005:记忆维持被广泛认为涉及在学习过程中在相关神经回路中设置的突触重量的长期保留。然而,尽管最近出现了令人兴奋的技术进步,但还无法通过实验证实这一直观的吸引人的假设。人工神经网络提供了一种可供选择的方法,因为它们允许在学习和保持过程中连续监测单个连接权重。在这种模型中,如果网络要在学习新信息的同时保留先前存储的材料,则需要不断改变连接权重。因此,突触变化的持续时间并不一定定义记忆的持久性;相反,很可能需要调节突触稳定性和突触可塑性的平衡,才能在真实的神经元回路中获得最佳的记忆保持。Carpenter and Grossberg, 1987:自适应共振结构是一种神经网络,它能实时地自组织稳定的模式识别码,以响应任意的输入模式序列。本文介绍了ART2,一类自适应共振结构,ART2体系结构体现了许多设计原则的解决方案,例如稳定性-可塑性权衡、搜索-直接访问权衡和匹配-重置权衡。Graves et al., 2016:人工神经网络在感觉处理、序列学习和强化学习方面有着显著的优势,但由于缺乏外部记忆,它在表示变量和数据结构以及长时间存储数据方面的能力有限。这里我们介绍了一个机器学习模型,称为可微神经计算机(DNC),它由一个可以读写外部存储器矩阵的神经网络组成,类似于传统计算机中的随机存取存储器。像传统的计算机一样,它可以使用内存来表示和操作复杂的数据结构,但是,像神经网络一样,它可以从数据中学习这样做。结果表明,DNC有能力解决没有外部读写存储器的神经网络无法完成的复杂、结构化任务。Kirkpatrick et al., 2017:以顺序方式学习任务的能力对人工智能的发展至关重要。到目前为止,神经网络还不能做到这一点。我们表明,有可能克服这一限制,并培训网络,使其能够保持对长期没有经历的任务的专门知识,我们通过有选择地减缓对那些任务重要的权重的学习来记住旧任务结果,证明了我们的方法是可伸缩和有效的。Santoro et al., 2016:在系统整合的过程中,有一个从依赖于详细的情节记忆到普遍的示意记忆的转变。这种转换有时被称为“记忆转换”,这里我们展示了记忆转换以前未被重视的优点,即它在动态环境中增强强化学习的能力。我们开发了一个神经网络,它被训练在奖赏地点不断变化的觅食任务中寻找奖赏。该网络可以使用特定位置的存储器(情节存储器)和位置的统计模式(示意存储器)来指导其搜索。我们的工作重新提出了为什么会发生记忆转换的理论问题,将焦点从避免记忆干扰转移到跨多个时间尺度加强强化学习Yassa and Stark, 2011:区分相似经历的能力是情景记忆的一个重要特征。这种能力长期以来被假设需要海马体,计算模型表明它依赖于模式分离。然而,关于海马体在模式分离中的作用的经验数据直到最近才有,本文综述了几类数据。我们讨论了老化和成年神经发生对模式分离的影响,同时也强调了跨物种和跨途径连接的几个挑战,并提出了未来的研究方向。Maren et al.,2013:语境围绕着事件并赋予事件以意义;它们对于回忆过去、解释现在和预测未来至关重要。事实上,大脑将信息语境化的能力允许巨大的认知和行为灵活性。对啮齿动物和人类的巴甫洛夫恐惧调节和消失的研究表明,包括海马体、杏仁核和内侧前额叶皮层在内的神经回路参与了学习和记忆过程,从而使情境依赖行为得以实现。Kraemer and Golding, 1997:本文综述了人类适应性遗忘的研究现状,并提出了动物适应性遗忘的观点。讨论内容包括关于遗忘的理论预设,对动物适应性遗忘的选择性现象的回顾,对这种遗忘的可能机制(可恢复性)的描述,以及这一分析对记忆的心理和神经生物学方法的影响处理。Dong et al., 2016:在这项研究中,我们使用反向学习任务来测量果蝇的行为灵活性,并确定果蝇中多个自闭症风险基因同源物功能缺失突变的影响。5个具有不同分子功能的孤独症危险基因的突变都导致了类似的行为不灵活表型,表现为逆转学习障碍。这些逆转学习缺陷是由于无法遗忘,或者更确切地说,是由于无法激活Rac1(Ras相关的C3肉毒毒素底物1)依赖性遗忘。因此,行为诱发的Rac1依赖性遗忘激活对孤独症风险基因具有聚合功能。Epp et al., 2016:通过控制海马神经发生的水平,我们发现神经发生调节这种形式的主动干预。海马神经发生的增加削弱了现有的记忆,从而促进了新的、相互冲突的信息在小鼠中的编码。相反,神经发生的减少稳定了现有的记忆,并阻碍了新的、相互冲突的信息的编码。这些结果表明,减少主动干扰是神经发生诱发遗忘的适应性益处。Shuai et al., 2010:最初获得的记忆如果不巩固就会迅速消失。这种记忆衰退被认为是由于新获得的记忆固有的不稳定性,或者是由于随后获得的信息的干扰。本文报道果蝇G蛋白Rac依赖性遗忘机制在被动记忆衰退和干扰性遗忘中的作用。Rac活性的抑制导致早期记忆衰退的减慢,从几个小时延长到一天以上,并阻断干扰引起的遗忘。相反,蘑菇体神经元Rac活性的升高会加速记忆衰退。这种遗忘机制不影响记忆获得,独立于Rutabaga腺苷酸环化酶介导的记忆形成机制。内源性Rac激活在不同时间尺度上被诱发,在被动衰退中逐渐丧失记忆,在逆转学习中急性记忆消失。我们认为Rac在肌动蛋白细胞骨架重塑中的作用可能与记忆丧失有关Burghardt et al. (2012):海马体参与分离记忆,这是一种利用模式分离的神经过程并允许认知灵活性的能力。我们使用主动回避任务的变体和两种独立的方法,即切除成年出生的神经元、海马局部X射线照射和胶质纤维酸性蛋白阳性神经前体细胞的基因消融,评估了成年海马神经发生在认知灵活性中的作用。结果证明,当成人的神经发生需要改变对刺激诱发记忆的学习反应时,它有助于认知灵活性Garthe et al. (2009):尽管在过去的几年里取得了巨大的进展,新生颗粒细胞对成年海马功能的具体贡献仍不清楚。我们假设为了解决这个问题,必须特别注意学习测试的具体设计、分析和解释。因此,我们设计了一个行为实验,根据计算模型得出的假设,预测新的神经元可能与学习条件特别相关,在学习条件中,新的方面在熟悉的情况下出现,从而对水迷宫的参考记忆版本中的(再)学习的质量方面提出了很高的要求替莫唑胺(TMZ)对成人神经发生的任务抑制引起高度特异性的学习障碍。小鼠在隐藏平台版的Morris水迷宫中进行测试(每天6次,持续5天,第4天平台位置反转)。在四个治疗周期结束后4周进行测试,以尽量减少测试时潜在可招募的新神经元数量。神经发生的减少并没有改变CA3和齿状回的长时程增强,但消除了齿状回LTP中属于新生神经元的部分。TMZ在测试时没有任何明显的副作用,并且治疗组和对照组都学会了寻找隐藏的平台。然而,对搜索策略的定性分析显示,治疗组小鼠并没有向空间精确的搜索策略前进,特别是在学习改变的目标位置(逆转)时。因此,齿状回中的新神经元似乎对于增加海马依赖性学习质量参数的灵活性是必要的。我们发现,缺乏成年颗粒细胞特别导致动物无法精确定位隐藏目标,这也与齿状回的特殊作用有关在生成一个度量而不仅仅是一个环境的结构图。由于成年海马神经发生受到抑制而发现高度特异性的行为缺陷,因此可以将细胞海马可塑性与理论模型中定义明确的假设联系起来。Garthe et al. (2016):我们在此证明,生活在刺激丰富的环境(ENR)中,可以改善水迷宫学习的特定关键指标,这些指标在先前的功能丧失实验中已被证明依赖于成人海马神经发生。通过分析小鼠在水迷宫中寻找隐藏平台的策略,发现ENR通过增加使用有效搜索策略的概率来促进任务的获取。当逃生平台移到新的位置时,ENR也增强了动物的行为灵活性。替莫唑胺可以减少成年神经发生,它可以消除ENR对获得性和灵活性的影响,同时不影响水迷宫学习的其他方面。这些特征性效应和相互依赖性在第二种神经源性行为刺激——自愿性车轮转动(RUN)的平行实验中没有发现。由于成人神经发生的组织学评估必然是一个终点测量,因此只能推断整个实验过程中的神经发生水平,本研究将行为参数作为分析终点。尽管体力活动与前体细胞增殖、学习和新神经元存活之间的关系已经很好地建立起来,但这里描述的特定功能效应与干细胞生态位的动态变化之间的关系仍有待解决。然而,我们的研究结果支持这样一个假设:成人神经发生是一个关键的机制,是领导一个积极生活、丰富经验的有益影响的基础Luu et al. (2012:海马齿状回成体神经发生在学习记忆中起重要作用。然而,新神经元对海马功能的确切贡献仍然存在争议。新的证据表明,当相似的项目必须在不同的时间学习时,神经发生对于模式分离和减轻干扰是重要的。在本研究中,我们使用最近开发的具有这些特定特征的嗅觉记忆任务来直接测试这种预测。在这项任务中,老鼠学习两个高度干扰的气味对列表,一个接一个,在相同或不同的环境中。与我们的假设一致,局灶性颅骨照射导致齿状回内的神经发生选择性减少,显著削弱了学习第二个列表期间克服干扰的能力。学习单一气味清单的能力没有受到影响。我们还发现,在海马依赖性空间交替任务中,辐射对学习没有影响。尽管这两项任务都涉及到学习干扰反应,但学习干扰项目的时间过程有所不同。学习干扰气味列表是在几个会话过程中顺序进行的,而学习干扰空间位置是在每个会话中同时进行的。因此,新神经元的逐渐增加可能为嗅觉任务而不是迷宫任务提供了模式分离机制。这些发现证明了神经发生在解决干扰中的作用,并且它们与模型一致,表明神经发生在模式分离中的关键作用。Winocur et al. (2012):在高干扰或低干扰条件下,给予低剂量辐射抑制海马神经发生或假治疗的大鼠视觉辨别任务。一半的老鼠从事跑步活动,另一半没有。在非跑步者中,照射对学习没有影响,在低干扰条件下也没有记忆辨别反应,但照射治疗增加了他们对干扰的易感性,导致先前学习辨别的记忆丧失。参与跑步活动的受照大鼠表现出神经生长增强和对记忆损伤的保护。研究结果表明,成年期海马细胞在区分冲突性、语境依赖性记忆方面发挥了作用,进一步证明了神经发生在海马敏感记忆任务中的重要性。这一结果与海马功能的计算模型一致,海马功能的计算模型明确了神经发生在学习和记忆过程中干扰影响的调节中的中心作用
从简单地剪切致病基因,到开发出不再传播疾病的工程动物,基因编辑技术已经释放出巨大的潜力。随着研究的深入,科学界还发现,除了编辑具有遗传讯息的DNA片段,编辑RNA可以在不改变基因组的情况下,帮助调整基因表达方式,此外,RNA的寿命是相对短暂的,这也意味着它的变化是可以逆转的,从而避免基因工程中的巨大风险。
2017年10月,来自Broad研究所的张锋研究团队在《自然》期刊上发表了题为“RNA targeting with CRISPR-Cas13”的文章,首次将CRISPR-Cas13系统公之于众,证实了CRISPR-Cas13可以靶向哺乳动物细胞中的RNA。仅仅时隔三周,又一篇名为“RNA editing with CRISPR-Cas13”的力作发表于《科学》期刊。在该研究中,张锋研究团队再次展示了这一RNA编辑系统,能有效地对RNA中的腺嘌呤进行编辑。
在CRISPR出现之前,RNAi是调节基因表达的理想方法。但是Cas13a酶一大优势在于更强的特异性,而且这种本身来自细菌的系统对哺乳动物细胞来说,并不是内源性的,因此不太可能干扰细胞中天然的转录。相反,RNAi利用内源性机制进行基因敲除,对本身的影响较大。但CRISPR-Cas13系统还有一个重要的问题,Cas13a酶本质上是一种相对较大的蛋白质,因此很难被包装到靶组织中,这也可能成为RNA编辑技术临床应用的一大障碍。
2018年3月16日,一项发表在《细胞》期刊的重磅成果为RNA编辑技术带来一大步飞跃,来自美国Salk研究所的科学家利用全新的CRISPR家族酶扩展了RNA编辑能力,并将这个新系统命名为“CasRx”。
CasRx(品红色)在人类细胞核中靶向RNA(灰色),Salk研究所
“生物工程师就像自然界的侦探一样,在DNA模式中寻找线索来帮助解决遗传疾病。CRISPR彻底改变了基因工程,我们希望将编辑工具从DNA扩展到RNA。”研究领导者Patrick Hsu博士表示,“RNA信息是许多生物过程的关键介质。在许多疾病中,这些RNA信息失去了平衡,因此直接靶向RNA的技术将成为DNA编辑的重要补充。”
除了高效性且无明显脱靶效应,新系统的一个关键特征是其依赖于一种比以前研究中物理尺寸更小的酶。 这对RNA编辑技术至关重要,这使得该编辑工具能够更容易被包装到病毒载体,并进入细胞进行RNA编辑。来自东京大学的科学家Hiroshi Nishimasu并未参与这项研究,他表示:“在这项研究中,研究人员发现了一种较Cas13d更加‘紧凑’的酶CasRx。从基础研究到治疗应用,我认为CasRx将成为非常有用的工具。”
此外,在这项研究中,研究人员还展示了利用这种新型RNA编辑系统来纠正RNA过程的能力。他们将CasRx包装到病毒载体中,并将其递送到利用额颞叶痴呆(FTD)患者干细胞中培养的神经细胞,最终使tau蛋白水平恢复到健康水平上,有效率达到80%。
Patrick Hsu博士最后说道:“基因编辑技术通过对DNA的切割带来基因序列的改变。在经过基因编辑的细胞中,其效果是永久的。虽然基因编辑技术能够很好地将基因完全关闭,但对调节基因的表达上并不那么优秀。展望未来,这一最新工具将在RNA生物学研究中发挥重要作用,并有望在未来凭借该技术对RNA相关疾病进行治疗。”
该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默。
3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默,证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性,通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向Pscsk9的sgRNA到小鼠肝脏,有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平。这为治疗后天性的代谢疾病提供了新方案。
同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。
近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比,Cas13d没有脱靶)和敲除效率(Cas13d达到96%,shRNA达到65%)。而与Cas9介导的基因敲除技术相比,Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。
此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低Pten的质粒、尾静脉注射敲低Pcsk9的AAV8病毒、眼部注射敲低Vegfa的AAV病毒。对注射后的小鼠进行相应分析,分别得到Pten基因下调及其下游蛋白AKT的磷酸化上调,Pcsk9下调造成血清胆固醇下调;Vegfa下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。
2020年3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向 Pten 基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了 Pten 的高效沉默, 证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性, 通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向 Pscsk9 的sgRNA到小鼠肝脏, 有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平 。这为治疗后天性的代谢疾病提供了新方案。
同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也 探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低 Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积**,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。
近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比, Cas13d没有脱靶)和敲除效率(Cas13d达到96% ,shRNA达到65%)。而与Cas9介导的基因敲除技术相比, Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的 ,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。
此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性 。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低 Pten 的质粒、尾静脉注射敲低 Pcsk9 的AAV8病毒、眼部注射敲低 Vegfa 的AAV病毒。对注射后的小鼠进行相应分析,分别得到 Pten 基因下调及其下游蛋白AKT的磷酸化上调, Pcsk9 下调造成血清胆固醇下调; Vegfa 下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。
图1 CasRx介导的 Pten 体内体外的下调( Protein & Cell )
A.质粒示意图;B.N2a细胞中 Pten 的下调;C.Western检测PTEN及AKT的表达; D.CasRx与shRNA脱靶比较;E.尾静脉注射质粒示意图;F.G.H.免疫荧光,qPCR,western分别检测 Pten 及p-AKT的表达
图2 血清胆固醇的调节以及 Pcsk9 的可逆调控( Protein & Cell )
A.针对 Pcsk9 的AAV8病毒注射示意图;B.肝组织中 Pcsk9 的表达量;C.血清 PCSK9 的表达量;D.血清胆固醇水平;E.F.血清ALT和AST的测定;G.可逆调节注射示意图; H. Pcsk9 的动态调控。
图3 AAV介导CasRx减少了AMD小鼠模型中CNV的面积(National Science Review)
A.小鼠和人序列比较以及sgRNA示意图;B.C.在293T和N2a细胞中敲低 Vegfa ;D.VEGFA蛋白的表达;E.AAV病毒质粒示意图;F.实验流程图;G.CasRx的mRNA表达水平;H.I.激光烧伤之前或之后7天的 Vegfa mRNA水平;J.CNV诱导3天后的VEGFA蛋白水平;K.激光烧伤7天后,用PBS或AAV-CasRx- Vegfa 注射的代表性CNV图像;L.M.CNV面积统计。
2020 年 4 月 8 日, Cell 期刊在线发表了题为 《Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice》 的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室 杨辉 研究组完成。
该项研究通过运用最新开发的 RNA 靶向 CRISPR 系统 CasRx 特异性地在视网膜穆勒胶质细胞中敲低 Ptbp1 基因的表达,首次在成体中实现了视神经节细胞的再生,并且恢复了永久性视力损伤模型小鼠的视力。同时,该研究还证明了这项技术可以非常高效且特异地将纹状体内的星形胶质细胞转分化成多巴胺神经元,并且基本消除了帕金森疾病的症状。该研究将为未来众多神经退行性疾病的治疗提供一个新的途径。
人类的神经系统包含成百上千种不同类型的神经元细胞。在成熟的神经系统中,神经元一般不会再生,一旦死亡,就是永久性的。神经元的死亡会导致不同的神经退行性疾病,常见的有阿尔兹海默症和帕金森症。此类疾病的病因尚不明确且没有根治的方法,因此对人类的健康造成巨大威胁。据统计,目前全球大约有 1 亿多的人患有神经退行性疾病,而且随着老龄化的加剧,神经退行性疾病患者数量也将逐渐增多。
在常见的神经性疾病中,视神经节细胞死亡导致的永久性失明和多巴胺神经元死亡导致的帕金森疾病是尤为特殊的两类,它们都是由于特殊类型的神经元死亡导致。我们之所以能看到外界绚烂多彩的世界,是因为我们的眼睛和大脑中存在一套完整的视觉通路,而连接眼睛和大脑的神经元就是视神经节细胞。
作为眼睛和大脑的唯一一座桥梁,视神经节细胞对外界的不良刺激非常敏感。研究发现很多眼疾都可以导致视神经节细胞的死亡,急性的如缺血性视网膜病,慢性的如青光眼。视神经节细胞一旦死亡就会导致永久性失明。据统计,仅青光眼致盲的人数在全球就超过一千万人。
帕金森疾病是一种常见的老年神经退行性疾病。它的发生是由于脑内黑质区域中一种叫做多巴胺神经元的死亡,从而导致黑质多巴胺神经元不能通过黑质-纹状体通路将多巴胺运输到大脑的另一个区域纹状体。目前,全球有将近一千万人患有此病,我国尤为严重,占了大约一半的病人。 如何在成体中再生出以上两种特异类型的神经元,一直是全世界众多科学家努力的方向。
该研究中,研究人员首先在体外细胞系中筛选了高效抑制 Ptbp1 表达的 gRNA,设计了特异性标记穆勒胶质细胞和在穆勒胶质细胞中表达 CasRx 的系统。所有元件以双质粒系统的形式被包装在 AAV 中并且通过视网膜下注射,特异性地在成年小鼠的穆勒胶质细胞中下调 Ptbp1 基因的表达。
大约一个月后,研究人员在视网膜视神经节细胞层发现了由穆勒胶质细胞转分化而来的视神经节细胞,并且转分化而来的视神经节细胞可以像正常的细胞那样对光刺激产生相应的电信号。
研究人员进一步发现,转分化而来的视神经节细胞可以通过视神经和大脑中正确的脑区建立功能性的联系,并且将视觉信号传输到大脑。在视神经节细胞损伤的小鼠模型中,研究人员发现转分化的视神经细胞可以让永久性视力损伤的小鼠重新建立对光的敏感性。
为进一步发掘 Ptbp1 介导的胶质细胞向神经元转分化的治疗潜能,研究人员证明了该策略还能特异性地将纹状体中的星形胶质细胞非常高效的转分化为多巴胺神经元,并且证明了转分化而来的多巴胺神经元能够展现出和黑质中多巴胺神经元相似的特性。
在行为学测试中,研究人员发现这些转分化而来的多巴胺神经元可以弥补黑质中缺失的多巴胺神经元的功能,从而将帕金森模型小鼠的运动障碍逆转到接近正常小鼠的水平。
需要指出的是,虽然科学家们在实验室里取得了重要进展,但是要将研究成果真正应用于人类疾病的治疗,还有很多工作要做:人类的视神经节细胞能否再生?帕金森患者是否能通过该方法被治愈?这些问题有待全世界的科研工作者共同努力去寻找答案。
(上)CasRx 通过靶向的降解 Ptbp1 mRNA 从而实现 Ptbp1 基因表达的下调。
(中)视网膜下注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将视网膜穆勒胶质细胞转分化为视神经节细胞,转分化而来视神经节细胞可以和正确的脑区建立功能性的联系,并且提高永久性视力损伤模型小鼠的视力。
(下)在纹状体中注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将星形胶质细胞转分化为多巴胺神经元,从而基本消除了帕金森疾病模型小鼠的运动症状。
RNA-editing Cas13 enzymes have taken the CRISPR world by storm. Like RNA interference, these enzymes can knock down RNA without altering the genome , but Cas13s have higher on-target specificity. New work from Konermann et al. and Yan et al. describes new Cas13d enzymes that average only 2.8 kb in size and are easy to package in low-capacity vectors! These small, but mighty type VI-D enzymes are the latest tools in the transcriptome engineering toolbox.
Microbial CRISPR diversity is impressive, and researchers are just beginning to tap the wealth of CRISPR possibilities. To identify Cas13d, both groups used very general bioinformatic screens that looked for a CRISPR repeat array near a putative effector nuclease. The Cas13d proteins they identified have little sequence similarity to previously identified Cas13a-c orthologs, but they do include HEPN nuclease domains characteristic of the Cas13 superfamily. Yan et al. proceeded to study orthologs from Eubacterium siraeum (EsCas13d) and Ruminococcus sp. (RspCas13d), while Konermann et al. characterized orthologs from “Anaerobic digester metagenome” (AdmCas13d) and Ruminococcus flavefaciens (nicknamed CasRx), as well as EsCas13d.
Like other Cas13 enzymes, the Cas13d orthologs described in these papers can independently process their own CRISPR arrays into guide RNAs. crRNA cleavage is retained in dCas13d and is thus HEPN-independent. These enzymes also do not require a protospacer flanking sequence, so you can target virtually any RNA sequence ! In bacteria, Cas13d-mediated cleavage promotes collateral cleavage of other RNAs. As with other Cas13s, this collateral cleavage does not occur when Cas13d is expressed in a mammalian system.
Since Cas13d is functionally similar to previously discovered Cas13 enzymes - what makes these orthologs so special? The first property is size - Cas13d enzymes have a median length of ~930aa - making them 17-26% smaller than other Cas13s and a whopping 33% smaller than Cas9! Their small size makes then easy to package in low-capacity vectors like AAV, a popular vector due to its low immunogenicity. But these studies also identified other advantages, including Cas13d-specific regulatory proteins and high targeting efficiency, both of which are described below.
The majority of Type VI-D loci contain accessory proteins with WYL domains (named for the three conserved amino acids in the domain). Yan et al. from Arbor Biotechnologies found that RspCas13d accessory protein RspWYL1 increases both targeted and collateral RNA degradation by RspCas13d. RspWYL1 also increased EsCas13d activity, indicating that WYL domain-containing proteins may be broader regulators of Cas13d activity. This property makes WYL proteins an intriguing counterpart to anti-CRISPR proteins that negatively modulate the activity of Cas enzymes, some of which are also functional in multiple species (read Arbor Biotechnologies' press release about their Cas13d deposit here ).
Not all Cas13d proteins are functional in mammalian cells, but Konermann et al. saw great results with CasRx and AdmCas13d fused to a nuclear localization signal (NLS). In a HEK293 mCherry reporter assay, CasRx and AdmCas13d produced 92% and 87% mCherry protein knockdown measured by flow cytometry, respectively. Cas13d CRISPR array processing is robust, with CasRx and either an unprocessed or processed gRNA array (22 nt spacer with 30 nt direct repeat) mediating potent knockdown. Multiplexing from the CRISPR array yielded >90% knockdown by CasRx for each of four targets, including two mRNAs and two nuclear long non-coding RNAs.
One interesting twist to Cas13d enzymes is their cleavage pattern: EsCas13d produced very similar cleavage products even when guides were tiled across a target RNA, indicating that this enzyme does not cleave at a predictable distance from the targeted region. Konermann et al. show that EsCas13d favors cleavage at uracils, but a more detailed exploration of this cleavage pattern is necessary.
Konermann et al. compared CasRx to multiple RNA regulating methods: small hairpin RNA interference, dCas9-mediated transcriptional inhibition (CRISPRi), and Cas13a/Cas13b RNA knockdown. CasRx was the clear winner with median knockdown of 96% compared to 65% for shRNA, 53% for CRISPRi, and 66-80% for other Cas13a and Cas13b effectors. Like previously characterized Cas13 enzymes, CasRx also displays very high on-target efficiency; where shRNA treatment produced 500-900 significant off-targets, CasRx displayed zero. Unlike Cas9, for which efficiency varies widely across guide RNAs, each guide tested with CasRx yielded >80% knockdown. It seems that CasRx may make it possible to target essentially any RNA in a cell.
Since catalytically dead dCasRx maintains its RNA-binding properties, Konermann et al. tested its ability to manipulate RNA species through exon skipping. Previous CRISPR exon-skipping approaches used two guide RNAs to remove a given exon from the genome, and showed success in models of muscular dystrophy . In this case, Konermann et al. targeted MAPT , the gene encoding dementia-associated tau, delivering dCasRx and a 3-spacer array targeting the MAPT exon 10 splice acceptor and two putative splice enhancers. After AAV-mediated delivery to iPS-derived cortical neurons, dCasRx-mediated exon skipping improved the ratio of pathogenic to non-pathogenic tau by nearly 50%, showing proof-of-concept for pre-clinical and clinical applications of dCasRx.
The identification of Type VI Cas13d enzymes is another win for bioinformatic data mining. As we continue to harness the natural diversity of CRISPR systems, only time will tell how large the genome and transcriptome engineering toolbox will be. It is, however, certain that the impact of CRISPR scientific sharing will continue to grow, and we at Addgene appreciate our depositors for making their tools available to the broader community.
References
Konermann, Silvana, et al. “Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.” Cell (2018) pii: S0092-8674(18)30207-1. PubMed PMID: 29551272
Yan, Winston X., et al. “Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.” Mol Cell. (2018) pii: S1097-2765(18)30173-4. PubMed PMID: 29551514
\1. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors
\2. CRISPR genetic editing takes another big step forward, targeting RNA
\3. How Editing RNA—Not DNA—Could Cure Disease in the Future
[ https://www.obiosh.com/kyfw/zl/aav/209.html](
内分泌失调是最让人烦恼的,在治疗方面也非常的缓慢,需要我们在生活中慢慢的调理,才能够有效的好转。但是很多时候由于我们不懂得内分泌失调怎么调理,从而导致病情的加重。那么, 神经内分泌肿瘤治疗 有哪些呢?
神经内分泌癌,是一类以神经内分泌细胞构成的恶性肿瘤,治疗主要依靠手术和化疗,您说的低分化型的神经内分泌细胞癌对依托泊苷与顺铂的联合化疗方案(也就是您说的VP16和顺铂方案)反应敏感,疗效明确,缓解率可达60%以上。这种经手术和VP16和顺铂方案治疗,一年后出现多处骨转移的情况,如病人目前身体状况还可以,可以耐受化疗的副作用,那么可以尝试再次化疗,化疗方案需由专业的肿瘤科医生根据病人具体情况制定。
直肠神经内分泌癌的靶向治疗,目前主要是通过抑制肿瘤的血管生成,阻断肿瘤细胞的营养供应,这方面药物主要有贝伐单抗(该药目前国内上市的后的商品名叫安维汀,产地美国、罗氏公司生产);生物治疗有干扰素和胸腺五肽。
很多女性都存在内分泌失调的情况,她们因此而受到了不小的伤害,而如果想要减轻其危害,就得在发生症状后及时进行正确的调理,那么,究竟得了内分泌失调怎么调理好呢?下面,专家来讲解下内分泌的调理方法。
内分泌失调怎么调理?
1、饮食调理
食物应多品种多变化,搭配合理,多亲近蔬菜、水果,少吃油腻与刺激性食品,烹调用油以植物油为主,动物油为辅,以获取更多的不饱和脂肪酸,从而调理内分泌失调。
2、精神调理
保持愉快、乐观的情绪,保持平和的心态,特别需要重视如何放松省心,减轻心里压力,克服日常生活中的焦虑、紧张等不良情绪,努力的提高自我控制能力,避免惊、怒、恐等一切不良精神刺激内分泌失调。
3、运动调理
平时,日常应该按时作息,做到劳逸结合。特别需要控制夜生活,应该积极的保证充足的睡眠。
上述专家为我们介绍了有关内分泌失调怎么调理的内容,总的说来,内分泌失调要注意从饮食上、精神上以及运动上加以调理,这样才能使内分泌恢复正常,使身体恢复健康,如果情况严重的话,还应请专业的医生帮忙进行调理和治疗。
精彩推荐:
您好,患者可采用特异性抗肿瘤免疫疗法。特异性抗肿瘤免疫治疗疗法是生物技术,采用患者自身外周血,在实验室提取肿瘤抗原和免疫杀伤细胞。经实验室培养,扩增,使肿瘤抗原和免疫杀伤细胞达到一定数量,然后回输到体内,产生大量对应抗体,直接清除体内肿瘤细胞。
神经内分泌肿瘤预后的影响因素包括肿瘤大小、发病部位、分级、分期等。分化差的G3级神经内分泌癌生存期大概在10个月左右。分化好的G1、G2级神经内分泌肿瘤的进展通常比较缓慢,生存期为3年到20年不等。神经内分泌肿瘤患者的随访与复查需要与医生密切沟通,由医生根据肿瘤大小、部位、分级与分期制定不同的复查与随访方案,常用的随访手段包括血清嗜铬素A检测、CT、MRI和内镜等影像学检查。