juan娟娟123
自 20 世纪 70 年代末开始,全球乳腺癌发病率一直呈上升趋势。美国女性乳腺癌的患病率高达12.5%。中国虽然不是乳腺癌的高发国家,但是近年来我国乳腺癌发病率的增长速度却高出高发国家 1~2 个百分点。同时,在卫计委公布的 2013 年年鉴中显示,我国在2004年到2005年间,乳腺癌的已经成为女性死亡率最高的生殖系统肿瘤。甚至有研究表明,现在在中国,与其他大多数国家一样,乳腺癌也成为了中国女性最常见的癌症。 多梳基因家族(polycomb group,PcG)蛋白PcG是一类表观遗传抑制因子,包括PRC1和PRC2两大复合物,在决定细胞命运以及肿瘤发生等方面发挥重要作用。PCGF1是多梳基因家族PRC1复合体的重要组成部分,该复合体主要包括PCGF蛋白、CBX蛋白,RING1蛋白和HPH蛋白。 前期研究发现PCGF1在多种肿瘤细胞中表达丰度较高,尤其以乳腺癌细胞和胶质瘤细胞表达尤为明显。以PCGF1序列为模板,设计sgRNA干扰序列,两端加入载体连接序列。通过DNA片段合成所需sgRNA序列。退火形成oligo二聚体序列后,使用T4 DNA连接酶重组干扰序列与pCAG-T7-Cas9-pgk-Puro-T2A-GFP质粒,最终成功构建 PCGF1 敲低载体。将pCAG-T7-Cas9-gRNA-pgk-Puro-T2AGFP重组载体通过脂质体转染MCF7细胞系。通过嘌呤霉素进行阳性克隆筛选,Western blotting检测PCGF1表达。结果显示成功得到了PCGF1稳定敲低的MCF7细胞系转染 MCF7 细胞系。 根据CRISPR/Cas9靶点设计原则,设计能特异性针对CDH1基因的sgRNA,以lentiCRISPR v2质粒为骨架构建能表达此sgRNA和Cas9蛋白的重组质粒.测序鉴定后,将重组质粒与逆转录病毒包装质粒VSVG,PAX2在氯化钙介导下共同转入HEK293T细胞进行病毒包装,转染48 h后收集病毒上清,直接感染人乳腺癌MCF-7细胞.采用嘌呤霉素筛选CDH1缺失的乳腺癌MCF-7细胞,通过DNA测序,Western印迹及免疫荧光染色实验验证获得的MCF-7细胞.结果:构建了靶向CDH1的CRISPR/Cas9质粒;DNA测序和Western印迹实验结果表明获得了稳定敲除CDH1的人乳腺癌MCF-7细胞.免疫荧光染色结果显示,相比对照组,稳定敲除CDH1的MCF-7细胞中已无法明显观察到E-钙黏蛋白的表达分布.结论:通过CRISPR/Cas9基因编辑技术构建了CDH1基因缺失的MCF7细胞系,为进一步研究CDH1在肿瘤免疫治疗中的作用提供了基础. ESR1突变已经被证实与乳腺癌内分泌治疗耐药密切相关,在经过至少一线内分泌治疗的转移性乳腺癌患者中,ESR1 LBD突变的阳性率在54%左右,研究证实Y537S位点突变型ER的活性最高,并且近几年的研究发现ESR1 Y537S突变不仅对传统的内分泌治疗耐药,也会对最新的CDK4/6抑制剂产生耐药。 为了解决晚期转移性患者在化疗期间遇到的一系列问题,空军军医大学西京医院李南林教授与来自哈佛大学Dana-Farber Cancer Institute 的乳腺癌专家Rinath Jeselsohn开展合作,最终发现氟维司群联合化疗在ER阳性、P53野生型乳腺癌细胞系中具有协同效应,同时拥有ESR1 Y537S突变的细胞系具有更高的协同效应分数;细胞G0/G1期阻滞和细胞凋亡增加可能是这两种药物发挥协同作用的主要机制。因此,对于ESR1 Y537S突变、P53野生型的乳腺癌患者,氟维司群联合化疗或许可以发挥更好的作用,但仍需进一步动物实验和临床试验研究证实。 参考文献: 闫睿, 樊嵘, 董瓅瑾,等. 利用CRISPR/Cas9系统构建PCGF1基因敲除MCF7稳定细胞系[J]. 武警后勤学院学报(医学版), 2017(04):11-14. 高伟健, 朱一超, 郑幽,等. 利用CRISPR/Cas9基因编辑技术构建CDH1基因敲除的人乳腺癌MCF-7稳定细胞系[J]. 生物技术通讯, 2020, v.31;No.158(02):33-37+117. Huang M , J Wu, Ling R , et al. Quadruple negative breast cancer[J]. Breast Cancer, 2020, 27(4).
yeting1976
环状RNA(circular RNAs, circRNAs)是一类由mRNA 前体(pre-mRNA)经反向剪接形成的共价闭合环状非编码RNA。CircRNA最早是在上世纪70年代在病毒中被发现,但是由于早期RNA文库制备广泛使用polyA富集的方式(circRNA没有游离的5’和3’末端),以及RNA-seq读数要求以线性方式与基因组对齐的计算算法,导致大量circRNA的信息被遗漏,使得人们一度认为环状 RNA 只是错误剪接的副产物,对circRNA的关注并不高。 随着高通量测序技术和生物信息学的发展,成千上万种circRNA被发现,围绕着circRNA的基础研究也越来越多。大量研究表明circRNA在哺乳动物细胞中具有内生、丰富、保守、稳定等特点,并经常表现出组织或时空特异性,可以通过多种机制参与机体生长发育调控,以及疾病的发生和发展。因此,近年来circRNA逐渐成为非编码RNA研究领域的热点。 根据circRNA序列的来源,可以分为3类: 1. 序列全部来源于外显子,称为Exonic circRNAs 2. 序列来源于外显子和内含子,称为EIciRNAs 3. 序列全部来源于内含子,称为ciRNAs。 circRNA是由mRNA前体(pre-mRNA)经反向剪接(back-splicing)形成的,目前报道的成环模型主要有以下3种: · 内含子反向互补序列驱动环化环化 外显子两端的侧翼内含子含有多对反向互补序列,反向互补序列促使内含子序列配对,使得下游的剪接供体(Splice-Donor)与上游的剪接受体(Splice-Acceptor)靠近,从而结合形成环状RNA。(图1.左) · RNA结合蛋白驱动环化 环化外显子两端的侧翼内含子含有RNA结合蛋白(RBPs)识别的基序,RBP分别与两翼内含子特异基序结合后,会形成二聚体,促进两翼内含子互相靠近,进而连接成环。(图1.右) · 套索驱动环化 mRNA前体剪接时,会发生外显子跳读事件,产生包含外显子和内含子的套索中间体,随后该中间体发生反向剪接,形成环状RNA。(图2.) circRNA最常见的功能是作为miRNA海绵体与miRNA结合,从而影响miRNA对基因的调控。比如研究得比较多的小脑退行性相关蛋白基因(CDR1)反义链转录的环状RNA分子: Cdr1as,它包含约70个miR-7 的结合位点和1个miR-671结合位点,其中与miR-7的结合方式是非完全互补,只是结合,不会被AGO2蛋白介导降解,而与miR-671的结合方式是完美的互补。当Cdr1as高表达时,miR-7被结合,无法抑制原癌基因的mRNA,从而上调原癌基因的表达,导致癌症的发生。当miR-671高表达时,Cdr1as被降解,miRNA得到释放,与原癌基因mRNA结合,起到基因下调的作用,抑制癌症的发生。(图3.) 很多环状RNA上含有蛋白结合的位点,可以作为蛋白的海绵体。如RNA剪切因子MBL,可结合亲本基因第二外显子,促使其环化形成circ-Mbl,circ-Mbl又能与MBL结合,降低MBL有效浓度,减少MBL生成。 除了作为miRNA及蛋白海绵体,circRNA还可以作为支架蛋白促进酶的共定位、结合转录因子抑制靶基因表达、参与亲本基因表达调控、在特定的情况下还可以翻译出多肽。根据参与的功能不同,circRNA所处的细胞定位也不同,如作为miRNA或蛋白海绵体时,circRNA需由细胞核运输到细胞基质起作用,而参与亲本基因表达调控或结合转录因子抑制靶基因时,circRNA常在细胞核中起作用。 (参考文献:Kristensen, L. S., Andersen, M. S., Stagsted, L. V., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675-691.) 随着越来越多内源性的circRNA被发现在人体组织中有着广泛表达,circRNA与疾病的关系逐渐成为焦点。目前研究最多的是circRNA与实体瘤之间的关系,促进肿瘤生成的一些circRNA,如头颈部鳞状细胞癌中的circPvt1;结直肠癌,食道鳞状细胞癌和肝细胞癌中的cirs-7(CDr1as)。抑制肿瘤的circRNA,如胶质母细胞瘤中的circsMARCA5 and circ-SHPRH。还有一些circRNA在不同组织或不同细胞所起的作用可能不同,如circHiPK3,在直肠癌中是原癌基因,但是在膀胱癌中又是抑制癌细胞的。 除了癌症,研究还发现circRNA与糖尿病,心血管疾病,慢性炎症和神经系统疾病都有密切的关系。相信随着生物技术的发展以及越来越多对circRNA的深入研究,circRNA的形成和作用机理可以更加清晰,在疾病预防,检测及治疗方面也可以起到重要的作用。 circRNA敲除方案比较难设计,一般会使用以下两种方法: 方案一:将两条gRNA分别设计在circRNA exon的两端,直接敲除环化的外显子序列。这种方案虽然敲除彻底,但是在敲除circRNA的同时,也会影响到编码蛋白的亲本基因,需要根据具体的实验目的考虑是否可行。 方案二:通过破坏circRNA成环来达到敲除的目的。需要先找到circRNA的成环元件,成环元件一般位于被环化外显子两端的长侧翼内含子中。找到成环元件后,在两端设计gRNA进行敲除,既不破坏编码基因的外显子,又可以实现circRNA的敲除(图4.) 应用案例: circ-HIPK3是人体细胞内含量丰富的一种环状RNA,它可以与多种miRNA结合,作为细胞生长的调节剂,影响肿瘤的形成。为了验证circ-HIPK3成环的机制,需要找到侧翼内含子中的成环元件,对上下游预测的两个成环元件分别设计一对sgRNA,利用CRISPR/Cas9系统将预测的成环元件进行敲除,检测circRNA表达情况是否发生变化。经过PCR和RT-QPCR验证,发现下游成环元件敲除后,circHIPK3表达明显下调,而上游成环元件敲除后,circHIPK3的表达不仅没有下调还有所升高。推测可能是上游的成环元件序列太多,预测的不准确。为了进一步验证是其他成环元件驱动的成环,将gRNA3或gRNA4分别与gRNA5或gRNA6共注射,敲除成环元件上游大片段内含子。RT-QPCR结果显示circHIPK3表达确实下降了,说明上游是由其他的成环元件起到成环的作用。 (参考文献:Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., ... & Liang, L. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature communications, 7(1), 1-13.) 在研究circRNA功能的方法中,最经典的抑制circRNA的方法是通过RNAi的方式(shRNA)进行敲降。为了避免影响到mRNA,设计方案时需将干扰序列设计在反向剪接位点(BSS)处。 源井生物通过设计高效的shRNA,用慢病毒法将干扰载体转入细胞中,根据最佳药筛浓度对细胞进行药物筛选,直到对照组细胞全部死亡,获得circRNA敲降的稳定细胞株。 应用案例: 用siRNA进行敲降后,通过检测细胞增殖凋亡情况,说明circ-HIPK3敲除后抑制细胞增殖。首先设计三组实验,分别针对HIPK3 mRNA线性转录本、circ-HIPK3环状转录本和两种转录本共有部分设计siRNA,并在HEK-293 T细胞系上验证设计的siRNA只干扰相应的转录本。 利用增殖凋亡检测试剂盒:CCK-8和EdU进行细胞增殖凋亡检测,结果显示HIPK3 mRNA敲降后不明显影响细胞增殖,而circ-HIPK3敲降后,会明显抑制细胞增殖。 (参考文献:Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., ... & Liang, L. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature communications, 7(1), 1-13.) circRNA过表达一直有成环效率低,容易错配成环等难点。通过优化侧翼成环框架,如成环元件、QKI等RBP的结合位点,使circRNA准确高效环化。过表达后仍需要检测是否成功成环,以及线性mRNA是否表达。为了研究一种新环状RNA 载体表达 系统的成环效率,选择小鼠circRtn4环状基因在多种细胞系(包括Hela,N2a,HEK293)中进行表达验证。根据不同细胞系中进行的RT-QPCR实验数据显示,新载体系统pCircRNA-DMo-Rtn4成环效率在几种不同的细胞系中均比普通的载体系统(pCircRNA-BE-Rtn4)要高效得多。Northern Blotting是检测circRNA的金标准,探针通常跨反向剪接位点设计。但由于Northern Blotting需要的circRNA量非常大,耗时间精力,而且探针一般是放射性标记,操作上比较困难。常用的检测方案还是用RT-PCR或者是RT-QPCR,引物设计在反向剪接位点两端。(图9.)
基因编辑又称基因组编辑或基因组工程是一种新兴的比较精确的能对生物体基因组特定目标基因进行修饰的一种基因工程技术。
基因支持着生命的基本构造和性能。下面是我为大家精心推荐的关于基因的生物科技论文 范文 ,希望能够对您有所帮助。 基因研究 引起人们大惊小怪的,就是让父母能够
开题报告是指开题者对科研课题的一种文字说明材料。写法如下: 1、课题名称。题目必须与内容一致,确切、中肯、具体、鲜明、简练、醒目。 2、选题背景。就是对选题起作
即便当前不能,以后会能的。基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。在过去几年中, 以ZFN (zinc-finger
文中表示发布出了基于CS6的RNA荧光追踪技术,韩春雨他本人的科研能力是非常强的只要他的想法是正确的方向,通过不断的研究努力,一定能够得到真正可以借鉴的实验成果