小燕子an
《高等数学》是大学中最为基础的一门课程。那么你对高等数学了解多少呢?以下是由我整理关于高等数学基础知识的内容,希望大家喜欢!
1、函数、极限与连续
重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2、一元函数积分学
重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
3、一元函数微分学
重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
4、向量代数与空间解析几何(数一)
主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5、多元函数微分学
重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6、多元函数积分学
重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7、无穷级数(数一、数三)
重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
8、常微分方程及差分方程
重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。此外,数三考查差分方程的基本概念与一介常系数线形方程求解 方法 。数一还要求会伯努利方程、欧拉公式等。
一、高等数学考试内容包括:函数、极限、连续
考试要求
1、理解函数的概念
2、了解函数的有界性、单调性、周期性和奇偶性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形,了解初等函数的概念。
5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。
6、掌握极限的性质及四则运算法则。
7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法、
8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
二、一元函数微分学
考试要求
1、理解导数和微分的概念,理解导数与微分的关系,理解函数的可导性与连续性之间的关系。
2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式、了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3、了解高阶导数的概念,会求简单函数的高阶导数。
4、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
5、理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理。
6、掌握用洛必达法则求未定式极限的方法。
7、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
8、会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
9、了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。
三、一元函数积分学
考试要求
1、理解原函数的概念,理解不定积分和定积分的概念。
2、掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。
3、会求有理函数、三角函数有理式和简单无理函数的积分。
4、理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。
5、了解反常积分的概念,会计算反常积分。
6、掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。
四、向量代数和空间解析几何
考试要求
1、理解空间直角坐标系,理解向量的概念及其表示。
2、掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件。
3、理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。
4、掌握平面方程和直线方程及其求法。
5、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。
6、会求点到直线以及点到平面的距离。
7、了解曲面方程和空间曲线方程的概念。
8、了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程。
9、了解空间曲线的参数方程和一般方程、了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程。
五、多元函数微分学
考试要求
1、理解多元函数的概念,理解二元函数的几何意义。
2、了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。
3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。
4、理解方向导数与梯度的概念,并掌握其计算方法。
5、掌握多元复合函数一阶、二阶偏导数的求法。
6、了解隐函数存在定理,会求多元隐函数的偏导数。
7、了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。
8、了解二元函数的二阶泰勒公式。
9、理解多元函数极值和条件极值的概念,并会解决一些简单的应用问题。
六、多元函数积分学
考试要求
1、理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。
2、掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。
3、理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
4、掌握计算两类曲线积分的方法。
5、掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数。
6、了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分。
7、了解散度与旋度的概念,并会计算。
8、会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等)。
七、无穷级数
考试要求
1、理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。
2、掌握几何级数与 级数的收敛与发散的条件。
3、掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。
4、掌握交错级数的莱布尼茨判别法。
5、 了解任意项级数绝对收敛与条件收敛的概念。
6、了解函数项级数的收敛域及和函数的概念。
7、理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法。
8、会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。
9、了解函数展开为泰勒级数的充分必要条件。
10、掌握麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。
11、了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式。
八、常微分方程
考试要求
1、了解微分方程及其阶、解、通解、初始条件和特解等概念。
2、掌握变量可分离的微分方程及一阶线性微分方程的解法。
3、会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程、
4、会用降阶法解下列形式的微分方程。
5、理解线性微分方程解的性质及解的结构。
6、掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
7、会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程。
8、会解欧拉方程。
9、会用微分方程解决一些简单的应用问题。
Leo叶2222
考试科目微积分、线性代数、概率论 微积分 一、函数、极限、连续 考试内容 函数的概念及其表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、隐函数、分段函数 基本初等函数的性质及其图形 初等函数 简单应用问题函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限四则运算 两个重要极限 : 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性。 3.理解复合函数、反函数、隐函数和分段函数的概念。 4.掌握基本初等函数的性质及其图形,理解初等函数的概念。 5. 了解数列极限和函数极限(包括左、右极限)的概念。 6.理解无穷小的概念和其基本性质、掌握无穷小的阶的比较方法,了解无穷大的概念及其与无穷小的关系。 7.了解极限的性质与极限存在的两个准则,掌握极限四则运算法则,会应用两个重要极限。 8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 9.了解连续函数的性质和初等函数的连续性。了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用。 二、一元函数微分学 考试内容 导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 一阶微分形式不变性 罗尔(Rolle)定理和拉格朗日(lagrange)中值定理及其应用 洛必达(L'Hospital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 考试要求 1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际和弹性的概念)· 2.掌握基本初等函数的导数公式、导数的四则运算法则及复函数的求导法则;掌握反函数与隐函数求导法,了解对数求导 3.了解高阶导数的概念,会求简单函数的高阶导数。 4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性;会求函数的微分。 5.理解罗尔定理和拉格朗日中值定理,掌握这两个定理的简单应用。 6.会用洛必达法则求极限。 7.掌握函数单调性的判别方法及简单应用,掌握函数极值、最大值和最小值的求法(含解较简单的应用题)。 8.会用导数判断函数图形的凹凸性 会求函数图形的拐点和渐近线。 9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形。 三、一元函数积分学 考试内容 原函数与不定积分的概念 不定积分的基本性质 基本的积分公式 和分部积分法 定积分的概念和基本性质 定积分中值定理 变上限积分定义的函数及其导数 牛顿一莱布尼茨(NewtOn一Deibniz)公式 不定积分和定积分的换元积分法与分部积分法 广义积分 定积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质、基本积分公式;掌握不定积分的换元积分法和分部积分法。 2.了解定积分的概念和基本性质;了解定积分中值定理,理解变上限积分定义的函数并会求它的导数。 掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法;3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解一些简单的经济应用题。 4.了解广义积分的概念,会计算计算广义积分。 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值。二重积分的概念、基本性质和计算 无界区域上的简单二重积分的计算 考试要求 1.了解多元函数的概念,了解二元函数的几何意义。 2.了解二元函数的极限与连续的直观意义,了解有界闭区域上二元连续函数的性质。 3.了解多元函数的偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数;会求全微分;会用隐函数的求导法则。 4·了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值。会用拉格朗日乘数法求条件极值。会求简单多元函数的最大值和最小值,并会求解一些简单的应用题。 5,了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法;会计算无界区域上较简单的二重积分。五、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线形微分方程考试要求1、了解微分方程及其阶、解、通解、初始条件和特解等概念。2、掌握变量可分离的微分方程、齐次微分方程和一阶线形微分方程的求解方法。线性代数 一、行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理考试要求 1.理解行列式的概念,掌握行列式的性质。 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式。 二、矩阵 考试内容 矩阵的概念 矩阵的线形运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩矩阵的等价 分块矩阵及其运算 考试要求 1.理解矩阵的概念,了解单位矩阵、对角矩阵、数量矩阵、三角矩阵的定义和性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质。 2.掌握矩阵的线形运算、乘法,以及它们的运算规律;掌握矩阵转置的性质;了解方阵的幂,掌握方阵乘积的行列式的性质。 3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。 4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念;理解矩阵的秩的概念,会用初等变换求矩阵的逆和秩。 5.了解分块矩阵的概念,掌握分块矩阵的运算法则。 三、向量 考试内容 向量的概念 向量的线性组合与线性表示 向量组线性相关与线性无关 向量组的极大线形无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线形无关向量组的正交规范化方法 考试要求 1.了解向量的概念。掌握向量的加法和数乘的运算法则。 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法。 3.理解向量组的极大线形无关组的概念,掌握求向量组的极大线形无关组的方法。 4.了解向量组等价的概念,理解向量组的秩的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系,会求向量组的秩。 5、了解内积的概念,掌握线形无关向量组正交规范化的施密特(Schmidt)方法。四、线性方程组 考试内容 线性方程组的克莱姆(又译:克拉默)(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系 非齐次线性方程组的通解 考试要求 1.会用克莱姆法则解线性方程组。2、掌握线性方程组有解和无解的判定方法。 3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法。 4.掌握非齐次线性方程组的通解的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解。 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵 考试要求 1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵的特征值和特征向量的方法。 2.理解矩阵相似的概念,掌握相似矩阵的性质;了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。 3.掌握实对称矩阵的特征值和特征向量的性质。 概率论 一、随机事件和概率 考试内容 随机事件与样本空间 事件的关系与运算 完全事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求 1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件间的关系及运算。 2.理解概率、条件率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率;掌握计算概率的加法公式、剩法公式、全概率公式,以及贝叶斯公式等。 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。 二、随机变量及及其概率分布 考试内容 随机变量及其概率分布 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 随机变量函数的概率分布 考试要求 1.理解随机变量及其概率分布的概念;理解分布函数 的概念及性质;会计算与随机变量相关的事件的概率。 2.理解离散型随机变量及其概率分布的概念;掌握0一1分布、二项分布、超几何分布、泊松(Poison)分布及其应用。 3. 掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。4、 理解连续型随机变量及其概率密度的概念;掌握均匀分布、正态分布 5.会根据自变量的概率分布求其较简单函数的概率分布。 三、随机变量的联合概率分布 考试内容 随机变量的联合分布函数 离散型随机变量的联合概率分布、边缘分布和条件分布 连续型随机变量的联合概率密度、边缘密度和条件密度 随机变量的独立性和相关性 常见二维随机变量的概率分布 两个及两个以上随机变量的函数的概率分布考试要求1、理解随机变量的联合分布的概念和基本性质。2、理解随机变量的联合分布的概念、性质及其两种基本表达形式:离散型联合概率分布和连续型联合概率密度。掌握两个随机变量的联合分布的边缘分布和条件分布。3、理解随机变量的独立性和相关性的概念,掌握随机变量独立的条件;理解随机变量的不相关性与独立性的关系。4、掌握二维均匀分布和二维正态分布,理解其中参数的概率意义。5、会根据两个随机变量的联合概率分布求其函数的概率分布;会根据多个独立随机变量的概率分布求其函数的概率分布。四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差以及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差、相关系数及其性质 考试要求 1.理解随机变量数字特征(期望、方差、标准差、矩、协方差、相关系数)的概念,并会运用数字特征的基本性质计算具体分布的数字特征,掌握常用分布的数字特征。 2.会根据随机变量调的概率分布求其函数的数学期望;会根据两个随机变量联合概率分布求其函数的数学期望。 五、中心极限定理 考试内容 隶莫弗一拉普拉斯(DE MOIVRE-Laplace)定理) 列维一林德伯格(Levi一Lindberg)定理考试要求 掌握隶莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维一林德伯格中心极限定理(独立同分布随机变量例的中心极限定理)的结论和应用条件,并会用相关定理近似计算有关随机事件的概率。 试卷结构 (一)题分及考试时间试卷满分为150分,考试时间为180分钟。(二)内容比例 微积分 约50% 线性代数 约25% 概率论 约25% (三)题型比例 填空与选择题 约40% ;解答题(包括证明题)约60%
像这种论文的话,你可以到网上搜索一下相关的范文来参考一下,你可以输入一些关键字关键词来进行查找。
1、一元二次方程解应用题是列一元一次方程解应用题的继续和发展,从根本上讲,则是为了解决实际问题的需要,比如在几何、物理及其他学科中,许多问题都要化归到一元二次方
数学源于生活,又广泛用于生活。在实际生活中运用所学数学知识,处理实际问题是中学生的数学素养之一。新课程标准强调数学教学要“从学生已有的生活经验出发”,“使学生获
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!
随着新课改的全面推进,一场更新 教育 观念,改革教学内容、 教学 方法 的运动正在兴起。教育呼唤教师教学方式的转变,对学生自身的学习能力也提出