吃货跟谁吃
1.用矩阵的初等变换求逆矩阵,解矩阵方程
2.用矩阵的初等变换求矩阵的秩、向量组的秩、极大线性无关组
3.用矩阵的初等变换解线性方程组
4.用矩阵的初等变换求过渡矩阵
5.用矩阵的初等变换化二次型为标准型
6.用矩阵的初等变换求标准正交基
线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。内含泡利矩阵及更通用的狄拉克矩阵的具体表示,在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。
描述最轻的三种夸克时,需要用到一种内含特殊酉群SU(3)的群论表示;物理学家在计算时会用一种更简便的矩阵表示,叫盖尔曼矩阵,这种矩阵也被用作SU(3)规范群,而强核力的现代描述──量子色动力学的基础正是SU(3)。还有卡比博-小林-益川矩阵(CKM矩阵):在弱相互作用中重要的基本夸克态,与指定粒子间不同质量的夸克态不一样,但两者却是成线性关系,而CKM矩阵所表达的就是这一点。
下雨不流泪
初等行变换的用途:1.求矩阵的秩,化行阶梯矩阵,非零行数即矩阵的秩同时用列变换也没问题,但行变换就足够用了!2.化为行阶梯形求向量组的秩和极大无关组(a,b)化为行阶梯形,判断方程组的解的存在性3.化行最简形把一个向量表示为一个向量组的线性组合方程组有解时,求出方程组的全部解求出向量组的极大无关组,且将其余向量由极大无关组线性表示4.求方阵的逆(a,e)-->(e,a^-1)5.解矩阵方程ax=b,(a,b)-->(e,a^-1b)初等列变换很少用,只有几个特殊情况:1.线性方程组理论证明时:交换系数矩阵的部分列便于证明2.求矩阵的等价标准形:行列变换可同时用3.解矩阵方程xa=b:对[a;b]只用列变换4.用初等变换求合同对角形:对[a;e]用相同的行列变换
分块矩阵,求解!授人予鱼不如授人予渔,在《线性代数》的学习中,方法尤为重要。下面就让我们一起解决《线性代数》中令人头痛的——矩阵分块法吧!如果您对——矩阵分块法
相抵;相似;合同;等价类 1 预备知识 2 矩阵的等价关系 2.1 矩阵的相抵关系 定义2.1:如果矩阵A经过有限次的初等变换后得到矩阵B,那么称A与B是相抵的
因为在定义的时候并不知道AB=E就意味着BA=E,也就是说矩阵的乘法运算一般不具有交换性,因此AB和BA不一定相等。所以在定义逆矩阵的时候就要求AB和BA都是E
1.用矩阵的初等变换求逆矩阵,解矩阵方程 2.用矩阵的初等变换求矩阵的秩、向量组的秩、极大线性无关组 3.用矩阵的初等变换解线性方程组 4.用矩阵的初等变换求过
换法变换:交换矩阵两行(列) 倍法变换:将矩阵的某一行(列)的所有元素同乘以数k 消法变换:把矩阵的某一行(列)的所有元素乘以一个数k并加到另一行(列)的对