图像去雾算法毕业论文
图像去雾算法毕业论文
论文简介: 利用图像传输理论测量海水的点扩散函数和调制传递函数并且使用维纳滤波器复原模糊的图像。退化方程H(u,v)在水槽中测量得到。在实验中利用狭缝图像和光源,第一步:一维光照射到水中从而得到不同距离下的狭缝图像数据,这样一维的海水点扩散函数就可以通过去卷积得到。又因为点扩散函数的对称性二维的函数模型也可以通过数学方法得到。利用相似的方法调制传递函数也可以得到。这样传输方程便可以得到:
图像可以由下式获得:
论文简介: 论文中提出自然光照下的水下图像退化效果与光偏振相关,而场景有效箱射则与光偏振无关。在相机镜头端安装可调偏振器,使用不同偏振角度对同一场景成两幅图像,所得到的图像中的背景光会有明显不同。通过对成像物理模型的分析,利用这两幅图像和估计出的偏振度,就能恢复出有效场景辐射。他还提出了一个计算机视觉方法水下视频中的退化效应。分析清晰度退化的物理原因发现主要与光的部分偏振有关。然后提出一个逆成像方法来复原能见度。该方法基于几张通过不同偏振方向的偏振片采集图像。
论文简介: 论文提出了一种自适应滤波的水下图像复原方法。通过最优化图像局部对比度质量判决函数,可以估计出滤波器中所使用的参数值。 论文提出一种基于简化的Jaffe-McGlamery水下成像模型的自调谐图像复原滤波器。滤波器的最优参数值是针对每幅图像通过优化一个基于全局对比度的质量准则自动估算的。(对一幅图像滤波器能根据全局对比度自动估计最优参数值),简化的模型理想地适合后向散射较少的漫射光成像.1.首先简化Jaffe-McGlamery水下成像模型:假设光照均匀(浅水区阳光直射),并且忽略后向散射部分.然后基于简化后的成像模型设计一个简单的反滤波器2.将滤波器设计成自适应滤波器。
论文简介: 论文对于调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。同时他还建立了一个框架来最大限度复原水下图像,在这个框架下传统的图像复原方法得到了拓展,水下光学参数被包含了进去,尤其时域的点扩散函数和频域的调制传递函数。设计了一个根据环境光学特性进行调整的客观图像质量度量标准来测量复原的有效性。
论文简介: 调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。(这一部分在王子韬的论文中有比较详细介绍)
论文简介: 在散射媒介中的正则化图像复原。论文在基于物理原因的复原方法难以去除噪声以及透射率低的基础上,提出一种自适应的过滤方法,即能明显的改善可见性,又能抑制噪声放大。本质上,恢复方法的正规化,是适合变化媒介的透射率,因此这个正则化不会模糊近距离的目标。
论文简介: 论文提出一种基于对边缘进行GSA(灰度规范角度)加权的测量图像清晰度的方法。图像首先被小波变换分解,去除部分随机噪声,增加真实边缘检测的可能性。每个边缘锐度由回归分析方法基于灰度的一个角的正切来确定边缘像素的灰度值之间的斜率和位置。整个图像的清晰度是平均每个测量的GSA的比例加权的第一级分解细节的量,作为图像的总功率,最后通过图像噪声方差自适应的边缘宽度。
论文简介: 论文提出了基于主动偏振的人工光照下水下图像处理技术。在宽场人工光照下的水下成像中,在光源端或相机端安装可调偏振器。通过调整光源或相机端的偏振器,同时拍摄两幅或多幅同一场景的图像,从两幅图像中可估计出背景光的偏振度。结合水下成像物理模型,就可以进行图像复原和场景3D信息估计。该方法操作简单,设备筒易,适用于水下画定目标的成像。 大范围人工照明条件下研究成像过程,基于该成像模型,提出一种恢复object signal的方法,同时能获得粗糙的3D scene structure.相机配备检偏振器,瞬间获取同一场景的两帧图片with different states of the analyzer or light-source polarizer,然后用算法处理获取的图片.它统一并推广了以前提出的基于偏振的方法.后向散射可以用偏振技术降低,作者在此基础上又用图像后处理去除剩余的后向散射,同时粗糙估测出3D场景结构.创新:之前的方法有的认为目标物反射光的偏振度可以忽略(即认为只有后向散射是偏振的);另外还有的认为后向散射的偏振度可以忽略(即认为只有目标物反射光是偏振的)。本文作者认为两者都是部分偏振光。
论文简介: 论文在没有应用任何标准模式、图像先验、多视点或主动照明的条件下同时估算了水面形状和恢复水下二维场景。重点是应用水面波动方程建立紧凑的空间扭曲模型,基于这个模型,提出一个新的跟踪技术,该技术主要是解决对象模型的缺失以及水的波动存在的复杂的外观变化。在模拟的和真实的场景中,文本和纹理信息得到了有效的复原。
论文简介: 论文提出暗通道先验算法复原有雾图像。暗通道先验是一系列户外无雾图像的数理统计,基于观察户外无雾图像的大部分补丁补丁中包含至少一个颜色通道中低强度的像素点。在有雾图像中应用这些先验,我们可以直接的估算雾的厚度,复原成高质量的无雾图像,同时还能获得高质量的深度图。
论文简介: 论文比较研究了盲反卷积算法中的:R-L算法(Richardson-Lucy)、最小二乘法以及乘法迭代法。并且应用了水下图像去噪和威尔斯小角度近似理论推导出点分布函数。通过执行威尔斯的小角度散射理论和模糊度量方法对三种盲反卷积算法进行比较,确定总迭代次数和最佳图像复原结果。通过比较得出:最小二乘算法的复原率最高,但是乘法迭代的速度最好。
论文简介: 论文提出点扩算函数(PSF)和调制解调函数(MFT)的方法用于水下图像复原,应用基于威尔斯小角度近似理论来进行图像增强。在本文中作者分析了水下图像退化的原因,在强化超快激光成像系统中采用了距离选通脉冲的方法,降低了反向散射中的加性噪声。本文对图像的基本噪声模式进行了分析,并使用算术平均滤波首先对图像进行去噪,然后,使用执行迭代盲反褶积方法的去噪图像的初始点扩散函数的理想值,来获得更好的恢复结果。本文通过比较得出,盲反褶积算法中,正确使用点扩散函数和调制解调函数对于水下图像复原的重要性。
论文简介: 本文提出一种图像复原的新方法,该方法不需要专门的硬件、水下条件或现在知识结构只是一个与小波变换的融合框架支持相邻帧之间的时间相干性进行一个有效的边缘保留噪声的方法。该图像增强的特点是降低噪声水平、更好的暴露黑暗区域、改善全局对比、增强细节和边缘显著性。此算法不使用补充信息,只处理未去噪的输入退化图像,三个输入主要来源于计算输入图像的白平衡和min-max增强版本。结论证明,融合和小波变换方法的复原结果优于直接对水下退化图像进行去雾得到的结果。
论文简介: 本文是一篇综述性质的论文。介绍了:1、水下光学成像系统 2、图像复原的方法(对各种图像复原方法的总结) 3、图像增强和颜色校正的方法总结 4、光学问题总结。
论文简介: 论文针对普通水下图像处理的方法不适用于水下非均匀光场中的问题,提出一种基于专业区域的水下非均匀光场图像复原方法,在该算法中,考虑去除噪声和颜色补偿,相对于普通的水下图像复原和增强算法,该方法获得的复原复原的清晰度和色彩保真度通过视觉评估,质量评估的分数也很高。
论文简介: 论文基于水下图像的衰减与光的波长的关系,提出一种R通道复原方法,复原与短波长的颜色,作为水下图像的预期,可以对低对比度进行复原。这个R通道复原的方法可以看做大气中有雾图像的暗通道先验方法的变体。实验表明,该方法在人工照明领域应用良好,颜色校正和可见性得到提高。
论文简介: 作者对各种水下图像增强和复原的算法做了调查和综述,然后对自己的提高水下质量的方法做了介绍。作者依次用到了过滤技术中的同态滤波、小波去噪、双边过滤和对比度均衡。相比于其他方法,该方法有效的提高了水下目标物的可见性。
论文简介: 论文应用湍流退化模型以质量标准为导向复原因水下湍流退化的图像。参考大气湍流图像复原的算法,省略了盐分的影响,只考虑水中波动引起的湍流对水下成像的影响,应用一种自适应的平均各向异性的度量标准进行水下图像复原。经过验证,使用STOIQ的方法优于双频谱的复原方法。
论文简介: 本文提出了一种新的方法来提高对比度和降低图像噪声,该方法将修改后的图像直方图合并入RGB和HSV颜色模型。在RGB通道中,占主导地位的直方图中的蓝色通道以95%的最大限度延伸向低水平通道,RGB通道中的低水平通道即红色通道以5%的最低限度向上层延伸且RGB颜色模型中的所有处理都满足瑞利分布。将RGB颜色模型转化为HSV颜色模型,S和V的参数以最大限度和最小限度的1%进行修改。这种方法降低了输出图像的欠拟合和过拟合,提高了水下图像的对比度。
论文简介: 论文根据简化的J-M模型提出一种水下图像复原的有效算法。在论文中定义了R通道,推导估算得到背景光和变换。场景可见度被深度补偿,背景与目标物之间的颜色得到恢复。通过分析PSF的物理特性,提出一种简单、有效的低通滤波器来去模糊。论文框架如下:1.重新定义暗通道先验,来估算背景光和变化,在RGB的每个通道中通过标准化变换来复原扭曲颜色。2.根据PSF的性能,选择没有被散射的光,用低通滤波器进行处理来提高图片的对比度和可见度。
论文简介: 论文中对当代水下图像处理的复原与增强做了综述,作者阐明了两种方法的模型的假设和分类,同时分析了优缺点以及适用的场景。
参考:
蔡自兴的发表论文
蔡自兴教授已在国内外发表论文和科技报告等860多篇。2010年: Zixing. Research on navigation control and cooperation of mobile robots (Plenary Lecture 1). 2010 Chinese Control and Decision Conference, New Century Grand Hotel, Xuzhou, China, May 26- 28, Zixing. Research on navigation control and cooperation of mobile robots (Plenary Lecture 1). 2010 Chinese Control and Decision Conference, New Century Grand Hotel, Xuzhou, China, May 26-28, 2010.3. Chen Baifan,Zi-Xing Cai, Zhi-Rong Zou. A Hybrid Data Association Approach for Mobile Robot SLAM. International Conference on Control, Automation and Systems, October 27-30, 2010, KINTEX, Gyeonggi-do, KOREA (Accepted).4. Guo Fan,Cai Zixing, Xie Bin, Tang Jin. Automatic Image Haze Removal Based on Luminance Component. The International conference on Signal and Image Processing (SIP 2010).May 2010 (Accepted).5. Linai. Kuang,Zixing. System based Redeployment Scheme for Wireless Sensor Networks[C].In proceeding of 1st IET International Conference on Wireless Sensor Network. Beijing, China, November,2010.6. Lingli YU,Zixing CAI, A Study of Multi-Robot Stochastic Increment Exploration Mission Planning [J]. Frontiers of Electrical and Electronic Engineering in China, (Received).7. Liu Hui,Cai Zixing, and Wang Yong. Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing, 2010,10(2): 629–640.8. LIU Xian-ru,CAI Zi-xing. Advanced obstacles detection and tracking by using fusing radar and image sensor data. International Conference on Control, Automation and Systems,2010/10/27,Korea.9. Liu Xianru,Cai zixing. Advanced obstacles detection and tracking by using fusing Radar and Image Sensor Data[C]. International Conference on Control, Automation and Systems. (October 27-30,2010, KINTEX, Gyeonggi-do, KOREA).10. Ren Xiaoping,Zixing Cai. Kinematics Model of Unmanned Driving Vehicle. Proceedings of the 8th World Congress on Intelligent Control and Automation, July 6-9 2010, Jinan, China, 2010: 5910-5914.11. Suqin Tang,Zixing Cai: Tourism Domain Ontology Construction from the Unstructured Text Documents. The 9th IEEE International Conference on Cognitive Informatics, Beijing, China.2010,pp297-301.12. Suqin Tang,Zixing Cai: Using the Format Concept Analysis to Construct the Tourism Information Ontology. The 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD'10),Yantian, China.2010, pp2941-2944.13. Tan Ping,Zixing Cai. An Adaptive Particle Filter Based on Posterior Distribution. Proceedings of the 8th World Congress on Intelligent Control and Automation, July 6-9 2010, Jinan, China, 2010: 5886-5890.14. Wang Yong,Cai Zixing, Zhang Qingfu. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation, Accept, regular paper.15. Wang Yong,Cai Zixing. Constrained evolutionary optimization by means of (mu+lambda)-differential evolution and improved adaptive trade-off model. Evolutionary Computation, in press.16. Wang Yong, Combining multiobjective optimization with differential evolution to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation, (regular paper, Accepted).17. Xianru Liu,Zixing ed Obstacles Detection and tracking by Fusing Millimeter Wave Radar and Image Sensor Data,International IEEE Intl Coference on Control,Automation and Systems , Korea, 2010, 22:1115-1121.18. Xie Bin, Fan Guo,Zixing Cai. Improved Single Image Dehazing Using Dark Channel Prior and Multi-Scale Retinex. 2010 International Conference on Intelligent System Design and Engineering Application, Changsha, China, 2010. (Accepted) .19. YU Ling-li,CAI Zi-xing, GAO Ping-an, LIU Xiao-ying. A spatial orthogonal allocation and heterogeneous cultural hybrid algorithm for multi-robot exploration mission planning. Journal of control theory and applications (Received) .20.蔡自兴,陈白帆,刘丽珏. 智能科学基础系列课程国家级教学团队的改革与建设. 计算机教育,2010,(127):40-44 .21.蔡自兴,任孝平,李昭.一种基于GPS/INS组合导航系统的车辆状态估计方法. 2010, 2010.22.蔡自兴。智能科学技术课程教学纵横谈. 计算机教育,2010,(127):2-6.23.蔡自兴,蒋冬冬,谭平,安基程。H.264中快速运动估计算法的一种改进方案;计算机应用研究2010,27(4):1524-1525.24.蔡自兴; 任孝平; 邹磊; 匡林爱. 一种簇结构下的多移动机器人通信方法.小型微型计算机系统,2010,31(3):553-556.25. 陈爱斌,蔡自兴.一种基于目标和背景加权的目标跟踪方法,控制与决策,2010,25(8):1246-1250.26. 陈爱斌;蔡自兴; 文志强; 董德毅. 一种基于预测模型的均值偏移加速算法. 信息与控制 2010,39(2): 234-237.27. 陈爱斌; 董德毅;杨勇;蔡自兴. 基于目标中心定位和NMI特征的跟踪算法.计算机应用与软件,2010,27(4):276-279.28. 陈白帆,蔡自兴,刘丽珏. 人工智能课程的创新性教学探索——人工智能精品课程建设与改革. 计算机教育,2010,(127):27-31.29. 官东,蔡自兴,孔志周. 一种基于推荐证据理论的网格信任模型.系统仿真学报,2010,22(8):1895-1898.30.郭璠,蔡自兴,谢斌, 唐琎. 图像去雾技术研究综述与展望. 计算机应用, 2010, 30(9):2417-2421.31. 郭璠,蔡自兴, 谢斌, 唐琎. 一种基于亮度分量的自动图像去雾方法. 中国图象图形学报. 2010年3月(录用).32. 江中央,蔡自兴,王勇. 一种新的基于正交实验设计的约束优化进化算法. 计算机学报, 2010,33(5):855-864.33. 江中央,蔡自兴,王勇.求解全局优化问题的混合自适应正交遗传算法.软件学报, 2010,21(6):1296-1307.34. 匡林爱,蔡自兴. 基于遗传算法的无线传感器网络重新部署方法. 控制与决策,2010,25(9):1329-1332.35. 匡林爱,蔡自兴.一种簇机构下的多移动机器人通讯方法.小型微型计算机系统.,2010,31(3):553-556.36. 匡林爱,蔡自兴.一种带宽约束的无线传感器网络节点调度算法.高技术通讯,2010,20(3):309-313.37. 刘丽珏,蔡自兴,唐琎. 人工智能双语教学建设. 计算机教育,2010,(127):74-77.38. 刘献如,蔡自兴. 基于SAD与UKF-Mean shift的主动目标跟踪. 模式识别与人工智能,2010,23(5):646-652.39. 刘献如,蔡自兴. 结构化道路车道线的鲁棒检测与跟踪. 光电子.激光,2010,21(12):1834-1838.40. 刘献如,蔡自兴.UKF 与Mean shift 相结合的实时目标跟踪.中南大学学报,2009年录用.41. 刘晓莹;蔡自兴; 余伶俐; 高平安. 一种正交混沌蚁群算法在群机器人任务规划中的应用研究. 小型微型计算机系统, 2010,31(1):164-168.42. 蒙祖强,蔡自兴,黄柏雄. 课程交叉教学在应用型人才培养中的实践探索. 计算机教育,2010,(127):55-57.43. 潘薇;蔡自兴; 陈白帆. 复杂环境下多机器人协作构建地图的方法;四川大学学报(工程科学版) 2010-01-20.44. 任孝平,蔡自兴,邹磊,匡林爱.“中南移动二号”多移动机器人通信系统.中南大学学报(自然科学版),2010,41(4):1442-1448.45. 任孝平,蔡自兴.四种虚拟力模型在传感器网络覆盖中的性能分析.信息与控制,2010,39(4):441-445.46. 任孝平;蔡自兴; 陈爱斌. 多移动机器人通信系统研究进展. 控制与决策 2010,(3): 327-332.47.唐素勤,蔡自兴,王驹,蒋运承: 基于gfp语义的描述逻辑系统FLE的有穷基,计算机研究与发展,2010,47(9):1514- 1521.48. 唐素勤,蔡自兴,王驹,蒋运承: 描述逻辑非标准推理, 模式识别与人工智能,2010,23(4):522-530.49. 肖赤心,蔡自兴,王勇. 字典序进化算法用于组合优化问题. 控制理论与应用,2010,27(4):473-480.50. 谢斌,蔡自兴. 基于MATLAB Robotics Toolbox的机器人学仿真实验教学. 计算机教育,2010,(127):140-143.51. 余伶俐,蔡自兴,谭平,段琢华.基于多模态Rao-Blackwellized进化粒子滤波器的移动机器人航迹推算系统的故障诊断. 控制与决策,2010,25(12):1787-1792.52. 余伶俐,蔡自兴,谭平,进化粒子滤波器对比研究及其在移动机器人故障诊断的应用. 信息与控制,2010,39(5):621-628.53. 余伶俐,蔡自兴,肖晓明. 智能控制精品课程建设与教学改革研究. 计算机教育,2010,(127):35-39.54. 余伶俐,焦继乐,蔡自兴. 一种多机器人任务规划算法及其系统实现. 计算机科学,2010,37(6):252-255.55.周涛;蔡自兴。 信息审计中短消息中心实验环境的仿真[J].科学技术与工程 2010,10(6): 1551-1554.56. 邹磊,蔡自兴,任孝平.一种基于虚拟力的自组织覆盖算法.计算机工程,2010,36(14):93-95 .2009年:57. Gao Ping-an,Cai Zi-xing. Evolutionary Computation Approach to Decentralized Multi-robot Task Allocation. Proc. of the 5th International Conference on Natural Computation, IEEE Computer Society, 2009,415-419.58. Wang Yong,Cai Zixing, Zhou Yuren. Accelerating adaptive trade-off model using shrinking space technique for constrained evolutionary optimization, International Journal for Numerical Methods in Engineering, 2009, 77(11):1501-1534.59. Wang Yong,Cai Zixing, Zhou Yuren, Fan Zhun. Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique, Structural and Multidisciplinary Optimization, 2009, 37(1): 395-413.60. Wang Yong,Cai Zixing. A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems, Frontiers of Computer Science in China, 2009,3(1):38-52.61. Wang Yong,Cai Zixing. Constrained evolutionary optimization by applying (mu+lambda)-differential evolution and improved adaptive trade-off model. Evolutionary Computation, Accept.62. Liu Hui,Cai Zixing, and Wang Yong. Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering d Soft Computing, 2010,10(2):629–640.63. Liu Limei,Cai Zixing. An Improvement of Hough Transform for Building Feature map.64. Limei Liu, Zixing Cai,ilding Method Based on Uncertain Information of Sonar Sensor[C]. The 9th International Conference for Young Computer Scientists,2009,1738-1742.65. YU Ling-li,CAI Zi-xing. Robot Detection Mission Planning Based on Heterogeneous Interactive Cultural Hybrid Algorithm. Proc. of the 5th International Conference on Natural Computation.2009,583-587.66. Ren Xiaoping,Cai Zixing.A Distributed Actor Deployment Algorithm for Maximum Connected Coverage in WSAN. Proc. of the 2009 Fifth International Conference on Natural Computation, 2009,283-287.67. 王勇,蔡自兴,周育人,肖赤心.约束优化进化算法.软件学报, 2009,20(1): 11-29.68. 陈白帆,蔡自兴, 潘薇. 基于声纳和摄像头的动态环境地图创建方法.高技术通讯, 2009, 19(4): 410-414.69. 陈白帆,蔡自兴, 袁成. 基于粒子群优化的移动机器人SLAM方法研究.机器人, 2009, 31(6):513-517.70. 高平安,蔡自兴. 多移动机器人任务负载均衡分组规划方法.高技术通讯,2009, 19(5):501-505.71. 高平安,蔡自兴. 一种基于多子群的动态优化算法.中南大学学报(自然科学版) 2009, 40(3): 731-736.72. 刘献如,;蔡自兴. 一种基于Integral Imaging和与模拟退火相结合的深度测量方法研究. 系统仿真学报. 2009,21(8):2303~2306.73. 刘利枚,蔡自兴,潘薇.一种基于声纳信息的地图创建方法.计算机工程,2009,35(7):166-185.74. 余伶俐,蔡自兴. 基于异质交互式文化混合算法的机器人探测任务规划.机器人.2009, 31(2):137-145.75. 余伶俐,蔡自兴,刘晓莹,高平安. 均分点蚁群算法在群集机器人任务规划中的应用研究[J].高技术通讯. 2009,19(10),1054-1060.76. 余伶俐,蔡自兴. 改进混合离散粒子群的多种优化策略算法.中南大学学报,2009, 40(4): 1047-1053.77. 余伶俐,蔡自兴,高平安,刘晓莹. 当代学习自适应混合离散粒子群算法研究. 小型微型计算机系统. 2009, 30(9):1800-1804.78. 余伶俐,蔡自兴. 基于当代学习离散粒子群的多机器人高效任务分配算法研究. 计算机应用研究. 2009, 26(5):1691-1694.79.蔡自兴; 谢斌; 魏世勇; 陈白帆. 《机器人学》教材建设的体会. 2009年全国人工智能大会(CAAI-13),北京:北京邮电大学出版社,252-255,2009年9月.80.蔡自兴,郭璠. 密码学虚拟实验平台的设计与实现.中国人工智能进展(2009),中国人工智能大会(CAAI-13)论文集,北京:北京邮电大学出版社,432-438,2009年9月.81.蔡自兴,任孝平,邹磊.分布式多机器人通信仿真系统.智能系统学报,2009,4(4): 309-313.82. 任孝平,蔡自兴.基于阿克曼原理的车式移动机器人运动学建模.智能系统学报, 2009,4(6);534-537.83.蔡自兴; 任孝平; 邹磊. 分布式多机器人通信仿真系统.智能系统学报, 2009,4(4);309-313.84. 文志强;蔡自兴. 一种目标跟踪中的模糊核直方图. 高技术通讯, 2009,19(2):174-180.85.刘星宝;蔡自兴. 种子检测器刺激-应答变异算法研究. 高技术通讯, 2009,19(3):273-278.86. 刘星宝;蔡自兴. 负选择算法中的检测器快速生成策略. 小型微型计算机系统, 2009-07-15.87. 刘星宝;蔡自兴. 异常检测系统的漏洞分析.中南大学学报(自然科学版), 2009-08-26.88. 潘薇;蔡自兴; 陈白帆. 一种非结构环境下多机器人构建地图的方法. 高技术通讯, 2009-05-25.89. 孔志周;蔡自兴; 官东. 两种模糊密度确定方法的实验比较. 小型微型计算机系统, 2009-02-15.90. 江中央;蔡自兴; 王勇. 用于全局优化的混合正交遗传算法. 计算机工程, 2009-02-20.91. 肖赤心;蔡自兴; 王勇; 周经野. 一种基于佳点集原理的约束优化进化算法. 控制与决策, 2009-02-15 .92. 官东;蔡自兴; 孔志周. 一种基于网格技术的HLA分布仿真实现方法. 系统仿真学报, 2009,21(5):1363-1366.93.刘慧;蔡自兴; 王勇. 基于佳点集的约束优化进化算法. 系统仿真学报, 2009-03-20 .94. 潘薇;蔡自兴; 陈白帆. 基于遗传算法的多机器人协作建图方法. 计算机应用研究, 2009-04-15.95. 任孝平;蔡自兴; 卢薇薇. 一种基于扫描相关度的LSB算法. 计算机应用, 2009-05-01.96.胡强;蔡自兴. 一种基于改造时钟系统的Linux实时化方案. 计算机工程, 2009-06-05.97. 袁成;蔡自兴; 陈白帆. 粒子群优化的同时定位与建图方法. 计算机工程, 2009-06-05.98. 王勇;蔡自兴. “智能优化算法及其应用”课程教学的实践与探索. 计算机教育, 2009-06-10.99. 任孝平;蔡自兴; 卢薇薇. 网络可重构的多机器人仿真系统. 计算机应用研究, 2009-06-15.100. 袁湘鹏;蔡自兴; 刘利枚. 基于声纳的移动机器人环境建图的设计与实现. 计算机应用研究, 2009-07-15.101. 官东;蔡自兴; 孔志周.网格服务本体匹配算法研究. 小型微型计算机系统, 2009,30(8):1639-1643.102. 邹磊;蔡自兴; 任孝平. 基于簇的多移动机器人通信系统. 计算机应用研究, 2009-08-15.103.蔡自兴. 从严施教,精心育才,培养高素质人才. 计算机教育, 2009-09-10.104. 肖晓明; 旷东林;蔡自兴. 单亲遗传算法种群初始化方法分析. 电脑与信息技术, 2009-08-15.105. 刘丽珏; 陈白帆; 王勇; 余伶俐;蔡自兴. 精益求精建设人工智能精品课程. 计算机教育, 2009-09-10.106. 陈爱斌;蔡自兴; 安基程. 一种基于摄像机视角的立体视觉定位方法.中南大学学报(自然科学版), 2009-09-10.107. 唐素勤;蔡自兴; 江中央; 肖赤心. 用于求解约束优化问题的自适应佳点集进化算法. 小型微型计算机系统,2009,第9期,2009-11-15.108.胡扬;桂卫华;蔡自兴. 多元智能算法控制结构综述. 计算机科学, 2009-10-15.109.蔡自兴. 《混沌系统的模糊神经网络控制理论与方法》评介. 计算技术与自动化, 2009-12-15.110. 陈爱斌;蔡自兴; 安基程. 一种基于摄像机视角的立体视觉定位方法. 2009年中国智能自动化会议论文集(第六分册)[中南大学学报(增刊)], 2009-09-27.111. 于金霞;蔡自兴; 段琢华. 复杂地形下移动机器人运动学建模研究. 2009中国控制与决策会议论文集(1), 2009-06-17.112. 刘献如,蔡自兴,杨欣荣. Integral Imaging与模拟退火相结合的深度测量方法研究. 系统仿真学报,2009,21(8):2303-2307.
MATLAB代码 求分析 何的去雾算法里面的暗通道算法 每一句都是什么意思啊?又分别对应论文里的什么原理?
function dark = darkChannel(imRGB)
r=imRGB(:,:,1);
g=imRGB(:,:,2);
b=imRGB(:,:,3); 分别提取三色的灰度图
[m n] = size(r); 提取单色图矩阵的宽度和长度
a = zeros(m,n); 创建m*n的零矩阵a
for i = 1: m
for j = 1: n
a(i,j) = min(r(i,j), g(i,j));
a(i,j)= min(a(i,j), b(i,j)); 依次比较三色分量的最小值提取为暗通道图
end
end
d = ones(15,15); 创建15*15的单位矩阵
fun = @(block_struct)min(min())*d;
dark = blockproc(a, [15 15], fun); 将图片分成15*15的小块并将每一块变成其中的最小值
dark = dark(1:m, 1:n);
我也是新手啊兄弟只能帮你到这儿了
各位有没有数字图像处理方面的本科毕业论文题目
数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。
1、基于模糊分析的图像处理方法及其在无损检测中的应用研究
2、数字图像处理与识别系统的开发
3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究
4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究
5、基于图像处理技术的齿轮参数测量研究
6、图像处理技术在玻璃缺陷检测中的应用研究
7、图像处理技术在机械零件检测系统中的应用
8、基于MATLAB的X光图像处理方法
9、基于图像处理技术的自动报靶系统研究
10、多小波变换及其在数字图像处理中的应用
11、基于图像处理的检测系统的研究与设计
12、基于DSP的图像处理系统的设计
13、医学超声图像处理研究
14、基于DSP的视频图像处理系统设计
15、基于FPGA的图像处理算法的研究与硬件设计
matlab 怎样把图像去云雾算法
function darktest(filename)
%暗影去雾算法
%filename------文件名或文件绝对路径
%用法:darktest('7.png')
close all
clc
w0=0.65; %0.65 乘积因子用来保留一些雾,1时完全去雾
t0=0.1;
I=imread(filename);
figure;
set(gcf,'outerposition',get(0,'screensize'));
subplot(221)
imshow(I);
title('原始图像');
[h,w,s]=size(I);
min_I=zeros(h,w);
%下面取得暗影通道图像
for i=1:h
for j=1:w
dark_I(i,j)=min(I(i,j,:));
end
end
subplot(223)
imshow(dark_I);
title('dark channnel的图形');
Max_dark_channel=double(max(max(dark_I))) %天空亮度
dark_channel=double(dark_I);
t=1-w0*(dark_channel/Max_dark_channel); %取得透谢分布率图
subplot(224)
T=uint8(t*255);
上一篇:华东科技这本期刊怎么样
下一篇:哈尔滨理工大学期刊论文