欢迎来到学术参考网
当前位置:发表论文>论文发表

北京理工大学学报增刊

发布时间:2023-02-09 11:45

北京理工大学学报增刊

北京理工大学学报增刊被EI收录!可以在EI数据库中查到!

会议论文推荐到北京理工大学学报增刊,值得发表吗

增刊还不如发普通刊物的正刊!

崔利荣的出版专著

出版专著(英文)1.书名: Reliabilities of Consecutive-k Systems出版时间:2000年, 作者:Gerard J. Chang, Lirong Cui & Frank 出版社:Kluwer Academic PublishersISBN: 0-7923-6661-1;2.书名: Proceedings of the 4th International Conference on Quality and Reliability (ICQR2005) 出版时间:2005年,编辑: Lirong Cui,Albert H. C. Tsang, & Min Xie, 出版社:Beijing Institute of Technology Press,SBN: 7-81045-742-X代表性论文(按时间先后排序)[1] Lirong Cui, Alan G Hawkes, “Availability of a series system with spares”, Microelectron. & Reliability. Vol.34 No.6. p1057-1068, 1994. (SCI )[2] Lirong Cui, Alan G. Hawkes & Assad Jalali, “The increasing failure rate property of consecutive k-out-of-n”, Probability in the Engineering & Informational Sciences, 9, p217-225, 1995.[3] Chang, G.J., Cui L.R., & Hwang, F.K., “Reliabilities for (n,f,k) systems”, Statistics & Probability Letters. 43:(3) p237-242, 1999. (SCI)[4] Chang, G.J., Cui L.R., & Hwang, F.K., “New comparisons in Birnbaum importance for the consecutive-k-out-of-n system”, Probability in the Engineering & Informational Sciences. 13:p187-192, 1999 & 14:(3) p405-405, 2000. (SCI )[5] Hwang, F.K., Cui, L.R.,Chang, J.C., et al. “‘Comments on reliability and component importance of a consecutive-k-out-of-n system’ by Zuo”, Microelectron. & Reliability. 40:(6) p1061-1063, 2000. (SCI )[6] Xie, M., Preuss, W. and Cui, L.R. “Error analysis of some integration procedures for renewal equation and convolution integrals”, Journal of Statistical Computation and Simulation, Vol. 73, p59-70, 2003. (SCI )[7] Cui, L.R. and Xie, M. Availability analysis of periodically inspected systems with random walk model. Journal of Applied Probability, 38 (4): , (SCI )[8] Lirong Cui & Min Xie. “Some normal approximations for renewal function of large Weibull shape parameter”. To: Communications in Statistics---Simulation & Computation. 2003, Vol. 32, No.1, p1-16. (SCI和EI )[9] Lirong Cui. “The IFR property for consecutive-k-out-of-n:F system” Statistics & Probability Letters. Vol. 59, 4, p405-414, 2002. (SCI )[10] Lirong Cui, & M. Xie. “Sequential inspection strategy for multiplesystems under availability requirement”. European Journal of Operational Research. Vol. 155, No. 1, 2004 (May), p170-177. (SCI )[11] Lirong Cui, Way Kuo and Min Xie, “On -out-of- System and its Reliability,” Third International Conference on Mathematical Methods in Reliability methodology and practice, June 17-20, 2002, p173-176. Trondheim, Norway.[12] Lirong Cui, Way Kuo, H.T. Loh & M. Xie, “Optimal Allocation of Minimal and Perfect Repairs under Resource Constraints”, IEEE Transactions on Reliability. Vol.53. No.2, June, p193-199, 2004. (SCI 和EI)[13] Lirong Cui, M. Xie and H.T. Loh. “Inspection schemes for general system”. IIE Transactions,Vol.36, No.9, September, p817-825, 2004. (SCI )[14] 沈剑波,李金林,崔利荣,“导弹储存可用性模型与分析”, 导弹与航天运载技术,No.2, p30-34, 2004.[15] Lirong Cui & Jinlin Li, Availability for a Repairable System with Finite Repairs, Proceedings of the 2004 Asian International Workshop (AIWARM 2004) on Advanced Reliability Modeling, World Scientific , p97-100.[16] 沈剑波,李金林,崔利荣,“导弹可用度模型与分析”, 导弹与航天运载技术,No.6, p27-30, 2004.[17] 沈剑波,李金林,崔利荣,“导弹储存维修性统计分析”, 系统工程与电子技术,Vol. 26, No.11, p1731-1735, 2004.[18] Lirong Cui, Analysis of Bullwhip Effect for Two-Level Supply Chain with Multi-distributed Centers, Journal of Systems Science and Information, Vol. 2, No. 4, p707-711, 2004,[19] Assad Jalali, A.G. Hawkes, Lirong Cui & Frank K. Hwang, “The Optimal Consecutive-k-out-of-n:G Line for ”, Journal of Statistical Planning and Inference Vol.128. No.1, p281-287, 2005, (SCI )[20] Lirong Cui & Min Xie, Availability of a periodically inspected system with random repair or replacement times, Journal of Statistical Planning and Inference Vol.131. No.1, p89-100, 2005, (SCI )[21] Lirong Cui & M Xie, On a generalized k-out-of-n system and its reliability, International Journal of Systems Science, 2005, 36(5), p267-274. (SCI )[22] 曹光祥,李金林,崔利荣. 标准体系的使用期的模型与分析,数理统计与管理,2005年 第二期,p73-78.[23] 崔利荣,赵先,李金林,有限马尔可夫链嵌入方法的最新进展, 全国第七届可靠性学术会议论文集,p34-42, 清华大学出版社出版,2005年。[24] 曹光祥,李金林,崔利荣, 李俊峰. 标准体系的比例型寿命使用期模型与分析,数理统计与管理,2006年 25卷第1期, P27-31.[25] 杨海生,崔利荣,Consecutive- -out-of- :F和Consecutive- -out-of- :F线性系统的可靠性,数理统计与管理,2006年 25卷第3期, P321-328.[26] Lirong Cui & Haijun, Li, Opportunistic Maintenance for Multi-Component Shock Model, Mathematical Method of Operations Research, 2006, 63, p493-511. (SCI )[27] lirong Cui, Way Kuo, Jinlin Li & Min Xie, On the dual Reliability systems of and , Statistics and Probability Letters, 2006, 76:1081-1088. (SCI )[28] Zhihua Zheng, Lirong Cui & Alan G. Hawkes, A study on a Single –unit Markov repairable system with repair time omission, IEEE Transactions on Reliability, 2006,Vol. 2, p182-188. (SCI )[29] Lun Ran, Lirong Cui and M. Xie, Some Analytical and Numerical Bounds on the Renewal Function, Communications in Statistics: Theory and Methods, 2006, Vol. 35 Issue 10, p1815-1827; (SCI )[30] Yanlan Guo, Lirong Cui, Jinlin Li, Song Gao, Reliabilities for and Systems, Communications in Statistics: Theory and Methods, 2006, Vol. 35 Issue 10, p1779-1789, 11p; (SCI )[31] Lirong Cui & Haijun Li, Coherent systems of components with multivariate phase type life distributions, Reliability Engineering & System Safety, Volume 92, Issue 3, March 2007, Pages 300-307 (SCI)[32] Xueli Gao, Lirong Cui, Jinlin Li, Analysis for Joint Importance of Components in Coherent System, European Journal of Operational Research. 2007 (182) p282-299. (SCI & EI).[33] 赵先, 崔利荣, 有限马尔可夫链嵌入法在系统失效率计算中的应用, 北京理工大学学报(自然版)2006 Vol.26 No.9 P.843-846.[34] 李岳,崔利荣, 服从单向单交叉并行链优先约束的可靠性系统测试优化,系统工程与电子技术,2007年2月,第29卷第2期,p323-328.[35] Lirong Cui, Xian Zhao & Jinlin Li, A Study on Some System Safety Models, European Safety and Reliability Conference - ESREL 2006, Estoril, Portugal p1607-1610.[36] Xian Zhao, Lirong Cui, Way Kuo, Reliability For Sparsely Connected Consecutive- Systems, IEEE Transactions on Reliability (SCI & EI),2007, No 3. p516-524.[37] 冉伦,郑治华,崔利荣, 马尔可夫可修系统新故障时间分布研究,兵工学报, 2007年第28卷第5期 P594-597. (EI)[38] Lirong Cui, Haijun Li, Markov Repairable Systems with History-Dependent Up and Down States, Stochastic models (SCI) 2007, 23:665-681.[39] Zhihua Zheng, Lirong Cui and Song Gao, A Study on a Single-unit Markov Repairable System with omitted failures, European Safety and Reliability Conference - ESREL 2007, Norway,2007, June. 25-27, p1893-1897.[40] Lirong Cui & Alan G. Hawkes, A Note on the Proof for the Optimal Consecutive-k-out-of-n:G Line for n<=2k, Journal of Statistical Planning and Inference, 2008, 138, p1516-1520. (SCI).[41] Z.W. Bao, H.Y. Li, L.R. Cui, A Study on Optimal Inspection Strategies of Reliability Systems with Parallel-Chain Precedence Constraints under Failure States, Advanced Materials Research , 2008, Vol. 44-46, p787–794; (EI ).[42] Xian Zhao, Lirong Cui. Defect pattern recognition on nano/micro integrated circuits wafer. The 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Jan, 2008, p519–523; (EI).[43] 赵先, 崔利荣. 基于模型的圆形边界识别方法. 北京理工大学学报(自然科学版), 2008年第28卷第09期, p843-846; (EI).[44] Zhihua Zheng, Li-rong Cui, Haijun Li, Availability of Semi-Markov Repairable Systems with History-Dependent Up and Down States. Proceedings of the 3rd Asian International Workshop, Taipei, Taiwan, Oct, 2008, p186–193.[45] 王金铎, 鲍智文, 崔利荣. 我国电解铝用阳极与阴极炭块市场需求预测. 数理统计与管理, 2008年第27卷第2期, p313–318.[46]贾旭杰,崔利荣,胡敏, 基于Copula的武器装备系统供应链可靠性研究, 兵工学报, 2008年第29卷增刊,p1-4.[47] Zhao Xian, Cui Lirong. On the accelerated scan finite Markov chain imbedding approach. IEEE Transactions on Reliability. (将于2009年6月正式出版,SCI和EI收录).录用;[48] 赵先,崔利荣,李亚南, 线形 系统和 系统的可靠度计算新方法,数理统计与管理, 录用。[49] 赵先,崔利荣. 线形Consecutive-(1,2) or (2,1)-out-of-(m,n):F系统可靠度研究. 北京理工大学学报(自然科学版),录用。[50] Zhihua Zheng, Lirong Cui, A study on a parallel repairable system with omitted failures, Journal of Beijing Institute of Technology, 录用。

北京理工大学学报的社会科学版

由工业和信息化部主管,北京理工大学主办的的社会科学类综合性学术期刊,创刊于1999年,双月刊,面向国内外公开发行。《北京理工大学学报》(社会科学版)办刊宗旨是:以马克思列宁主义、毛泽东思想、邓小平理论和“三个代表”重要思想为指导,贯彻“百花齐放、百家争鸣”的方针,倡导实事求是、解放思想、大胆探索、开拓创新的学风,致力于繁荣中国社会科学研究,积极推进哲学社会科学各学科的建设与发展,促进对社会主义建设中所遇到的现实问题的研究与探索。本刊的服务对象主要是高等院校教师、研究生及其他研究机构的研究人员等。《北京理工大学学报》(社会科学版)涵盖哲学、人文科学、社会科学、管理科学,以及交叉学科、新兴学科等学科门类。主要栏目包括:文化遗产研究与保护、国防科技管理与国民经济动员、传播学研究、经济与管理、法学研究、高等教育与教学、文学·历史·哲学等。自2001年以来,本刊先后获得 “全国理工农医院校优秀社会科学学报”、“北京市高校优秀社会科学学报”、“全国高校社会科学学报质量进步奖”和“首届《中国学术期刊(光盘版)检索与评价数据规范》执行优秀期刊奖”。

上一篇:英国本土时尚杂志有哪些

下一篇:杂志半月刊代表什么数字