化学专业成教毕业论文参考题目一、教学法方向1.国外化学课程改革的历史及发展趋势研究2.我国化学课程改革的历史及发展趋势研究3.国外典型化学课程、教材的基本理念和内容体系研究4.我国化学新课标教材专题内容的横向比较研究5.我国高中化学新课标必修教材和选修教材的功能定位和内容体系研究6.我国高中化学新课标教材中各个栏目的教学价值、活动设计和教学策略研究7.科学探究的本质及科学探究教学的有效策略研究8.初、高中化学新课标教材的内容衔接研究9.化学实验教学的理论和实践研究10.化学教师的教学理念和教学行为研究11.试论化学教学的艺术12.化学基础理论的教学策略研究13.化学基本概念的教学策略研究14.元素化合物的教学策略研究15.高中化学课程资源的开发策略研究——以《某***节内容为例》16.教学反思与化学教师的专业成长17.有效探究教学设计初探——以《某***节内容为例》18.化学教学中的科学方法教育19.初、高中学生化学学习兴趣、动机的研究20.高一新生化学学习障碍的成因分析研究21.农村学生化学学习动机的调查研究22.论化学教材中插图的价值与使用策略23.化学教学中实施绿色化学教育的策略研究24.化学新课程教学中的问题与对策初探25.基于观念建构的化学基本概念教学策略——以《******》教学为例26.化学教师的教学理念与教学行为一致性程度研究27.先行组织者理论在化学教学中的应用研究28.科学探究中的科学本质教育29.化学教师的科学探究观调查研究30.有效实施科学探究的教学设计策略研究31.论化学探究性学习的评价性问题32.化学课堂教学逻辑设计的问题探讨33.新课程背景下教学设计中存在的问题与对策探讨34.新课程背景下高中化学教师教学行为的适应性研究35.论化学课堂提问的优化36.化学教师对模型的认识与应用研究37.合作学习在化学实验教学中的案例初探38.中学化学教学中的环境及可持续发展教育39.室内空气污染的来源,对人体健康的影响及防治对策研究40.试论光化学烟雾的形成条件、机理、危害及防治措施41.化学教学中开展研究性学习案例初探42.中学化学实验绿色化研究43.论高中化学章节间的结构联系44.污染中有机污染物的调查及处理45.试论多媒体教学手段在中学化学教学中的应用 自考课程免费试听46.试论我国的酸雨问题及防治对策47.化学学困生的成因及防治策略48.有效利用化学史的教学策略49.例谈教学中化学与其它学科的综合50.试论有效学习情境创设的有效策略 二、分析化学方向1.化学与食品安全2.化学与农药残留 3.化学与环境4.化学与现代农业5.化学与生命6.微量元素与人体健康 7.维生素与人体健康8.化学与能源和资源的利用9.浅谈在化学教学中绿色化学观念的渗透10.环境教育在中学教学中的意义11.溶液酸碱度的表示法----PH值的教学研究与设计12.浅谈化学定性分析实验在中学化学教学中的重要性13.如何增强化学定性分析实验的趣味性 三、物理化学方向1.各种体系的状态性质加和性的比较研究2.热力学公式导出条件与应用条件分析3.三相平衡线的热力学分析4.热力学标准态和标准热力学函数5.胶体分散系的稳定理论评述6.反应进度的概念及在物理化学中的应用7.根据热力学原理讨论浓度对化学平衡的影响8.中学化学教学中有关化学平衡原理的探讨9.中学化学教学中有关化学反应速率知识的探讨10.“化学反应原理”模块教学方法探讨11.新课标体系中《化学反应原理》模块知识解析——化学反应的方向和限度 四、结构化学方向1.利用一维势箱模型处理共轭体系2.波函数与电子云3.电子运动的宏观性与微观性4.电子结构与元素周期律5.第二周期双原子分子及其离子共价键结构比较6.几种典型分子化学键的比较与探讨7.有关氢键理论研究的现状及前景8.金属晶体的堆积型式与点阵型式9.离子晶体的堆积型式与点阵型式 五、有机化学方向1. 《化学必修2》模块中有机化合物知识内容变化及教学策略探究2. 高中课程标准选修模块《有机化学基础》教材内容建构3 近三年来新课标高考理综有机化学试题分析研究4. 在新课程中有机化学实验教学研究5. 有机化学实验教学中绿色化学教育的实践6.烷、烯或炔制备的改进(可选其中之一)7. 新课程理念下有机化学教学改革方式探索8.“苯、芳香烃"课堂教学探讨9.有机分子不饱和度的计算及在解题中的应用10.试论中学有机化合物的教学特点11.如何增加有机化学实验的趣味性12.有机实验在有机化学教学中的作用13.如何在“煤和石油”的教学中让学生了解我国的石化工业14.含氧有机化合物教学中结构与性质关系的探讨15.中学有机实验改进意见16.影响有机物水溶性因素的探讨17.有机物命名中常见的错误18.搞好有机化学复习的几点体会19.有机化合物的同分异构现象20.有机化合物的酸碱性及其结构因素21.中学有机化学教学中注重与实际联系的点滴做法
3 重要的化学概念教学的体会4 近三年中考学试题统计与分析化学教学中美育的探索6 浅谈对化学新课改的认识7 对一道试题的分析与讨论8 在化学教学中培养学生自学能力的探索9 浅谈化学作业的改革思路10 对中学化学实验课的再认识11 指导化学课外活动的体会12 讨论化学教师职后培训的途径13 中学生化学偏科的成因及指导14 化学教学中传统教学方法的利与弊15 深挖化学实验教学的教育功能16 学史在化学教学中的作用17 地区化学教师基本情况的调查分析18 浅谈中学化学教学中的绿色化学教育19 浅谈中学化学教师开展教学研究的重要性20 化学教学中如何培养学生探究学习能力21 新课程理念下的化学探究教学观22 化学探究教学与实验教学的辩证关系23 如何让探究教学不流于形式化学探究教学误区分析化学探究教学模式研究26 论高中化学新教材中知识框架的建构问题27 浅谈化学实验设计的创新与改进28 论化学教学中学生科学素养的培养29 论问题引导教学模式在化学教学中的应用30 论化学问题情境的创设与实施研究31 浅谈在化学实验教学中培养学生创新能力32 化学教学中培养学生创新精神和实践能力的研究33 中学化学教学与学生创新意识的培养34 论化学教材二次开发的实证研究35 在化学教学中激发学生问题意识的研究36 论中学化学教师应具备的教学机智37 论化学教学中研究性问题的提出和设计38 在化学教学中培养学生的思维能力39 基于问题式教学在化学教学中的应用40 新课程背景下化学课堂教学师生互动关系的研究41 论学生化学学习积极性的培养42 新课程背景下化学教师备课方式的转变43 新课程背景下化学教师教学设计的转变44 在化学教学中培养学生的哲学思想45 化学教育的目标及困难与对策46 在化学教学中进行化学安全素质培养的建议47 化学教育专业学生教学技能现状的调查与思考48 可持续发展理念下的中学化学教师教育49 体验新课程人教版化学必修模块中开放性作业50 义务教育化学教科书中化学史教育内容的选择与呈现51 《化学与技术》模块不同版本核心内容比较研究52 化学课堂上有效教学的提问策略53 小组学习在日常化学教学中有效实施的策略54 高中化学课程:模块学业评价体系的探索55 人教版高中化学新教科书中习题的理性认识56 高中化学新教材不同版本的编写特点分析57 化学教学中培养学生获取信息和处理信息的能力研究58 高中化学新课程教学中的学业评价59 论高中化学新教材教学内容的生成与使用60 新课标三种高中化学必修教材的编写特点分析61 新课程高中化学三种教材栏目设置比较62 新课程背景下农村初中化学实验室建设的探讨63 在中学化学教学中培养学生提问能力的实践研究64 高中新课标必修化学实验教材比较研究65 绿色化学概念及其在新教材中的体现66 化学教学中如何培养学生的问题意识67 我国目前中学化学实验研究述评68 化学概念研究角度的反思69 化学知识类型与学习方式选择的探讨70 化学教学评价的探索与实践71 新课程概念下化学学习档案袋评价的设计与实施探讨72 化学教材中的数据呈现方式及其教学功能73 农村初中化学新课程实施的影响因素分析74 案例教学法在化学教学中的应用75 化学教学中学生问题意识的培养76 中学生化学学习困难原因分析77 中学化学教学中的提问技能的探究78 多媒体网络技术在中学化学教学中的应用79 在化学实验教学中渗透环保教育80 中学化学实验探究式教学的研究81 对中学化学演示实验的探究82 初中化学课堂教学趣味性的浅析83 农村中学化学实验教学的思考84 绿色化实验在中学化学实验教学中的实践研究85 中学化学教学中学生阅读和自学能力的培养86 化学实验教学中如何培养学生的观察能力87 浅谈中学生化学学习兴趣的培养88 中学化学教学中的绿色化学89 化学演示实验的集中形式及其在教学中的作用90 化学教学中如何激发学生质疑
作为文史专业学生,选择《化学与社会》,在课程学习的过程中固然比理工科学生的难度要大得多,但是,难并不成为逃避的理由。选择学习《化学与社会》不仅有学习价值,而且对我们的生活,对今后的发展都大有裨益。一、从化学与专业学习的关系来看。虽然由于专业的原因,文史专业学生和理工专业学生对化学知识的需求已经大不相同。相比较而言,理工类学生无论是对化学知识的了解还是未来对该学科知识的需求,都要强于文史类学生,因而,理工科学生掌握、补充化学知识,尤其是与化学相关专业学生学习《化学与社会》是对自己专业知识的一个很好的补充和提高过程。文史类学生虽然对化学课已经比较陌生,但是,适当掌握一些化学知识,仍然不失为一种良好的学习态度和习惯。学习化学知识,不仅是对过去知识的重温,也是对现在专业知识的补充,多掌握一些生活必需的常识,无疑又是对生活质量起着不容忽视的提升作用。二、从化学与生活的关系来看:如果说人文和社会知识是从生活中提炼出的一种抽象的知识,那么,物理和化学知识作为自然科学中的重要组成部分,则是从生活中直接得到的常识,因而,其用之于生活的方面和领域更为广阔。掌握适当的物理和化学知识,不仅能帮助我们解释日常生活中的一些疑问,更能增加我们的生活常识,提高生活质量。例如肯得基的“苏丹红事件”便是化学知识运用于生活的很好明证——一个不懂化学的人,是断然不知道这件事的意义的。三、化学与政治学科的关系。政治学作为新兴学科,其学科前景和实用性固然不甚为人所知,但政治学科所研究的领域和意义却是不容被忽视的。政治学科主要研究人类精神文明发展的历史,以及从历史中结晶出的文化积淀。概而言之,政治学是以人的精神诉求为研究对象,并最终使人在精神领域达到更高的善的一门学科。因而,关注人的需求,指引人的发展,让人们在精神层面得到更好的发展是政治学科追求的目标之一。化学与日常生活息息相关,人类也曾利用自己掌握的化学知识让自己所处的社会历史时期前进了许多年。但同时,化学就如同一把双刃剑,化学对人类积极和消极的方面都毫不隐讳地存在着。而如何扬长避短,让化学发挥更好的作用为人类社会进步服务,是人类需要关注的一个话题。例如美国拥有当今世界上最多的科学家和最先进的科学技术,他们用化学科学制造出了核武器,然而却将化学创造出来的这个“厉害角色”用到了屠杀伊拉克平民的战斗中;日本人运用生物、化学技术制造出了生化武器,同样,这些武器也只是在屠杀中国平民的战斗中露出了其“助桀为虐”的不光彩面目。当然,这样的例子还有很多。我们需要指明的是,化学在发展的过程中固然有人才和技术提高的必要,但同样也需要正确的方向的指引,否则,只可能陷入“越发展越落后”境地。政治学科正有对人们进行劝诫,进行价值观教育的作用。因而,正确地运用化学与政治学的知识在使人类生活水平提高的意义上来说,虽然方式不同,但殊途同归。同时,化学实验的操作不当造成人类灾难的事例也不枚胜举。从广义上来讲,人类社会是一个整体,无论是物质文明,还是精神文明,无不是在一个整体中和谐共存和发展的,人类的任何社会活动都应该以与自然和谐共存,促进人类实质意义上的提高为目标的,因而,如何让化学服务于人类,真正做到以人为本,与自然和谐共存,树立科学发展观,是政治学科的重要任务,因此,从指引化学发展方向,使化学与社会和谐共存的角度来讲,化学与政治学科关系紧密。四、从化学与个人发展的关系来看信息时代,知识最为重要,无论是文盲,还是知识分子,在不断学习,充实、善自己知识结构的道路上,没有高低尊卑之分,作为社会精英的大学生,就更需要学习各方面知识,以充实自己,使自己成为各行业都能独当一面的人,无论是对自己的就业前景,还是对社会的贡献角度都大有裨益。因而,学习化学与社会,了解人类文明发展的历史,知晓文明之间的内部联系,促使人类文明不断向前发展,使科学发展在为人类福祉的不断增进的道路上发挥更大作用意义深远。我们要明白,“知识无止境,
有很多有,我知道的化学类的期刊都有很多,有机化学研究、物理化学进展、比较化学、分析化学进展等等
摘要:席位分配是日常生活中经常遇到的问题,对于企业、公司、、学校政府部门都能解决实际的问题。席位可以是代表大会、股东会议、公司企业员工大会、等的具体座位。假设说,有一个学校要召集开一个代表会议,席位只有20个,三个系总共200人,分别是甲系100,乙系60,丙系40.如果你是会议的策划人,你要合理的分配会议厅的20个座位,既要保证每个系部都有人参加,最关键的就是要对个公平都公平,保证三个系部对你所安排的位置没有异议。那么这个问题就要靠数学建模的方法来解决。关键词: Q值法 公平席位问题的重述:三个系部学生共200名,(甲系100.乙系60,丙系40)代表会议共20席,按比例分配三个系分别为10、6、4席。老情况变为下列情况怎样分配才是最公平的,现因学生转系三系人数为.(1) 问20席该如何分配。(2) 若增加21席又如何分配。问题的分析:一、通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即: 某单位席位分配数 = 某单位总人数比例′总席位 如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这样最初学生人数及学生代表席位为 系名 甲 乙 丙 总数 学生数 100 60 40 200 学生人数比例 100/200 60/200 40/200 席位分配 10 6 4 20学生转系情况,各系学生人数及学生代表席位变为 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 20 按惯例席位分配 10 6 4 20(1)20席应该甲系10席、乙系6席,丙系4席这样分配二、学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 21 按惯例席位分配 11 7 3 21这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。要怎样才能公平呢,这时就要用数学建模要解决。模型的建立:假设由两个单位公平分配席位的情况,设 单位 人数 席位数 每席代表人数单位A p1 n1 单位B p2 n2 要公平,应该有 = , 但这一般不成立。注意到等式不成立时有 若 > ,则说明单位A 吃亏(即对单位A不公平 ) 若 < ,则说明单位B 吃亏 (即对单位B不公平 )因此可以考虑用算式 来作为衡量分配不公平程度,不过此公式有不足之处(绝对数的特点),如:某两个单位的人数和席位为 n1 =n2 =10 , p1 =120, p2=100, 算得 p=2另两个单位的人数和席位为 n1 =n2 =10 , p1 =1020,p2=1000, 算得 p=2虽然在两种情况下都有p=2,但显然第二种情况比第一种公平。下面采用相对标准,对公式给予改进,定义席位分配的相对不公平标准公式:若 则称 为对A的相对不公平值, 记为 若 则称 为对B的相对不公平值 ,记为 由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。确定分配方案: 使用不公平值的大小来确定分配方案,不妨设 > ,即对单位A不公平,再分配一个席位时,关于 , 的关系可能有 1. > ,说明此一席给A后,对A还不公平;2. < ,说明此一席给A后,对B还不公平,不公平值为 3. > ,说明此一席给B后,对A不公平,不公平值为 4. < ,不可能 上面的分配方法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。用不公平值的公式来决定席位的分配,对于新的席位分配,若有 则增加的一席应给A ,反之应给B。对不等式 rB(n1+1,n2) 初中数学建模论文很简单的中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模 。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的这是某数学竞赛的建模论文要求,可以参考一下(一)、建模论文的标准组成部分建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力.一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成.现就每个部分做个简要的说明.1. 题目题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象.建议将论文所涉及的模型或所用的计算方式写入题目.如“用概率方法计算商场打折与返券的实惠效应”.2. 摘要摘要是论文中重要的组成部分.摘要应该使用简练的语言叙述论文的核心观点和主要思想.如果你有一些创新的地方,一定要在摘要中说明.进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%.”摘要应该最后书写.在论文的其他部分还没有完成之前,你不应该书写摘要.因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要.摘要一般分三个部分.用三句话表述整篇论文的中心.第一句,用什么模型,解决什么问题.第二句,通过怎样的思路来解决问题.第三句,最后结果怎么样.当然,对于低年级的同学,也可以不写摘要.3. 正文正文是论文的核心,也是最重要的组成部分.在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的.其中,提出问题、分析问题应该是清晰简短.而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确.在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升.4. 结论论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价.结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一.并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验.5. 参考资料在论文中,如果使用了其他人的资料.必须在论文后标明引用文章的作者、应用来源等信息.(二)、建模论文的写作步骤1. 确定题目选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目.最好是找一位或几位老师帮助安排研究课题.在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议.2. 开展科研课题去图书馆、互联网上查阅与课题相关的资料,观察有关的事件,收集与课题相关的信息.同时如果有条件的话,可以去拜访相关领域的专家和学者.然后将前期所收集到的资料与自己所学的相关知识组织在一起,进行论文的结构论证.完成这些工作后,你应该要制定一个课题时间安排表,这样能保证书写论文的循序渐进.记住在开始写论文后一定要不断地和老师、家长进行沟通,让老师和家长斧正论文中出现的明显错误,并能提出一些更好的研究建议.在论文写作结束以后,一定要得出结论.记住,在论文的结果出来后,有可能得出的结果与假设并不相符,这个并不重要,不要强行改变结果来迎合假设.只要你在论述过程中严格地按照科学方法进行,你的论文还是相当有价值的.最后,需要很好地写一份摘要.摘要的字数应该是论文字数的十分之一左右.3. 完成论文写作完整的论文在完成以上步骤之后就可以新鲜出炉了,完成论文后,一定要再看一遍自己的论文有没有错别字、计算错误、图形的移位或偏差等.最后,在论文的结尾处应该写上感谢的话,感谢帮助你完成这篇论文的所有人. 无忧在线有很多数学建模论文,你去搜一下就行 数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。 摘要:席位分配是日常生活中经常遇到的问题,对于企业、公司、、学校政府部门都能解决实际的问题。席位可以是代表大会、股东会议、公司企业员工大会、等的具体座位。假设说,有一个学校要召集开一个代表会议,席位只有20个,三个系总共200人,分别是甲系100,乙系60,丙系40.如果你是会议的策划人,你要合理的分配会议厅的20个座位,既要保证每个系部都有人参加,最关键的就是要对个公平都公平,保证三个系部对你所安排的位置没有异议。那么这个问题就要靠数学建模的方法来解决。关键词: Q值法 公平席位问题的重述:三个系部学生共200名,(甲系100.乙系60,丙系40)代表会议共20席,按比例分配三个系分别为10、6、4席。老情况变为下列情况怎样分配才是最公平的,现因学生转系三系人数为.(1) 问20席该如何分配。(2) 若增加21席又如何分配。问题的分析:一、通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即: 某单位席位分配数 = 某单位总人数比例′总席位 如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这样最初学生人数及学生代表席位为 系名 甲 乙 丙 总数 学生数 100 60 40 200 学生人数比例 100/200 60/200 40/200 席位分配 10 6 4 20学生转系情况,各系学生人数及学生代表席位变为 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 20 按惯例席位分配 10 6 4 20(1)20席应该甲系10席、乙系6席,丙系4席这样分配二、学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 21 按惯例席位分配 11 7 3 21这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。要怎样才能公平呢,这时就要用数学建模要解决。模型的建立:假设由两个单位公平分配席位的情况,设 单位 人数 席位数 每席代表人数单位A p1 n1 单位B p2 n2 要公平,应该有 = , 但这一般不成立。注意到等式不成立时有 若 > ,则说明单位A 吃亏(即对单位A不公平 ) 若 < ,则说明单位B 吃亏 (即对单位B不公平 )因此可以考虑用算式 来作为衡量分配不公平程度,不过此公式有不足之处(绝对数的特点),如:某两个单位的人数和席位为 n1 =n2 =10 , p1 =120, p2=100, 算得 p=2另两个单位的人数和席位为 n1 =n2 =10 , p1 =1020,p2=1000, 算得 p=2虽然在两种情况下都有p=2,但显然第二种情况比第一种公平。下面采用相对标准,对公式给予改进,定义席位分配的相对不公平标准公式:若 则称 为对A的相对不公平值, 记为 若 则称 为对B的相对不公平值 ,记为 由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。确定分配方案: 使用不公平值的大小来确定分配方案,不妨设 > ,即对单位A不公平,再分配一个席位时,关于 , 的关系可能有 1. > ,说明此一席给A后,对A还不公平;2. < ,说明此一席给A后,对B还不公平,不公平值为 3. > ,说明此一席给B后,对A不公平,不公平值为 4. < ,不可能 上面的分配方法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。用不公平值的公式来决定席位的分配,对于新的席位分配,若有 则增加的一席应给A ,反之应给B。对不等式 rB(n1+1,n2) 初中数学建模论文很简单的中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模 。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的这是某数学竞赛的建模论文要求,可以参考一下(一)、建模论文的标准组成部分建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力.一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成.现就每个部分做个简要的说明.1. 题目题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象.建议将论文所涉及的模型或所用的计算方式写入题目.如“用概率方法计算商场打折与返券的实惠效应”.2. 摘要摘要是论文中重要的组成部分.摘要应该使用简练的语言叙述论文的核心观点和主要思想.如果你有一些创新的地方,一定要在摘要中说明.进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%.”摘要应该最后书写.在论文的其他部分还没有完成之前,你不应该书写摘要.因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要.摘要一般分三个部分.用三句话表述整篇论文的中心.第一句,用什么模型,解决什么问题.第二句,通过怎样的思路来解决问题.第三句,最后结果怎么样.当然,对于低年级的同学,也可以不写摘要.3. 正文正文是论文的核心,也是最重要的组成部分.在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的.其中,提出问题、分析问题应该是清晰简短.而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确.在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升.4. 结论论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价.结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一.并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验.5. 参考资料在论文中,如果使用了其他人的资料.必须在论文后标明引用文章的作者、应用来源等信息.(二)、建模论文的写作步骤1. 确定题目选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目.最好是找一位或几位老师帮助安排研究课题.在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议.2. 开展科研课题去图书馆、互联网上查阅与课题相关的资料,观察有关的事件,收集与课题相关的信息.同时如果有条件的话,可以去拜访相关领域的专家和学者.然后将前期所收集到的资料与自己所学的相关知识组织在一起,进行论文的结构论证.完成这些工作后,你应该要制定一个课题时间安排表,这样能保证书写论文的循序渐进.记住在开始写论文后一定要不断地和老师、家长进行沟通,让老师和家长斧正论文中出现的明显错误,并能提出一些更好的研究建议.在论文写作结束以后,一定要得出结论.记住,在论文的结果出来后,有可能得出的结果与假设并不相符,这个并不重要,不要强行改变结果来迎合假设.只要你在论述过程中严格地按照科学方法进行,你的论文还是相当有价值的.最后,需要很好地写一份摘要.摘要的字数应该是论文字数的十分之一左右.3. 完成论文写作完整的论文在完成以上步骤之后就可以新鲜出炉了,完成论文后,一定要再看一遍自己的论文有没有错别字、计算错误、图形的移位或偏差等.最后,在论文的结尾处应该写上感谢的话,感谢帮助你完成这篇论文的所有人. 去买一本中学数学建模教与学好了 随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视, 数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。 大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。 一、数学建模的含义及特点 数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。 1.准备阶段 主要分析问题背景,已知条件,建模目的等问题。 2.假设阶段 做出科学合理的假设,既能简化问题,又能抓住问题的本质。 3.建立阶段 从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。 4.求解阶段 对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。 5.验证阶段 用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。 二、加强数学建模教育的作用和意义 (一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质 数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。 (二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力 数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。 (三)加强数学建模教育有助于培养学生的创造性思维和创新能力 所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。 很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2]. (四)加强数学建模教育有助于提高学生科技论文的撰写能力 数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。 (五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3]. 三、开展数学建模教育及活动的具体途径和有效方法 (一)开展数学建模课堂教学 即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节: 案例的选取和课堂教学的组织。 教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。 1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。 2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。 3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。 案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4]. (二)开展数模竞赛的专题培训指导工作 建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。 (三)建立数学建模网络课程 以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6] (四)开展校内数学建模竞赛活动 完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。 如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。 (五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛 全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。 四、结束语 数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。 参考文献: [1]辞海[M].上海辞书出版社,2002,1:237. [2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42. [3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83. [4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230. [5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142. [6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77. 大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。 对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。 一、数学建模的概念 想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。 二、在小学数学教学中运用数学建模的策略 1.根据事物之间的共性进行数学建模 想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。 教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。 2.认识建模思想的本质 建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。 建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。 3.发挥教材在数学建模上的作用 教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。 数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。 1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。 2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。 3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。 4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。 Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。 5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。 6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。 7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。 8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。 9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。 10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。 数学建模全国优秀论文相关 文章 : ★ 数学建模全国优秀论文范文 ★ 2017年全国数学建模大赛获奖优秀论文 ★ 数学建模竞赛获奖论文范文 ★ 小学数学建模的优秀论文范文 ★ 初中数学建模论文范文 ★ 学习数学建模心得体会3篇 ★ 数学建模论文优秀范文 ★ 大学生数学建模论文范文(2) ★ 数学建模获奖论文模板范文 ★ 大学生数学建模论文范文 随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视, 数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。 大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。 一、数学建模的含义及特点 数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。 1.准备阶段 主要分析问题背景,已知条件,建模目的等问题。 2.假设阶段 做出科学合理的假设,既能简化问题,又能抓住问题的本质。 3.建立阶段 从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。 4.求解阶段 对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。 5.验证阶段 用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。 二、加强数学建模教育的作用和意义 (一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质 数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。 (二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力 数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。 (三)加强数学建模教育有助于培养学生的创造性思维和创新能力 所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。 很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2]. (四)加强数学建模教育有助于提高学生科技论文的撰写能力 数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。 (五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3]. 三、开展数学建模教育及活动的具体途径和有效方法 (一)开展数学建模课堂教学 即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节: 案例的选取和课堂教学的组织。 教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。 1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。 2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。 3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。 案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4]. (二)开展数模竞赛的专题培训指导工作 建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。 (三)建立数学建模网络课程 以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6] (四)开展校内数学建模竞赛活动 完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。 如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。 (五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛 全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。 四、结束语 数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。 参考文献: [1]辞海[M].上海辞书出版社,2002,1:237. [2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42. [3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83. [4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230. [5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142. [6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77. 大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。 对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。 一、数学建模的概念 想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。 二、在小学数学教学中运用数学建模的策略 1.根据事物之间的共性进行数学建模 想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。 教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。 2.认识建模思想的本质 建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。 建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。 3.发挥教材在数学建模上的作用 教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。 数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。 1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。 2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。 3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。 4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。 Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。 5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。 6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。 7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。 8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。 9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。 10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。 数学建模全国优秀论文相关 文章 : ★ 数学建模全国优秀论文范文 ★ 2017年全国数学建模大赛获奖优秀论文 ★ 数学建模竞赛获奖论文范文 ★ 小学数学建模的优秀论文范文 ★ 初中数学建模论文范文 ★ 学习数学建模心得体会3篇 ★ 数学建模论文优秀范文 ★ 大学生数学建模论文范文(2) ★ 数学建模获奖论文模板范文 ★ 大学生数学建模论文范文 一、 问题重述最近国务院《促进中部地区崛起规划》的发布了,对中部地区经济持续、稳定增长将是一个契机,必将促进中部崛起新跨越。但是,中部六省的经济发展不平衡,请对中部六省:山西、安徽、江西、河南、湖南、湖北的经济发展状况进行综合评价排序。三、 基本假设和符号说明四、 模型的建立与求解建立一个经济评价体系的首要任务是找到能够比较全面反映实质的评价指标。我们选定了10个指标,涉及到经济与社会稳定两个领域。单纯的地区生产总值和财政总收入并不能完全代表一个地区的经济情况,居民的人均可支配收入和居民消费价格指数属于社会生活类,同样可以窥探出这个地区的经济发展状况。还有社会固定资产投资、经济增长率等,都应该是一个地区经济发展状况的重要评定指标。表格一是在各个省的统计局网站搜集整理数据,为08年初到08年末一整年的经济情况。选定的10个经济指标直接见表格一。评价指标(万元)山西安徽江西河南湖南湖北地区生产总值经济增长率(按可比价格) 社会消费品零售总额社会固定资产投资城乡居民储蓄存款余额进出口总额(亿美元)财政总收入(亿元)规模以上工业增加值城镇居民人均可支配收入居民消费价格总指数表格一、数据标准无量纲化处理数据标准化无量纲处理的目的是消除原始数据单位的影响。从表格一我们可以发现,数据间单位有万元、亿元、亿美元和百分数,地区生产总值和经济增长率之间的数据根本不具可比性,显然不能直接用来计算。标准化处理后每个指标所对应的一行数据其标准差都为1,原始数据的量纲影响被消除,数据可用。标准化处理的公式为: 公式一处理后数据见表格二山西安徽江西河南湖南湖北地区生产总值 经济增长率(按可比价格) 社会消费品零售总额 社会固定资产投资 城乡居民储蓄存款余额 进出口总额(亿美元) 财政总收入(亿元) 规模以上工业增加值 城镇居民人均可支配收入 居民消费价格总指数 表格二、层次分析模型建立与计算过程1、建立层次结构图经济发展状况地区生产总值经济增长率(按可比价格)社会消费品零售总额社会固定资产投资城乡居民储蓄存款余额进出口总额财政总收入规模以上工业增加值城镇居民人均可支配收入居民消费价格总指数注:第一层综合经济发展状况为目标层。第二层为准则层,10个经济指标以不同权重衡量总经济状况。2、构造成对比较矩阵注: 代表指标 与指标 在总经济评价中重要性之比。矩阵中数字都为1-9的数字或其倒数,因为在进行主观定性成对比较时,人们头脑中通常有5种明显的等级,用1-9尺度可以方便的表示如下尺度 含义135792,4,6,81,1/2,...1/9与 的影响相同比 的影响稍强比 的影响强比 的影响明显的强比 的影响绝对的强与 的影响之比在上述两个相邻等级之间与 的影响之比为上面 的互反数例如 代表 地区生产总值比 社会消费品零售总额在总经济衡量中影响强。2、做一致性检验并计算权重成对比较阵A并不是一致阵,但如果其不一致程度在允许的范围内,其对应于特征根 的特征向量可以作为被比较因素的权向量。定义 公式二为一致性指标。当 时矩阵为一致阵,一致性指标 等于0; 越大矩阵的不一致程度越严重。为了确定A的不一致程度的容许范围,需要找出衡量A的一致性指标 的标准。为此引进随机一致性指标 , 的具体数值见下表1 2 3 4 5 6 7 8 9 10 110 0 定义一致性比率 公式三当 时认为A的不一致程度在容许范围之内,可用其特征向量作为权向量。在MATLAB上运行,程序见附件一,得到矩阵A的最大特征根 对应于此特征根的特征向量为 将 代入公式二、三中计算,一致性检验通过,对应于最大特征根的特征向量可以作为权向量,不过还应该进行归一化处理,因为所有指标的权值相加应为1.归一化处理后得到向量,即对应为各个指标的权值。、灰色关联分析模型与计算过程1、确定比较数列与参考数列(数据使用经过标准化处理的表格二)选取每个指标的最大值为参考数列,每个指标的实际值为比较数列。令 比较数列为: 参考数列为: 在表格二上找出每行的最大值,即得到参考数列为:其中 分别代表10个指标, 代表六个被比较省份2、计算灰色关联系数灰色关联系数的定义为公式四式四中: 是比较数列 与参考数列 在第 个评价指标上的相对差值是分辨率,在此取比较常用的 在EXCEL上分布使用公式,拆分进行计算后,得到各个省在10个指标上的灰色关联系数,见表格三山西安徽江西河南湖南湖北地区生产总值 经济增长率(按可比价格) 社会消费品零售总额 社会固定资产投资 城乡居民储蓄存款余额 进出口总额(亿美元) 财政总收入(亿元) 规模以上工业增加值 城镇居民人均可支配收入 居民消费价格总指数 表格三3、计算灰色关联度考虑到各个指标的权重问题,计算灰色加权关联度,公式为:式五在层次分析模型建立中,已经得到各个指标的权重值 在EXCEL上进行乘法、求和运算,得到六个省的灰色关联度见表格四山西安徽江西河南湖南湖北灰色加权关联度 排名1 5 6 3 4 2 表格四至此得到最终中部六省经济发展情况排行榜。山西第一江西最末,中依次是湖北、河南、湖南、安徽。 数学建模论文格式模板以及要求 导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读! (一)论文形式:科学论文 科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。 注意:它不是感想,也不是调查报告。 (二)论文选题:新颖,有意义,力所能及。 要求: 有背景. 应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。 有价值 有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。 有基础 对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。 有特色 思路创新,有别于传统研究的新思路; 方法创新,针对具体问题的特点,对传统方法的改进和创新; 结果创新,要有新的,更深层次的结果。 问题可行 适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。 (三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确 要求: 数据真实可靠,不是编的数学题目; 数据分析合理,采用分析方法得当。 (四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。 要求: 抽象化简适中,太强,太弱都不好; 抽象出的数学问题,参数选择源于实际,变量意义明确; 数学推理严格,计算准确无误,得出结论; 将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见; 问题和方法的进一步推广和展望。 (五)(数学理论问题)问题的研究现状和研究意义:了解透彻 要求: 对问题了解足够清楚,其中指导教师的作用不容忽视; 问题解答推理严禁,计算无误; 突出研究的特色和价值。 (六)论文格式:符合规范,内容齐全,排版美观 1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。 要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。 2. 摘要:全文主要内容的简短陈述。 要求: 1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果; 2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字; 3)不要举例,不要讲过程,不用图表,不做自我评价。 3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。 要求:数量不要多,以3-5各为宜,不要过于生僻。 (七). 正文 1)前言: 问题的背景:问题的来源; 提出问题:需要研究的内容及其意义; 文献综述:国内外有关研究现状的回顾和存在的问题; 概括介绍论文的内容,问题的结论和所使用的方法。 2)主体: (数学应用问题)数学模型的组建、分析、检验和应用等。 (数学理论问题)推理论证,得出结论等。 3)讨论: 解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。 要求: 1)背景介绍清楚,问题提出自然; 2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误; 3)突出所研究问题的难点和意义。 5. 参考文献: 是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。 要求: 1)文献目录必须规范标注; 2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。 (七)数学建模论文模板 1. 论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。 一、 问题的重述 数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。 此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。 这部分的内容是将原问题进行整理,将已知和问题明确化即可。 注意:在写这部分的内容时,绝对不可照抄原题! 应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。 二、 模型假设 作假设时需要注意的问题: ①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设! ②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述! ③与题目无关的假设,就不必在此写出了。 三、 变量说明 为了使读者能更充分的理解你所做的工作, 对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意: ①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。 ②要与数学中的习惯相符,不要使用程序中变量的写法 比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量 再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2) 四、模型的建立与求解 这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有: ①一定要有分析,而且分析应在所建立模型的前面; ②一定要有明确的模型,不要让别人在你的文章 中去找你的模型; ③关系式一定要明确;思路要清晰,易读易懂。 ④建模与求解一定要截然分开; ⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤; ⑥结果必须放在这一部分的结果中,不能放在附录里。 ⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果! ⑧程序不能代替求解过程和结果! ⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中! ⑩每个问题和问题之间以及5个小点之间都必须空一行。 问题一: 1.建模思路: ①对问题的详尽分析; ②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味 ③完成内容阐述所必需的公式推导、图表等 2.模型建立: 建立模型并对模型作出必要的解释 对于你所建立的模型,最好能对其中的每个式子都给出文字解释。 3.求解方法: 给出你的求解思路,最好能想写算法一样,写出你的算法。 4.求解结果: 你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。 结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。 5.模型的分析与检验 在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括: ①这个结果说明了什么问题? ②是否达到了建模目的? ③模型的适用范围怎样? ④模型的稳定性与可靠性如何? 问题二: 问题三: 问题四: 问题五: 五、模型的评价与推广 这一部分应包括: ①你的模型完成了什么工作?达到了什么目的?得出了什么规律? ②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途? ③模型中有何不足之处?有何改进建议? ④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。 这一部分一定要有! 六、参考文献 引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中 书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日)。 七、附录 不便于编入正文的资料都收集在这里。 应包括: ①某一问题的详细证明或求解过程; ②流程图; ③计算机源程序及结果; ④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。 免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。 初中数学建模论文很简单的中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模 。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的这是某数学竞赛的建模论文要求,可以参考一下(一)、建模论文的标准组成部分建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力.一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成.现就每个部分做个简要的说明.1. 题目题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象.建议将论文所涉及的模型或所用的计算方式写入题目.如“用概率方法计算商场打折与返券的实惠效应”.2. 摘要摘要是论文中重要的组成部分.摘要应该使用简练的语言叙述论文的核心观点和主要思想.如果你有一些创新的地方,一定要在摘要中说明.进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%.”摘要应该最后书写.在论文的其他部分还没有完成之前,你不应该书写摘要.因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要.摘要一般分三个部分.用三句话表述整篇论文的中心.第一句,用什么模型,解决什么问题.第二句,通过怎样的思路来解决问题.第三句,最后结果怎么样.当然,对于低年级的同学,也可以不写摘要.3. 正文正文是论文的核心,也是最重要的组成部分.在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的.其中,提出问题、分析问题应该是清晰简短.而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确.在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升.4. 结论论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价.结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一.并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验.5. 参考资料在论文中,如果使用了其他人的资料.必须在论文后标明引用文章的作者、应用来源等信息.(二)、建模论文的写作步骤1. 确定题目选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目.最好是找一位或几位老师帮助安排研究课题.在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议.2. 开展科研课题去图书馆、互联网上查阅与课题相关的资料,观察有关的事件,收集与课题相关的信息.同时如果有条件的话,可以去拜访相关领域的专家和学者.然后将前期所收集到的资料与自己所学的相关知识组织在一起,进行论文的结构论证.完成这些工作后,你应该要制定一个课题时间安排表,这样能保证书写论文的循序渐进.记住在开始写论文后一定要不断地和老师、家长进行沟通,让老师和家长斧正论文中出现的明显错误,并能提出一些更好的研究建议.在论文写作结束以后,一定要得出结论.记住,在论文的结果出来后,有可能得出的结果与假设并不相符,这个并不重要,不要强行改变结果来迎合假设.只要你在论述过程中严格地按照科学方法进行,你的论文还是相当有价值的.最后,需要很好地写一份摘要.摘要的字数应该是论文字数的十分之一左右.3. 完成论文写作完整的论文在完成以上步骤之后就可以新鲜出炉了,完成论文后,一定要再看一遍自己的论文有没有错别字、计算错误、图形的移位或偏差等.最后,在论文的结尾处应该写上感谢的话,感谢帮助你完成这篇论文的所有人. 1. 如何运用化学史培养学生的创新精神和科学态度2. 化学史在中学化学教学中的作用5. 怎样看待化学家的作用7. 现代美国化学研究领先地位的确立及其原因8. 信息时代的化学教育前景11. 论中学历史教材中应增加科学史的份量的必要性12. 化学史在学生素质教育中的作用15. 提高学生学习化学的兴趣16. 略论在化学教学中如何积极开展探究式教学18. 略论非智力因素在化学教学中的作用19. 如何运用化学实验发展学生能力20. 浅谈化学教学中创新意识的培养22. 网络环境下的化学教学实践及思考23. 浅谈数学知识在化学教学和学习中的应用24. 化学实验教学与学生创新能力培养的探索26. 利用化学实验对学生创新精神和实验能力的测量与评价研究30. 计算机辅助教学在化学创新教育中的作用31. 课堂“引导探究”教学模式32. 论中学化学新教材的特点及教法33. 优化课堂设计培养学生的创新素质37. 中学化学实验教学改革初探40. 浅谈中学化学计算题中数学知识的应用43. 应试教育和素质教育在中学教育中的作用和地位分析44. 中学生的早恋调查及分析45. 中学厌学的家庭、社会原因分析46. 义务教育阶段对辍学生的对策研究47. 中学化学教学中如何培养学生化学48. 如何提高中学生化学实验的动手能49. “研究性学习”在化学教育中的实践50. 农村沼气的开发利用研究 初中化学论文范文一(1)。题目:提高化学实验教学效率彰显初中化学学科之价值。摘要:初中化学实验教学是学生化学学习的重要组成部分,更是学生将化学学习联系日常生活的关键,为此,我们教师应当采用行之有效的教学方法,合理有效地统筹实验教学的时间与手段,激发学生自身的学习兴趣,让初中化学的教学能够得到顺利进行,实验的过程和结论能够有效地激发学生的学习兴趣与求知欲望,让学生们能够更加深入地分析问题、理解问题并解决自己在化学学习中遇到的问题,达到事半功倍的效果。关键词:初中化学:实验教学;化学学习。化学是一 门 以 实 验 为 主 的 学 科,借 助 实 验 教 学 既 能突出学科特点,又能 培 养 学 生 的 化 学 学 科 素 养。在 实 验中也利于培养学 生 的 细 心 观 察 能 力,通 过 实 验 渗 透 严 谨方法,更利于培养学生的化学求真素质。基于此,文章将围绕课中开展趣味实验,将化学知识具体化,通过日常生活现象,培养学生探索精神,引导学生自主探究体现实验活动情景,培养学生独立思考问题的能力,注重实验操作的准确性等展开研究,旨在激发学生的探究兴趣,提高化学实验的教学效率。一、课中开展趣味实验,将化学知识具体化。“化学是实验的科学,只有实验才是最高法庭。”实验是初中化学教学中一座不可或缺的将理论与实践相连的桥梁,做好初中化学实验教学工作为学生学好化学铺平道路。初中化学的教学内容相对来说比较多,而且自身就具有知识点分散与易混淆的特性,我们很多学生之所以学不好化学,其中一个最主要的原因就是化学知识相对抽象与难懂,不利于学生们的记忆与理解。如对于很多化学反应现象与原理,教师仅仅进行讲授式的教学,对相关知识点不进行深入展开,那么肯定不会得到良好的教学成效,而且还会让学生对化学知识产生厌烦感。故此,在日常的教学中有必要加强对趣味性实验的相关应用,通过将复杂难懂的知识具象化来降低学生的学习难度,从而获得良好的教学效果。只有这样才会综合提高学生的学习基本理论和实验能力。二、通过日常生活现象,培养学生探索精神。选择日常生活中的一些实际案例引入到化学实验中,在学生已有的知识和生活经验的基础上去引导他们观察实验现象,激发实验兴趣,培养学生利用化学知识解决实际问题。例如,在分析“溶液”章节时,引导学生一起联系生活中的蔬菜,比如“马铃薯在水中洗”形成悬浊液,使用肥皂洗油迹形成乳浊液等。在做“鸡蛋壳的成分与性质研究”的实验时,也可用鸡蛋进行探究实验活动,通过实验验证鸡蛋壳的主要成分是碳酸钙。将洗净的鸡蛋壳研碎,分别放入甲和乙试管中,分别向甲和乙试管中加入蒸馏水和稀盐酸,再用两只气球分别套在试管口,观察实验现象,促进学生更好地理解和掌握化学知识,更利于教师对学生进行指导,进而获得理想的实验教学效果。三、引导学生自主探究体现实验活动情景。实验的有效开展能帮助学生认识并理解科学的发现过程,培养创造性思维,结合化学内容,教师可以多创设实验引导学生自主探究。例如,在教学“二氧化碳制取的研究与实践”时,先引导学生对比分析氧气与氢气的制取装置,当理清楚设计气体制取装置的思路后,根据二氧化碳的反应原理,指导学生自主设计,动手操作,待组装完毕后召开“设计装置展示会”,再由各组推荐成员介绍其装置的优点,最后师生共同评价。自主探讨利于激发学生的创造性思维。学生在自主探究时教师也要多提出一些他们感兴趣的问题,多创造一些学生动手操作的机会,让他们在手脑并用的实践中迸发出创造的火花来。四、培养学生独立思考问题的能力,注重实验操作的准确性化学实验过程相对复杂,在实验过程中要引导学生独立思考,在条件允许的情况下,让学生独自进行实验操。例如,在“FeCl3”中加入铁粉,观察溶液的颜色变化,当学生完成观察后,提问让学生思考,验证相关的化学方程式。在进行镁、铝、铁、氢气在空气中燃烧的实验中,要时刻提醒学生注意相关事项,这样能保证实验的安全性和准确性。鼓励学生多操作,在操作中去感受化学,以此来培养学生独立思考问题的能力,提高学生的综合能力。综上所述,实验作为整个初中化学教学中不可或缺的一部分,既要给予足够重视,还要对其进行改革和创新。作为教师,要积极进行教学改革与创新,进一步加强实验教学、制定明确的实验目标,引导学生积极参与其中,在实验中培养学生科学求真,严谨的精神,以此促进初中生化学素养的提升,促进学生更好地理解和掌握化学知识,为学生的德、智、体、美全面发展做好铺垫。参考文献:[1]雷宇,张文华,彭慧。“中学化学实验研究”课程教学模式研究---渗透微格教学原理的探究教学模式[J].化学教育,2012(7)。[2]杨明生,关强。中学化学实验教学研究的现状分析报告[J].化学教育,2012(1)。[3]王春。化学新课程教学中实施绿色化学教育的策略探讨[J].化学教学,2009(7)。[4]周志雄。初中化学实验教学中学生实践能力的培养[J].读与写:教育教学刊,2008(7)。[5]闫芳,郝轶鸣。新课标下加强初中化学实验教学的若干想法[J].山西广播电视大学学报,2011(3):50-51. 可以看看(分析化学进展、有机化学研究)这类刊物上课题,汉斯的OA期刊,找下你的灵感 当你清晨匆匆煮鸡蛋时,因为着急而将火开得大了点,你会发现在煮的过程中蛋壳出现了裂缝。为什么会这样呢?原来,在鸡蛋的一头有个空洞,鸡蛋被加热时,空洞里的空气就会膨胀。如果加热得太快,膨胀的空气来不及通过多孔的蛋壳跑出去,蛋壳就会开裂。为了防止出现这种情况,有经验的厨师会建议在煮蛋的时候要用冷水小火慢慢地煮。如果鸡蛋煮的时间过长,你还会发现在蛋黄的表面呈现灰绿色,这是因为化学反应产生了一种叫做硫化铁的化合物。鸡蛋含有铁元素和蛋白质,长时间高温加热会使蛋白质中含硫的氨基酸分解,产生硫化氢,蛋黄中的铁质与硫化氢发生反应,生成对人体无害的硫化铁。煮沸的水如果从锅里溢出来,接触到煤气灶上的火焰,蓝色的火苗就变成黄色。煤气火焰的变色一方面表明了水让火焰的温度降低了,另外也表明水中含有钠离子,黄色火焰是氯化钠中的钠原子被加热后出现的现象,这种现象在化学上被称为“焰色反应”。我们的饮用水中一般溶解了许多盐类化合物,其中的钙离子、镁离子等没有“焰色反应”现象出现。溢出水在灶台干后会出现一些白色的物质,也证明了水中有盐类化合物。我们制作面包、蛋糕或者松饼的时候,先要用发酵粉让面团发酵。为什么发酵粉会让面团变得松软呢?发酵粉的化学名称叫碳酸氢钠,它受热会分解,产生大量二氧化碳气体,使得面团膨胀起来,做出来的食品就会变得松软。碳酸氢钠还可以用在小型灭火器中用来扑灭火灾。在一些燃烧温度很高的火灾中,它被分解后产生二氧化碳气体,二氧化碳不会助燃,又比空气重,可覆盖在可燃物周围,因此可以用来阻断可燃物与空气的接触,火自然就熄灭了。不含酒精的软饮料也含有各种各样的化学物质,不同成分的化学物质可以使饮料有着不同的颜色和不同的口味。有些生产商在广告上声称自己生产的碳酸饮料不会增加人体对糖类的过分摄入,不会让人发胖,因为他们所使用的甜味剂是从蔗糖中提炼出来的。为什么蔗糖会让人发胖,而从它里面提炼出来的甜味剂却不会呢?如果人体摄入过量可吸收的糖分,就不能被人体及时转化成新陈代谢所需的能量,一部分糖就转变成脂肪储存在体内,食用了过量糖分的人就会发胖。而那种从蔗糖中提炼出来的甜味剂虽然可以让人感觉到甜味,却不能被人体消化吸收,而是被肠胃当作废物排泄到了体外,因此它就不会让人发胖。初中数学建模论文模板
初中建模论文模板
初中化学教研论文题目