19世纪初,由于蒸汽机的进一步发展,迫切需要研究热和功的关系,对蒸汽机“出力”作出理论上的分析。所以热与机械功的相互转化得到了广泛的研究。埃瓦特(Peter Ewart,1767—1842)对煤的燃烧所产生的热量和由此提供的“机械动力”之间的关系作了研究,建立了定量联系。丹麦工程师和物理学家柯尔丁(,1815—1888)对热、功之间的关系也作过研究。他从事过摩擦生热的实验,1843年丹麦皇家科学院对他的论文签署了如下的批语 “柯尔丁的这篇论文的主要思想是由于摩擦、阻力、压力等造成的机械作用的损失,引起了物体内部的如热、电以及类似的动作,它们皆与损失的力成正比。”俄国的赫斯(,1802—1850)在更早就从化学的研究得到了能量转化与守恒的思想。他原是瑞士人,3岁时到俄国,当过医生,在彼得堡执教,他以热化学研究著称。1836年赫斯向彼得堡科学院报告:“经过连续的研究,我确信,不管用什么方式完成化合,由此发出的热总是恒定的,这个原理是如此之明显,以至于如果我不认为已经被证明,也可以不加思索就认为它是一条公理。”于1840年3月27日在一次科学院演讲中提出了一个普遍的表述:“当组成任何一种化学化合物时,往往会同时放出热量,这热量不取决于化合是直接进行还是经过几道反应间接进行。”以后他把这条定律广泛应用于他的热化学研究中。赫斯的这一发现第一次反映了热力学第一定律的基本原理;热和功的总量与过程途径无关,只决定于体系的始末状态。体现了系统的内能的基本性质——与过程无关。赫斯的定律不仅反映守恒的思想,也包括了“力”的转变思想。至此,能量转化与守恒定律已初步形成。其实法国工程师萨迪·卡诺(Sadi Carnot,1796—1832)早在1830年就已确立了功热相当的思想,他在笔记中写道:“热不是别的什么东西,而是动力,或者可以说,它是改变了形式的运动,它是(物体中粒子的)一种运动(的形式)。当物体的粒子的动力消失时,必定同时有热产生,其量与粒子消失的动力精确地成正比。相反地,如果热损失了,必定有动力产生。”“因此人们可以得出一个普遍命题:在自然界中存在的动力,在量上是不变的。准确地说,它既不会创生也不会消灭;实际上,它只改变了它的形式。”卡诺未作推导而基本上正确地给出了热功当量的数值:370千克米/千卡。由于卡诺过早地死去,他的弟弟虽看过他的遗稿,却不理解这一原理的意义,直到1878年,才公开发表了这部遗稿。这时,热力学第一定律早已建立了。对能量转化与守恒定律作出明确叙述的,首先要提到三位科学家。他们是德国的迈尔(RobertMayer,1814—1878)、赫姆霍兹(Hermann von Helmholtz,1821—1894)和英国的焦耳。迈尔的实验迈尔是一位医生。在一次驶往印度尼西亚的航行中 ,迈尔作为随船医生,在给生病的船员放血时,得到了重要启示,发现静脉血不像生活在温带国家中的人那样颜色暗淡,而是像动脉血那样新鲜。当地医生告诉他,这种现象在辽阔的热带地区是到处可见的。他还听到海员们说,暴风雨时海水比较热。这些现象引起了迈尔的沉思。他想到,食物中含有化学能,它像机械能一样可以转化为热。在热带高温情况下,机体只需要吸收食物中较少的热量,所以机体中食物的燃烧过程减弱了,因此静脉血中留下了较多的氧。他已认识到生物体内能量的输入和输出是平衡的。迈尔在1842年发表的题为《热的力学的几点说明》中,宣布了热和机械能的相当性和可转换性,他的推理如下 :“力是原因:因此,我们可以全面运用这样一条原则来看待它们,即‘因等于果’。设因c有果e,则c=e;反之,设e为另一果f之因,则有e=f等等,c=e=f=…=c在一串因果之中,某一项或某一项的某一部分绝不会化为乌有,这从方程式的性质就可明显看出。这是所有原因的第一个特性,我们称之为不灭性。”接着迈尔用反证法,证明守恒性(不灭性):“如果给定的原因c产生了等于其自身的结果e,则此行为必将停止;c变为e;若在产生e后,c仍保留全部或一部分,则必有进一步的结果,相当于留下的原因c的全部结果将>e,于是就将与前提c=e矛盾。”“相应的,由于c变为e,e变为f等等,我们必须把这些不同的值看成是同一客体出现时所呈的不同形式。这种呈现不同形式的能力是所有原因的第二种基本特性。把这两种特性放在一起我们可以说,原因(在量上)是不灭的,而(在质上)是可转化的客体。” 迈尔的结论是:“因此力(即能量)是不灭的、可转化的、不可秤量的客体。”迈尔这种推论方法显然过于笼统,难以令人信服,但他关于能量转化与守恒的叙述是最早的完整表达。迈尔在1845年发表了第二篇论文: 《有机运动及其与新陈代谢的联系》,该文更系统地阐明能量的转化与守恒的思想。他明确指出:“无不能生有,有不能变无”,“在死的和活的自然界中,这个力(按:即能量)永远处于循环转化的过程之中。任何地方,没有一个过程不是力的形式变化!”他主张:“热是一种力,它可以转变为机械效应。”论文中还具体地论述了热和功的联系,推出了气体定压比热和定容比热之差Cp-Cv等于定压膨胀功R的关系式。现在我们称Cp-Cv=R为迈尔公式。 接着迈尔又根据狄拉洛希(Delaroche)和贝拉尔德(Berard)以及杜隆(Dulong)气体比热的实验数据Cp=卡/克·度、 Cv=卡/克·度计算出热功。 计算过程如下:在定压下使1厘米3空气加热温升1度所需的热量为:Qp=mcpΔt=卡(取空气密度ρ=克/厘米3)。相应地,在定容下加热同量空气温升 1度消耗的热Qv=卡。二者的热量差Qp-Qv=卡。另一方面,温度升高1度等压膨胀时体积增大为原体积的1/274倍;气体对外作的功,可以使千克的水银柱升高1/274厘米。即功=×1/27400 =×10-5千克·米。于是迈尔得出热功当量为J=A/(Qp-Qv) =×10-5/×10-7=367千克·米/千卡。或3597焦耳/千卡,21世纪初的精确值为4187焦耳/千卡。迈尔还具体地考察了另外几种不同形式的力。他以起电机为例说明了“机械效应向电的转化。”他认为:“下落的力”(即重力势能)可以用“重量和(下落)高度的乘积来量度。”“与下落的力转变为运动或者运动转变为下落的力无关,这个力或机械效应始终是不变的常量。” 迈尔第一个在科学史中将热力学观点用于研究有机世界中的现象,他考察了有机物的生命活动过程中的物理化学转变,确信“生命力”理论是荒诞无稽的。他证明生命过程无所谓“生命力”,而是一种化学过程,是由于吸收了氧和食物,转化为热。这样迈尔就将植物和动物的生命活动,从唯物主义的立场,看成是能的各种形式的转变。1848年迈尔发表了《天体力学》一书,书中解释陨石的发光是由于在大气中损失了动能。他还应用能量守恒原理解释了潮汐的涨落。迈尔虽然第一个完整地提出了能量转化与守恒原理,但是在他的著作发表的几年内,不仅没有得到人们的重视,反而受到了一些著名物理学家的反对。由于他的思想不合当时流行的观念,还受到人们的诽谤和讥笑,使他在精神上受到很大刺激,曾一度关进精神病院,倍受折磨。 赫姆霍兹的研究从多方面论证能量转化与守恒定律的是德国的海曼·赫姆霍兹。他曾在著名的生理学家缪勒(Johannes Müller)的实验室里工作过多年,研究过“动物热。”他深信所有的生命现象都必得服从物理与化学规律。他早年在数学上有过良好的训练,同时又很熟悉力学的成就,读过牛顿、达朗贝尔、拉格朗日等人的著作,对拉格朗日的分析力学有深刻印象。他的父亲是一位哲学教授,和著名哲学家费赫特(Fichte)是好朋友。海曼·赫姆霍兹接受了前辈的影响,成了康德哲学的信徒,把自然界大统一当作自己的信条。他认为如果自然界的“力”(即能量)是守恒的,则所有的 “力” 都应和机械 “力” 具有相同的量纲, 并可还原为机械 “力”。1847年,26岁的赫姆霍兹写成了著名论文《力的守恒》,充分论述了这一命题 。这篇论文是1847年7月23日在柏林物理学会会议上的报告,由于被认为是思辨性、缺乏实验研究成果的一般论文,没有在当时有国际声望的《物理学年鉴》上发表,而是以小册子的形式单独印行的 。但是历史证明,这篇论文在热力学的发展中占有重要地位,因为赫姆霍兹总结了许多人的工作,一举把能量概念从机械运动推广到了所有变化过程,并证明了普遍的能量守恒原理。这是一个十分有力的理论武器,从而可以更深入地理解自然界的统一性。赫姆霍兹在这篇论文一开头就声称,他的“论文的主要内容是面对物理学家,”他的目的是“建立基本原理,并由基本原理出发引出各种推论,再与物理学不同分支的各种经验进行比较。” 在他的论述中有一明显的趋向,就是企图把一切自然过程都归结于中心力的作用。我们都知道,在只有中心力的作用下,能量守恒是正确的,但是这只是能量守恒原理的一个特例,把中心力看成是普遍能量守恒的条件就不正确了。他的论文共分六节,前两节主要是回顾力学的发展,强调了活力守恒(即动能守恒),进而分析了“力”的守恒原理(即机械能守恒原理);第三节涉及守恒原理的各种应用;第四节题为“热的力当量性,”他明确地摒弃了热质说,把热看成粒子(分子或原子)运动能量的一种形式。第五节“电过程的力相当性”和第六节“磁和电磁现象的力相当性”讨论各种电磁现象和电化学过程,特别是电池中的热现象对能量转化关系进行了详细研究。文章最后提到能量概念也有可能应用于有机体的生命过程,他的论点和迈尔接近。不过,看来他当时并不知道迈尔的工作。 赫姆霍兹在结束语中写道:“通过上面的叙述已经证明了我们所讨论的定律没有和任何一个迄今所知的自然科学事实相矛盾,反而却引人注目地为大多数事实所证实。……这定律的完全验证,也许必须看成是物理学最近将来的主要课题之一。” 实际上,实验验证这一定律的工作早在赫姆霍兹论文之前就已经开始了。焦耳在这方面做出了巨大贡献。焦耳的实验研究焦耳是英国著名实验物理学家。1818年他出生于英国曼彻斯特市近郊,是富有的酿酒厂主的儿子。他从小在家由家庭教师教授, 16岁起与其兄弟一起到著名化学家道尔顿(John Dalton,1766—1844)那里学习,这在焦耳的一生中起了关键的指导作用,使他对科学发生了浓厚的兴趣,后来他就在家里做起了各种实验,成为一名业余科学家。 这时正值电磁力和电磁感应现象发现不久,电机——当时叫磁电机(electric-magnetic engine)——刚刚出现, 人们还不大了解电磁现象的内在规律,也缺乏对电路的深刻认识,只是感到磁电机非常新奇,有可能代替蒸汽机成为效率更高、管理方便的新动力,于是一股电气热潮席卷了欧洲,甚至波及美国。焦耳当时刚20岁,正处于敏感的年龄,家中又有很好的实验条件(估计他父亲厂里有蒸汽机),对革新动力设备很感兴趣,就投入到电气热潮之中,开始研究起磁电机来。从1838年到1842年的几年中,焦耳一共写了八篇有关电机的通讯和论文,以及一篇关于电池、三篇关于电磁铁的论文。他通过磁电机的各种试验注意到电机和电路中的发热现象,他认为这和机件运转中的摩擦现象一样,都是动力损失的根源。于是他就开始进行电流的热效应的研究。1841年他在《哲学杂志》上发表文章《电的金属导体产生的热和电解时电池组中的热》,叙述了他的实验:为了确定金属导线的热功率,让导线穿过一根玻璃管,再将它密缠在管上,每圈之间留有空隙,线圈终端分开。然后将玻璃管放入盛水的容器中,通电后用温度计测量水产生的温度变化。实验时,他先用不同尺寸的导线,继而又改变电流的强度,结果判定“在一定时间内伏打电流通过金属导体产生的热与电流强度的平方及导体电阻的乘积成正比。”这就是著名的焦耳定律,又称iR定律 。随后,他又以电解质做了大量实验,证明上述结论依然正确。iR定律的发现使焦耳对电路中电流的作用有了明确的认识。 他仿照动物体中血液的循环,把电池比作心肺,把电流比作血液,指出:“电可以看成是携带、安排和转变化学热的一种重要媒介”,并且认为,在电池中“燃烧”一定量的化学“燃料”,在电路中(包括电池本身)就会发出相应大小的热,和这些燃料在氧气中点火直接燃烧所得应是一样多。请注意,这时焦耳已经用上了“转变化学热”一词,说明他已建立了能量转化的普遍概念,他对热、化学作用和电的等价性已有了明确的认识。 然而,这种等价性的最有力证据,莫过于热功当量的直接实验数据。正是由于探索磁电机中热的损耗,促使焦耳进行了大量的热功当量实验。1843年焦耳在《磁电的热效应和热的机械值》一文中叙述了他的目的,写道:“我相信理所当然的是:磁电机的电力与其它来源产生的电流一样,在整个电路中具有同样的热性质。当然,如果我们认为热不是物质,而是一种振动状态,就似乎没有理由认为它不能由一种简单的机械性质的作用所引起,例如象线圈在永久磁铁的两极间旋转的那种作用。与此同时,也必须承认,迄今尚未有实验能对这个非常有趣的问题作出判决,因为所有这些实验都只限于电路的局部,这就留下了疑问,究竟热是生成的,还是从感应出磁电流的线圈里转移出来的?如果热是线圈里转移出来的,线圈本身就要变冷。……所以,我决定致力于清除磁电热的不确定性。” 焦耳把磁电机放在作为量热器的水桶里,旋转磁电机,并将线圈的电流引到电流计中进行测量,同时测量水桶的水温变化。实验表明,磁电机线圈产生的热也与电流的平方成正比。焦耳又把磁电机作为负载接入电路,电路中另接一电池,以观察磁电机内部热的生成,这时,磁电机仍放在作为量热器的水桶里,焦耳继续写道:“我将轮子转向一方,就可使磁电机与电流反向而接,转向另一方,可以借磁电机增大电流。前一情况,仪器具有磁电机的所有特性,后一情况适得其反,它消耗了机械力。” 比较磁电机正反接入电路的实验,焦耳得出结论:“我们从磁电得到了一种媒介,用它可以凭借简单的机械方法,破坏热或产生热。”至此,焦耳已经从磁电机这个具体问题的研究中领悟到了一个具有普遍意义的规律,这就是热和机械功可以互相转化,在转化过程中一定有当量关系。他写道 :“在证明了热可以用磁电机生成,用磁的感应力可以随意增减由于化学变化产生的热之后,探求热和得到的或失去的机械功之间是否存在一个恒定的比值,就成了十分有趣的课题。为此目的,只需要重复以前的一些实验并同时确定转动仪器所需的机械力。” 焦耳在磁电机线圈的转轴上绕两条细线,相距约米处置两个定滑轮,跨过滑轮挂有砝码,砝码约几磅重(1磅=千克),可随意调整。线圈浸在量热器的水中,从温度计的读数变化可算出热量,从砝码的重量及下落的距离可算出机械功。在 1843年的论文中,焦耳根据13组实验数据取平均值得如下结果:“能使1磅的水温度升温华氏一度的热量等于(可转化为)把838磅重物提升1英尺的机械功。”838磅·英尺相当于1135焦耳,这里得到的热功当量838磅·英尺/英热单位等于焦耳/卡(现代公认值为焦耳/卡)。 焦耳并没有忘记测定热功当量的实际意义,就在这篇论文中他指出,最重要的实际意义有两点:(1)可用于研究蒸汽机的出力;(2)可用于研究磁电机作为经济的动力的可行性。可见,焦耳研究这个问题始终没有离开他原先的目标。焦耳还用多孔塞置于水的通道中,测量水通过多孔塞后的温升,得到热功当量为770磅·英尺/英热单位(焦耳/卡)。这是焦耳得到的与现代热功当量值最接近的数值。 1845年,焦耳报道他在量热器中安装一带桨叶的转轮,如图2-1,经滑轮吊两重物下滑,桨轮旋转,不断搅动水使水升温,测得热功当量为890磅·英尺/英热单位,相当于焦耳/卡。 同年,焦耳写了论文《空气的稀释和浓缩所引起的温度变化》,记述了如下实验:把一个带有容器R的压气机C放在作为量热器的水桶A中,如图2-2。压气机把经过干燥器G和蛇形管W的空气压缩到容器R中,然后测量空气在压缩后的温升,从温升可算出热量。气压从一个大气压变为22个大气压,压缩过程视为绝热过程,可计算压气机作的功。由此得到热功当量为823及795磅·英尺/英热单位。然后,经蛇形管释放压缩空气 (图2-3),量热器温度下降,又可算出热功当量为820、 814、760磅· 英尺/英热单位, 从空气的压缩和膨胀得到的平均值为798磅·英尺/英热单位,相当于焦耳/卡。 1849年6月,焦耳作了一个《热功当量》的总结报告,全面整理了他几年来用桨叶搅拌法和铸铁摩擦法测热功当量的实验,给出如下结果(单位均以磅·英尺/英热单位表示) : 空气中的当量值真空中的当量值平均水汞汞铸铁铸铁焦耳的实验结果处理得相当严密,在计算中甚至考虑到将重量还原为真空中的值。对上述结果,焦耳作了分析,认为铸铁摩擦时会有微粒磨损,要消耗一定的功以克服其内聚力,因此所得结果可能偏大。汞和铸铁在实验中不可避免会有振动,产生微弱的声音,也会使结果偏大。在这三种材料中,以水的比热最大,所以比较起来,应该是用水作实验最准确。 因此, 在他的论文结束时,取772作为最后结果, 这相当于焦耳/卡。对此,他概括出两点:“第一,由物体,不论是固体或液体,摩擦产生的热量总是正比于消耗的力之量;第二,使一磅水(在真空中称量,用于55°-60°)的温度升高1℉,所需消耗的机械力相当于772磅下落1英尺。”焦耳从1843年以磁电机为对象开始测量热功当量,直到1878年最后一次发表实验结果,先后做实验不下四百余次,采用了原理不同的各种方法,他以日益精确的数据,为热和功的相当性提供了可靠的证据,使能量转化与守恒定律确立在牢固的实验基础之上。
化学基本观念是学生通过化学学习所获得的对化学的总观性的认识,化学基本观念不是具体的化学知识,它是在具体化学知识的基础上通过不断的概括提炼而形成的,它对学生科学素养的养成将发挥重要的作用。下面是我为大家整理的化学本科生 毕业 论文,供大家参考。
[摘要]《化工热力学》是能源化学工程专业一门理论性和逻辑性较强的专业基础课, 文章 阐述了作者在《化工热力学》课程教学过程中如何提高学生对学习本课程兴趣的教学实践和教学体会。通过明确教学内容和教学主线,改变传统的单一的课堂教学,将课堂教学与学科动态及工程实践密切结合,激发学生学习兴趣,培养学生自主学习能力和工程意识,以满足培养能源化学工程领域领军人物的要求。
[关键词]化工热力学;能源化学工程;教学实践;教学体会
化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋近平衡的极限条件等。它是培养学生分析和解决实际化工问题思维 方法 的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和 教学方法 进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。
1明确教学内容与课程主线
结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。
2改变单一课堂教学模式,培养学生自主学习能力
化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。首先,教师在 课前预习 阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。
3课堂教学与工程实践密切结合,培养学生初步的工程观点
化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。
4考核方式方法研究
传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。
5结束语
在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。
参考文献
[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等 教育 ,2008,3:19-21.
[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.
[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.
[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.
[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.
[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.
[7]史密斯JM,范内斯HC,阿博特MM,等编;刘洪来,陆小华,陈新志,等译.化工热力学导论(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化学工业出版社,2007.
摘要:随着我国科学技术的不断发展,化学工程技术在化学生产中的应用越来越广泛。化学工程技术作为化学生产中重要的一项技术,不仅能够有效的节约在化学生产中所需要的时间,而且还能够提高化学工程的生产效率。因此,本文通过对化学工程技术的技术概念进行了阐述后,又详细的介绍了超临界流体技术、传热技术以及绿色化学反应技术在化学生产中的应用,并且分析了现如今的化学工程技术存在的问题,同时提出了相应的对策,从而使得化学工程技术在化学生产中能够有更好的发展。
关键词:化学工程技术;化学生产;应用;分析
在我国,科学技术一直是我们的一项重要的生产技术,随着科技的快速发展,在化学生产过程中也开始广泛的采用化工技术。化学工程技术主要是一项研究化学生产过程中需要采用的相关技术,其主要目的是对化学工程产品进行开发、设计、制造和管理。由于化学工程技术能够有效的提高产品的质量,同时也能够提升化学生产中的工作效率,因此我们对化学工程技术有了更广泛的关注,并不断的将其拓展到化学生产中的各个领域,使得化学工程技术能够发展的更好,进而不断的推进我国的经济发展和科技发展,使我们的生活条件更加优越。
1化学工程技术的技术概念阐述
现如今,化学产品已经成为了人们生活中非常常见的物品,例如药物、食品和日用品,还有农业药物和工厂生产所需的原料等等。因此化学工程技术变成为了一项炙手可热的技术,不断的受到人们的关注。化学工程技术是根据化学理论基础与相关的技术相结合的一项应用于化学生产中的技术,利用化学设备,通过一系列的化学反应进行产品的大量生产。在化学生产的过程中,化学的反应物和设备对于工程的技术要求是非常高的,而化学工程技术的优势就在于能够满足化学反应的要求,进而提高了化学产品的质量。除此之外,化学工程技术还有一项更大的优势就是对废物的处理,这项技术能够尽可能不对环境造成很大的影响,正符合我国当前对生产的要求。
2化学工程技术在化学生产中的应用
超临界流体技术在化学生产中的应用
超临界流体技术主要的内容是,控制一定的温度和压力,使得需要的流体处于液体与气体中间的状态。这种流体的特点集合了气液的优点,它的粘度低与气体相似,它的密度很高与液体相似,这就导致它的扩散能力很强,介于气体和液体之间。同时它还拥有很强的溶解能力和压缩能力。将这种技术应用于化学生产中,通过控制温度与压力,得到超临界流体,利用其拥有的优势来达到节省能耗的目的。现如今,我们将这种技术应用于更过多领域,比如,高分子材料、复合材料、有机物材料和无机物材料。
传热技术在化学生产中的应用
化学工程之中的传热技术主要是分为两方面,一方面是微细尺度传热技术,另一方面是强化传热过程。首先微细尺度传热,是以热对流、热传导、热辐射为主要的内容,从空间尺度和时间尺度微细进行讨论和研究的一项传热技术。这项技术在微米、纳米科学中得到了广泛的应用,并取得了不错的成绩,因此人们更加关注它在化学生产中的应用。强化传热过程,主要的重点是通过调试换热器设备,不断改进生产过程中的传热系数,使其能够有能力不断的对外放热。为了强化传热过程,就要增加冷热流体间的温差,这就必须通过改变换热的面积来提高传热系数,从而来提高传热的效率,使得在化学生产的过程节能减耗。
绿色化学反应技术在化学生产中的应用
通常化学生产的产品一般对我们生活有一些影响的,因此我们就需要采用绿色化学反应来防止化学生产的过程中对环境造成污染,这是从源头来解决污染问题的技术方法。绿色化学只得就是通过使用化学的技术与方法,结合相关的知识来解决化学对人们和环境造成的危害。主要要求就是,化学生产过程中用到的试剂、催化剂、反应原料,和反应完成后的产物与副产物都必须对人类和环境无危害,同时也要保证绿色环保。例如,采用绿色无毒的原料方面,可以将石油原料装换成生物原料。像是在化学产品尼龙的生产过程中,原先采用的是含苯的石油化工原料,我们将可以其原料改换成生物原料,一样也可以制成尼龙,不仅保护了环境,而且也保护了人体收到伤害。除此之外,这项技术在绿色食品生产中也起到了很大的作用,绿色食物是对人体很有益的,在其生产过程中一般禁止使用化学药剂,这样不仅减少了对人体的伤害,同时也减少了对环境的影响。然而生产绿色食品的代价就是成本高,为了可以降低成本又能够有质量,我们可以将化学技术与生物技术相结合,开发基因技术,提高并促进农作物的产量和质量,生物技术与化学反应技术相结合可以在以下过程中充分的利用。
3现今化学工程技术存在的问题
化学工程技术需要进一步的提高
现如今,我国的化学工程技术应用的领域非常更广泛,但是仍存在一些不足。滴状冷凝在工业上的应用仍然不能有很好的表现,因为在获得滴状冷凝后,冷凝的液滴不能够被长久的保存,所以,我们应该在这问题上有进一步的研究,从而来解决这个问题。使得我国的化学工程技术能够有更好的发展,人们能够有更好的生活条件。
化学工程技术的人才匮乏
在化学工程中存在的另一个严重的问题就是技术人才问题,只有用化学专业技术强的人才,才能够更好的提高化学生产的质量。而我国现在就存在这样的问题,化学领域的工作人员的普遍的技术能力和专业能力不强,主要是由于我国的教育体制问题,当代的大学生理论要点掌握很好,但实际操作方面却严重的匮乏,这就导致技术型人才的缺乏,从而影响了化学工程技术的进步。
4对化学工程技术的发展提出对策
不断提升化学工程技术
随着我国的科技不断的发展,化学工程技术也会越来越进步,我们应该不断的更新技术,以此来适应社会科技的发展。应该在巩固传统的化学技术的同时不断的添加新型技术,并抛弃不利的部分,从而实现化学工程技术有更好的发展。
培养化学技术人才
人才的重要性是我们有目共睹的,化学技术人才对于化学工程的发展有着至关重要的作用。因此为了化学工程技术能够有更好的发展,我们重点培养化学技术人才,化学生产企业可以通过与相关专业的院校进行合作,让专业对口的大学生能够有机会到生产工厂进行相关的实习操作,从而来培养理论知识牢固并且有一定的操作能力的技术人才来工作。
5结语
化学工程技术在化学生产过程中的应用广泛,它不仅促进了社会经济的发展,更是提高了人们的生活水平,通过技术和人才的不断涌进,我国的化学工程技术会有更好的发展。
参考文献:
[1]王一竹,王一龙,麻超等.关于化学工程技术在工业生产中的应用探讨[J].大科技,2015,(27):283~283.
[2]侯海霞,柯杨,王胜壁等.解析化学工程技术在化学生产中的应用[J].山东工业技术,2015,(14):91.
[3]裘炎,王杲.探析化学工程技术在化学生产中的应用[J].化工管理,2015,(20):90.
[4]刘玉琴.浅谈化学工程技术在化学生产中的应用[J].中国化工贸易,2014,(25):95~95.
[5]刘洋.浅析化学工程技术在化学生产中的应用[J].城市建设理论研究(电子版),2015,(9):662~663.
化学本科生毕业论文相关文章:
1. 化学本科毕业论文范文
2. 化学毕业论文综述范文
3. 化学毕业论文范文精选
4. 化学毕业论文
5. 化学毕业论文范例
化学反应的基本原理1、系统:在化学热力学中被研究的对象。2、环境 指系统之外,与系统密切相关、影响所能及的部分。3、相: 是系统中具有相同的物理性质和化学性质的均匀部分。4 、由一系列表征系统性质的物理量所确定下来的系统的存在形式称为系统的状态 。用来表征系统状态的物理量称为状态函数。5、热力学第一定律就是能量守恒定律,它可以叙述为:自然界一切物质都有能量,能量有不同形式, 能从一种形式转换为另一种形式, 再转化过程中能量的总量不变。6、 热力学第一定律: 如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡 ( 温度相同 ) ,则它们彼此也必定处于热平衡。 热力学第一定律是进行体系测量的基本依据 。7、体积功:指由于系统体积发生变化而与环境之间所做的功。 W = F ·Δl ; F = p ·S 则: W = p ·S ·Δl = p ·(V1-V2)=-p ·ΔV 气体膨胀时,Δ V>0,则 W<0 (系统对环境做功,W<0 ) 气体压缩时,Δ V<0,则 W>0 (环境对系统做功,W>0 )8、热力学能:指系统内一切能量的总和, ( 以 U表示 ) 。9、系统与环境之间的能量交换有两种方式,一种是热传递,另一种是做功。10、化学反应的热效应定义: 是指当生成物与反应物的温度相同时, 化学反应过程中所吸收或放出的热量。 化学反应的热效应一般称为反应热, 通常有等容反应热和等压反应热两种。11、 QV = QP –p ΔV 由于 pV=nRT则: Qp = QV + ΔnRT12、焓变定义为化学或物理过程中吸收或放出的热量 , 即 过程完成之后的终态物质的焓与过程发生之前的始态物质的焓之差。13、焓变Δ H : 吸热反应
礼物后大概就是提示音特意
这句话是熵增加原理中的,你想问什么?
用上的概念表示热力学第定律:在任何自然过程中一个孤立系统的总熵值不会减少用上的概念表示。
19世纪初,由于蒸汽机的进一步发展,迫切需要研究热和功的关系,对蒸汽机“出力”作出理论上的分析。所以热与机械功的相互转化得到了广泛的研究。埃瓦特(Peter Ewart,1767—1842)对煤的燃烧所产生的热量和由此提供的“机械动力”之间的关系作了研究,建立了定量联系。丹麦工程师和物理学家柯尔丁(,1815—1888)对热、功之间的关系也作过研究。他从事过摩擦生热的实验,1843年丹麦皇家科学院对他的论文签署了如下的批语 “柯尔丁的这篇论文的主要思想是由于摩擦、阻力、压力等造成的机械作用的损失,引起了物体内部的如热、电以及类似的动作,它们皆与损失的力成正比。”俄国的赫斯(,1802—1850)在更早就从化学的研究得到了能量转化与守恒的思想。他原是瑞士人,3岁时到俄国,当过医生,在彼得堡执教,他以热化学研究著称。1836年赫斯向彼得堡科学院报告:“经过连续的研究,我确信,不管用什么方式完成化合,由此发出的热总是恒定的,这个原理是如此之明显,以至于如果我不认为已经被证明,也可以不加思索就认为它是一条公理。”于1840年3月27日在一次科学院演讲中提出了一个普遍的表述:“当组成任何一种化学化合物时,往往会同时放出热量,这热量不取决于化合是直接进行还是经过几道反应间接进行。”以后他把这条定律广泛应用于他的热化学研究中。赫斯的这一发现第一次反映了热力学第一定律的基本原理;热和功的总量与过程途径无关,只决定于体系的始末状态。体现了系统的内能的基本性质——与过程无关。赫斯的定律不仅反映守恒的思想,也包括了“力”的转变思想。至此,能量转化与守恒定律已初步形成。其实法国工程师萨迪·卡诺(Sadi Carnot,1796—1832)早在1830年就已确立了功热相当的思想,他在笔记中写道:“热不是别的什么东西,而是动力,或者可以说,它是改变了形式的运动,它是(物体中粒子的)一种运动(的形式)。当物体的粒子的动力消失时,必定同时有热产生,其量与粒子消失的动力精确地成正比。相反地,如果热损失了,必定有动力产生。”“因此人们可以得出一个普遍命题:在自然界中存在的动力,在量上是不变的。准确地说,它既不会创生也不会消灭;实际上,它只改变了它的形式。”卡诺未作推导而基本上正确地给出了热功当量的数值:370千克米/千卡。由于卡诺过早地死去,他的弟弟虽看过他的遗稿,却不理解这一原理的意义,直到1878年,才公开发表了这部遗稿。这时,热力学第一定律早已建立了。对能量转化与守恒定律作出明确叙述的,首先要提到三位科学家。他们是德国的迈尔(RobertMayer,1814—1878)、赫姆霍兹(Hermann von Helmholtz,1821—1894)和英国的焦耳。迈尔的实验迈尔是一位医生。在一次驶往印度尼西亚的航行中 ,迈尔作为随船医生,在给生病的船员放血时,得到了重要启示,发现静脉血不像生活在温带国家中的人那样颜色暗淡,而是像动脉血那样新鲜。当地医生告诉他,这种现象在辽阔的热带地区是到处可见的。他还听到海员们说,暴风雨时海水比较热。这些现象引起了迈尔的沉思。他想到,食物中含有化学能,它像机械能一样可以转化为热。在热带高温情况下,机体只需要吸收食物中较少的热量,所以机体中食物的燃烧过程减弱了,因此静脉血中留下了较多的氧。他已认识到生物体内能量的输入和输出是平衡的。迈尔在1842年发表的题为《热的力学的几点说明》中,宣布了热和机械能的相当性和可转换性,他的推理如下 :“力是原因:因此,我们可以全面运用这样一条原则来看待它们,即‘因等于果’。设因c有果e,则c=e;反之,设e为另一果f之因,则有e=f等等,c=e=f=…=c在一串因果之中,某一项或某一项的某一部分绝不会化为乌有,这从方程式的性质就可明显看出。这是所有原因的第一个特性,我们称之为不灭性。”接着迈尔用反证法,证明守恒性(不灭性):“如果给定的原因c产生了等于其自身的结果e,则此行为必将停止;c变为e;若在产生e后,c仍保留全部或一部分,则必有进一步的结果,相当于留下的原因c的全部结果将>e,于是就将与前提c=e矛盾。”“相应的,由于c变为e,e变为f等等,我们必须把这些不同的值看成是同一客体出现时所呈的不同形式。这种呈现不同形式的能力是所有原因的第二种基本特性。把这两种特性放在一起我们可以说,原因(在量上)是不灭的,而(在质上)是可转化的客体。” 迈尔的结论是:“因此力(即能量)是不灭的、可转化的、不可秤量的客体。”迈尔这种推论方法显然过于笼统,难以令人信服,但他关于能量转化与守恒的叙述是最早的完整表达。迈尔在1845年发表了第二篇论文: 《有机运动及其与新陈代谢的联系》,该文更系统地阐明能量的转化与守恒的思想。他明确指出:“无不能生有,有不能变无”,“在死的和活的自然界中,这个力(按:即能量)永远处于循环转化的过程之中。任何地方,没有一个过程不是力的形式变化!”他主张:“热是一种力,它可以转变为机械效应。”论文中还具体地论述了热和功的联系,推出了气体定压比热和定容比热之差Cp-Cv等于定压膨胀功R的关系式。现在我们称Cp-Cv=R为迈尔公式。 接着迈尔又根据狄拉洛希(Delaroche)和贝拉尔德(Berard)以及杜隆(Dulong)气体比热的实验数据Cp=卡/克·度、 Cv=卡/克·度计算出热功。 计算过程如下:在定压下使1厘米3空气加热温升1度所需的热量为:Qp=mcpΔt=卡(取空气密度ρ=克/厘米3)。相应地,在定容下加热同量空气温升 1度消耗的热Qv=卡。二者的热量差Qp-Qv=卡。另一方面,温度升高1度等压膨胀时体积增大为原体积的1/274倍;气体对外作的功,可以使千克的水银柱升高1/274厘米。即功=×1/27400 =×10-5千克·米。于是迈尔得出热功当量为J=A/(Qp-Qv) =×10-5/×10-7=367千克·米/千卡。或3597焦耳/千卡,21世纪初的精确值为4187焦耳/千卡。迈尔还具体地考察了另外几种不同形式的力。他以起电机为例说明了“机械效应向电的转化。”他认为:“下落的力”(即重力势能)可以用“重量和(下落)高度的乘积来量度。”“与下落的力转变为运动或者运动转变为下落的力无关,这个力或机械效应始终是不变的常量。” 迈尔第一个在科学史中将热力学观点用于研究有机世界中的现象,他考察了有机物的生命活动过程中的物理化学转变,确信“生命力”理论是荒诞无稽的。他证明生命过程无所谓“生命力”,而是一种化学过程,是由于吸收了氧和食物,转化为热。这样迈尔就将植物和动物的生命活动,从唯物主义的立场,看成是能的各种形式的转变。1848年迈尔发表了《天体力学》一书,书中解释陨石的发光是由于在大气中损失了动能。他还应用能量守恒原理解释了潮汐的涨落。迈尔虽然第一个完整地提出了能量转化与守恒原理,但是在他的著作发表的几年内,不仅没有得到人们的重视,反而受到了一些著名物理学家的反对。由于他的思想不合当时流行的观念,还受到人们的诽谤和讥笑,使他在精神上受到很大刺激,曾一度关进精神病院,倍受折磨。 赫姆霍兹的研究从多方面论证能量转化与守恒定律的是德国的海曼·赫姆霍兹。他曾在著名的生理学家缪勒(Johannes Müller)的实验室里工作过多年,研究过“动物热。”他深信所有的生命现象都必得服从物理与化学规律。他早年在数学上有过良好的训练,同时又很熟悉力学的成就,读过牛顿、达朗贝尔、拉格朗日等人的著作,对拉格朗日的分析力学有深刻印象。他的父亲是一位哲学教授,和著名哲学家费赫特(Fichte)是好朋友。海曼·赫姆霍兹接受了前辈的影响,成了康德哲学的信徒,把自然界大统一当作自己的信条。他认为如果自然界的“力”(即能量)是守恒的,则所有的 “力” 都应和机械 “力” 具有相同的量纲, 并可还原为机械 “力”。1847年,26岁的赫姆霍兹写成了著名论文《力的守恒》,充分论述了这一命题 。这篇论文是1847年7月23日在柏林物理学会会议上的报告,由于被认为是思辨性、缺乏实验研究成果的一般论文,没有在当时有国际声望的《物理学年鉴》上发表,而是以小册子的形式单独印行的 。但是历史证明,这篇论文在热力学的发展中占有重要地位,因为赫姆霍兹总结了许多人的工作,一举把能量概念从机械运动推广到了所有变化过程,并证明了普遍的能量守恒原理。这是一个十分有力的理论武器,从而可以更深入地理解自然界的统一性。赫姆霍兹在这篇论文一开头就声称,他的“论文的主要内容是面对物理学家,”他的目的是“建立基本原理,并由基本原理出发引出各种推论,再与物理学不同分支的各种经验进行比较。” 在他的论述中有一明显的趋向,就是企图把一切自然过程都归结于中心力的作用。我们都知道,在只有中心力的作用下,能量守恒是正确的,但是这只是能量守恒原理的一个特例,把中心力看成是普遍能量守恒的条件就不正确了。他的论文共分六节,前两节主要是回顾力学的发展,强调了活力守恒(即动能守恒),进而分析了“力”的守恒原理(即机械能守恒原理);第三节涉及守恒原理的各种应用;第四节题为“热的力当量性,”他明确地摒弃了热质说,把热看成粒子(分子或原子)运动能量的一种形式。第五节“电过程的力相当性”和第六节“磁和电磁现象的力相当性”讨论各种电磁现象和电化学过程,特别是电池中的热现象对能量转化关系进行了详细研究。文章最后提到能量概念也有可能应用于有机体的生命过程,他的论点和迈尔接近。不过,看来他当时并不知道迈尔的工作。 赫姆霍兹在结束语中写道:“通过上面的叙述已经证明了我们所讨论的定律没有和任何一个迄今所知的自然科学事实相矛盾,反而却引人注目地为大多数事实所证实。……这定律的完全验证,也许必须看成是物理学最近将来的主要课题之一。” 实际上,实验验证这一定律的工作早在赫姆霍兹论文之前就已经开始了。焦耳在这方面做出了巨大贡献。焦耳的实验研究焦耳是英国著名实验物理学家。1818年他出生于英国曼彻斯特市近郊,是富有的酿酒厂主的儿子。他从小在家由家庭教师教授, 16岁起与其兄弟一起到著名化学家道尔顿(John Dalton,1766—1844)那里学习,这在焦耳的一生中起了关键的指导作用,使他对科学发生了浓厚的兴趣,后来他就在家里做起了各种实验,成为一名业余科学家。 这时正值电磁力和电磁感应现象发现不久,电机——当时叫磁电机(electric-magnetic engine)——刚刚出现, 人们还不大了解电磁现象的内在规律,也缺乏对电路的深刻认识,只是感到磁电机非常新奇,有可能代替蒸汽机成为效率更高、管理方便的新动力,于是一股电气热潮席卷了欧洲,甚至波及美国。焦耳当时刚20岁,正处于敏感的年龄,家中又有很好的实验条件(估计他父亲厂里有蒸汽机),对革新动力设备很感兴趣,就投入到电气热潮之中,开始研究起磁电机来。从1838年到1842年的几年中,焦耳一共写了八篇有关电机的通讯和论文,以及一篇关于电池、三篇关于电磁铁的论文。他通过磁电机的各种试验注意到电机和电路中的发热现象,他认为这和机件运转中的摩擦现象一样,都是动力损失的根源。于是他就开始进行电流的热效应的研究。1841年他在《哲学杂志》上发表文章《电的金属导体产生的热和电解时电池组中的热》,叙述了他的实验:为了确定金属导线的热功率,让导线穿过一根玻璃管,再将它密缠在管上,每圈之间留有空隙,线圈终端分开。然后将玻璃管放入盛水的容器中,通电后用温度计测量水产生的温度变化。实验时,他先用不同尺寸的导线,继而又改变电流的强度,结果判定“在一定时间内伏打电流通过金属导体产生的热与电流强度的平方及导体电阻的乘积成正比。”这就是著名的焦耳定律,又称iR定律 。随后,他又以电解质做了大量实验,证明上述结论依然正确。iR定律的发现使焦耳对电路中电流的作用有了明确的认识。 他仿照动物体中血液的循环,把电池比作心肺,把电流比作血液,指出:“电可以看成是携带、安排和转变化学热的一种重要媒介”,并且认为,在电池中“燃烧”一定量的化学“燃料”,在电路中(包括电池本身)就会发出相应大小的热,和这些燃料在氧气中点火直接燃烧所得应是一样多。请注意,这时焦耳已经用上了“转变化学热”一词,说明他已建立了能量转化的普遍概念,他对热、化学作用和电的等价性已有了明确的认识。 然而,这种等价性的最有力证据,莫过于热功当量的直接实验数据。正是由于探索磁电机中热的损耗,促使焦耳进行了大量的热功当量实验。1843年焦耳在《磁电的热效应和热的机械值》一文中叙述了他的目的,写道:“我相信理所当然的是:磁电机的电力与其它来源产生的电流一样,在整个电路中具有同样的热性质。当然,如果我们认为热不是物质,而是一种振动状态,就似乎没有理由认为它不能由一种简单的机械性质的作用所引起,例如象线圈在永久磁铁的两极间旋转的那种作用。与此同时,也必须承认,迄今尚未有实验能对这个非常有趣的问题作出判决,因为所有这些实验都只限于电路的局部,这就留下了疑问,究竟热是生成的,还是从感应出磁电流的线圈里转移出来的?如果热是线圈里转移出来的,线圈本身就要变冷。……所以,我决定致力于清除磁电热的不确定性。” 焦耳把磁电机放在作为量热器的水桶里,旋转磁电机,并将线圈的电流引到电流计中进行测量,同时测量水桶的水温变化。实验表明,磁电机线圈产生的热也与电流的平方成正比。焦耳又把磁电机作为负载接入电路,电路中另接一电池,以观察磁电机内部热的生成,这时,磁电机仍放在作为量热器的水桶里,焦耳继续写道:“我将轮子转向一方,就可使磁电机与电流反向而接,转向另一方,可以借磁电机增大电流。前一情况,仪器具有磁电机的所有特性,后一情况适得其反,它消耗了机械力。” 比较磁电机正反接入电路的实验,焦耳得出结论:“我们从磁电得到了一种媒介,用它可以凭借简单的机械方法,破坏热或产生热。”至此,焦耳已经从磁电机这个具体问题的研究中领悟到了一个具有普遍意义的规律,这就是热和机械功可以互相转化,在转化过程中一定有当量关系。他写道 :“在证明了热可以用磁电机生成,用磁的感应力可以随意增减由于化学变化产生的热之后,探求热和得到的或失去的机械功之间是否存在一个恒定的比值,就成了十分有趣的课题。为此目的,只需要重复以前的一些实验并同时确定转动仪器所需的机械力。” 焦耳在磁电机线圈的转轴上绕两条细线,相距约米处置两个定滑轮,跨过滑轮挂有砝码,砝码约几磅重(1磅=千克),可随意调整。线圈浸在量热器的水中,从温度计的读数变化可算出热量,从砝码的重量及下落的距离可算出机械功。在 1843年的论文中,焦耳根据13组实验数据取平均值得如下结果:“能使1磅的水温度升温华氏一度的热量等于(可转化为)把838磅重物提升1英尺的机械功。”838磅·英尺相当于1135焦耳,这里得到的热功当量838磅·英尺/英热单位等于焦耳/卡(现代公认值为焦耳/卡)。 焦耳并没有忘记测定热功当量的实际意义,就在这篇论文中他指出,最重要的实际意义有两点:(1)可用于研究蒸汽机的出力;(2)可用于研究磁电机作为经济的动力的可行性。可见,焦耳研究这个问题始终没有离开他原先的目标。焦耳还用多孔塞置于水的通道中,测量水通过多孔塞后的温升,得到热功当量为770磅·英尺/英热单位(焦耳/卡)。这是焦耳得到的与现代热功当量值最接近的数值。 1845年,焦耳报道他在量热器中安装一带桨叶的转轮,如图2-1,经滑轮吊两重物下滑,桨轮旋转,不断搅动水使水升温,测得热功当量为890磅·英尺/英热单位,相当于焦耳/卡。 同年,焦耳写了论文《空气的稀释和浓缩所引起的温度变化》,记述了如下实验:把一个带有容器R的压气机C放在作为量热器的水桶A中,如图2-2。压气机把经过干燥器G和蛇形管W的空气压缩到容器R中,然后测量空气在压缩后的温升,从温升可算出热量。气压从一个大气压变为22个大气压,压缩过程视为绝热过程,可计算压气机作的功。由此得到热功当量为823及795磅·英尺/英热单位。然后,经蛇形管释放压缩空气 (图2-3),量热器温度下降,又可算出热功当量为820、 814、760磅· 英尺/英热单位, 从空气的压缩和膨胀得到的平均值为798磅·英尺/英热单位,相当于焦耳/卡。 1849年6月,焦耳作了一个《热功当量》的总结报告,全面整理了他几年来用桨叶搅拌法和铸铁摩擦法测热功当量的实验,给出如下结果(单位均以磅·英尺/英热单位表示) : 空气中的当量值真空中的当量值平均水汞汞铸铁铸铁焦耳的实验结果处理得相当严密,在计算中甚至考虑到将重量还原为真空中的值。对上述结果,焦耳作了分析,认为铸铁摩擦时会有微粒磨损,要消耗一定的功以克服其内聚力,因此所得结果可能偏大。汞和铸铁在实验中不可避免会有振动,产生微弱的声音,也会使结果偏大。在这三种材料中,以水的比热最大,所以比较起来,应该是用水作实验最准确。 因此, 在他的论文结束时,取772作为最后结果, 这相当于焦耳/卡。对此,他概括出两点:“第一,由物体,不论是固体或液体,摩擦产生的热量总是正比于消耗的力之量;第二,使一磅水(在真空中称量,用于55°-60°)的温度升高1℉,所需消耗的机械力相当于772磅下落1英尺。”焦耳从1843年以磁电机为对象开始测量热功当量,直到1878年最后一次发表实验结果,先后做实验不下四百余次,采用了原理不同的各种方法,他以日益精确的数据,为热和功的相当性提供了可靠的证据,使能量转化与守恒定律确立在牢固的实验基础之上。
同志你好: 以下是我总结的材料,请核对后使用 祝愿你工作愉快 工程热力学 热力学是研究热现象中,物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时,系统与外界相互作用的学科。 工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。 工程热力学的基本任务是:通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,提高热能利用率和热功转换效率。 为此,必须以热力学基本定律为依据,探讨各种热力过程的特性;研究气体和液体的热物理性质,以及蒸发和凝结等相变规律;研究溶液特性也是分析某些类型制冷机所必需的。现代工程热力学还包括诸如燃烧等化学反应过程,溶解吸收或解吸等物理化学过程,这就又涉及化学热力学方面的基本知识。 工程热力学是关于热现象的宏观理论,研究的方法是宏观的,它以归纳无数事实所得到的热力学第一定律、热力学第二定律和热力学第三定律作为推理的基础,通过物质的压力 、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究。 这种方法,把与物质内部结构有关的具体性质,当作宏观真实存在的物性数据予以肯定,不需要对物质的微观结构作任何假设,所以分析推理的结果具有高度的可靠性,而且条理清楚。这是它的独特优点。 古代人类早就学会了取火和用火,不过后来才注意探究热、冷现象的实质。但直到17世纪末,人们还不能正确区分温度和热量这两个基本概念的本质。在当时流行的“热质说”统治下,人们误认为物体的温度高是由于储存的“热质”数量多。1709~1714年华氏温标和1742~1745年摄氏温标的建立,才使测温有了公认的标准。随后又发展了量热技术,为科学地观测热现象提供了测试手段,使热学走上了近代实验科学的道路。 1798年,朗福德观察到用钻头钻炮筒时,消耗机械功的结果使钻头和筒身都升温。1799年,英国人戴维用两块冰相互摩擦致使表面融化,这显然无法由“热质说”得到解释。1842年,迈尔提出了能量守恒理论,认定热是能的一种形式,可与机械能互相转化,并且从空气的定压比热容与定容比热容之差计算出热功当量。 英国物理学家焦耳于1840年建立电热当量的概念,1842年以后用不同方式实测了热功当量。1850年,焦耳的实验结果已使科学界彻底抛弃了“热质说”。公认能量守恒、能的形式可以互换的热力学第一定律为客观的自然规律。能量单位焦耳就是以他的名字命名的。 热力学的形成与当时的生产实践迫切要求寻找合理的大型、高效热机有关。1824年,法国人卡诺提出著名的卡诺定理,指明工作在给定温度范围的热机所能达到的效率极限,这实质上已经建立起热力学第二定律。但受“热质说”的影响,他的证明方法还有错误。1848年,英国工程师开尔文根据卡诺定理制定了热力学温标。1850年和1851年,德国的克劳修斯和开尔文先后提出了热力学第二定律,并在此基础上重新证明了卡诺定理。 1850~1854年,克劳修斯根据卡诺定理提出并发展了熵的概念。热力学第一定律和第二定律的确认,对于两类“永动机”的不可能实现作出了科学的最后结论,正式形成了热现象的宏观理论热力学。同时也形成了“工程热力学”这门技术科学,它成为研究热机工作原理的理论基础,使内燃机、汽轮机、燃气轮机和喷气推进机等相继取得迅速进展。 与此同时,在应用热力学理论研究物质性质的过程中,还发展了热力学的数学理论,找到了反映物质各种性质的相应的热力学函数,研究了物质在相变、化学反应和溶液特性方面所遵循的各种规律 。1906年,德国的能斯脱在观察低温现象和化学反应中发现热定理;1912年,这个定理被修改成热力学第三定律的表述形式。 二十世纪初以来,对超高压、超高温水蒸汽等物性,和极低温度的研究不断获得新成果。随着对能源问题的重视,人们对与节能有关的复合循环、新型的复合工质的研究发生了很大兴趣。
近二十年来,以振动为主要原因造成的恶性事故相继发生,给国家造成了巨大经济损失。而且,振动问题目前仍是新投运大机组不能按期并网、正常投运的主要原因,在机组正常运行期间,振动问题连续不断,影响到正常生产,经常出现机组减负荷和带病运行的情况,甚至使机组被迫停机处理,这些事故屡见不鲜。本系统基于LabVIEW虚拟仪器软件平台,对汽轮机振动信号进行读取加窗,并进行谱分析及自相关分析。LabVIEW虚拟仪器就是在以通用计算机为核心的硬件平台上,由用户设计定义、具有虚拟前面板、测试功能由测试软件实现的一种计算机仪器系统。本系统主要完成了对汽轮机振动信号进行读取,对信号进行矩形窗、汉宁窗、海明窗的加窗选择,然后分别进行信号的幅值谱、功率谱、相位谱分析及自相关分析,并且具有图形操作及显示界面。系统运行结果证明,本系统能够完成对信号的读取,并进行三种窗函数及各种分析的动态选择,并用图形显示结果。Over the last 20 years, mainly due to the vibration caused by the fatal accidents occurred one after another, inflicting huge economic losses. Furthermore, the vibration is still new to large units shipped impossible grid, the normal operation for the main the crew during normal operations, continuous vibration problems affecting the normal production, Units often reduced load and operation of the sick, and even the unit was forced to stand, these incidents not uncommon. The system based on LabVIEW virtual instrument software platform for turbine vibration signal window read, and spectral analysis and correlation analysis. LabVIEW virtual instrument is a common core of computer hardware platform, defined by the user, with virtual front panel, the test function test software from a computer equipment system. The system completed the turbine vibration signal read, the signal rectangular window Hanning, Hamming window window choice, and then the signal amplitude spectrum, power spectrum and phase spectrum analysis and correlation analysis, and operating with graphics and display interface. The result of running the system proved that the system can accomplish the signal read, and three window function and the dynamic analysis of the various options and graphical display with the results.专业前景 本专业以工程热物理学科为主要理论基础,以内燃机和正在发展中的其它新型动力机械及系统为研究对象,运用工程力学、机械工程学、自动控制、计算机、环境科学、微电子技术等学科的知识和内容,研究如何把燃料的化学能和液体的动能安全、高效、低(或无)污染地转换成动力的基本规律和过程,研究转换过程中的系统和设备的自动控制技术。随着常规能源的日渐短缺,人类环境保护意识的不断增强,节能、高效、降低或消除污染排放物、发展新能源及其它可再生能源成为本学科的重要任务,在能源、交通运输、汽车、船舶、电力、航空宇航工程、农业工程和环境科学等诸多领域获得越来越广泛的应用,在国民经济各部门发挥着越来越重要的作用。 培养目标 本专业方向培养具备热能与动力工程专业方面的基本理论、基本知识和基本技能,能在国民经济各部门从事热力发动机和其它新型动力机械及设备的设计、制造、管理、教学和科研等方面的高级工程技术人才。 培养特色 本专业在加强学生基础理论和综合素质教育的同时,加强计算机及自动控制技术的应用,强化专业实践教学,注重全能训练,全面提高学生的实践动手能力和科学研究潜力,使毕业生具有较强的择业竞争能力和较宽的就业适应能力。 主干课程 机械制图、机械原理、机械设计、理论力学、材料力学、工程材料、电工技术、电子技术、计算机软件基础、液压技术、液力传动、内燃机构造、内燃机原理、内燃机设计、内燃机试验、发动机电子技术、工程热力学、流体力学、传热学、自动控制理论、现代测试技术等。 就业方向 毕业后可从事能源与动力设备的行政管理、内燃机及新型动力设备的开发研制、内燃机排放控制、新能源利用、汽车工业、兵器工业、环保工业、交通运输业、船舶、电力、航空宇航工业等方面的工作。The prospect of major works of the major hot in physics as the main theoretical basis to the internal combustion engine and the other is the development of new machinery and power systems for the study, the use of engineering mechanics, mechanical engineering, automation, computers, environmental science, microelectronics technology disciplines, such as content knowledge and to study how the chemical energy of fuel and liquid kinetic energy security, high-performance, low (or none) of pollution to the power into the basic law and the process of research in the conversion process of the automatic control systems and equipment technology . With the growing shortage of conventional energy, human the growing awareness of environmental protection, energy saving, high efficiency, reduce or eliminate polluting emissions, the development of new energy and other renewable sources of energy has become an important task for the subjects in the energy, transportation, automotive, ships, electricity, aviation aerospace engineering, agricultural engineering and environmental science in many fields such as access to more and more widely used, the department in the national economy is playing an increasingly important role. Cultivate cultivate goal with the direction of the major thermal power projects with the major aspects of the basic theory, basic knowledge and basic skills, to engage in various departments in the national economy and other heat engines power the new machinery and equipment design, manufacture, management, teaching and scientific research aspects of advanced engineering and technical personnel. Cultivate major characteristics of the students in strengthening the basic theory and the overall quality of education, to strengthen the computer and automatic control technology, and strengthen the teaching of professional practice, pay attention to all the training, students enhance the practice of comprehensive practical ability and scientific research potential, so that graduates have strong competitiveness and a wide choice of employment adaptability. Mechanical Drawing trunk curriculum, mechanical principles, mechanical design, theoretical mechanics, mechanics of materials, engineering materials, electrical technology, electronics technology, computer software foundation, hydraulic technology, hydraulic transmission, the internal combustion engine structure, the principle of internal combustion engines, internal combustion engine design, the internal combustion engine testing, engine electronic technology, engineering thermodynamics, fluid mechanics, heat transfer, automatic control theory, modern test technology. Employment after graduation can be engaged in the direction of energy and power equipment, administration, internal combustion engines and new development of power equipment, internal combustion engine emission control, new energy use, the auto industry, the weapons industry, industrial environmental protection, transport, shipping, electricity, air space industrial vehicles are not the only air polluters. Coal and oil, used to heat homes and factories and to generate electricity, contain small amounts of sulfur. When the fuels are burned, sulfur dioxide, a poisonous gas, is produced. It is irritating to the lungs. Some cities have passed laws that allow coal and oil to be burned only if their sulfur content is low. 汽车不是唯一的空气污染。煤炭和石油,用于家庭取暖和工厂,并产生电力,含有少量的硫。当燃料燃烧,二氧化硫,一种有毒气体,就产生了。它是刺激到肺部。一些城市已通过法律,允许煤炭和石油只有在其被烧毁硫含量低。Most electricity is generated by steam turbines. About half of the sulfur dioxide in the air comes from burning fuel to make steam. Nuclear power plants do not burn fuel, so there is no air pollution of the ordinary kind. But the radioactive materials in these plants could present a danger in an accident. Also, there is a problem in disposing of the radioactive wastes in a way that will not endanger the environment. 大部分电力是由蒸汽涡轮机。关于空气中的二氧化硫,使蒸汽一半来自燃料燃烧。核电厂不烧燃料,所以不存在的那种普通的空气污染。但是,在这些植物的放射性物质可能会提出一个意外的危险。此外,还有一个在放射性废物处置的方式,不会危害环境的问题。Another type of pollution, called thermal (heat) pollution, is caused by both the fuel-burning and nuclear plants. Both need huge amounts of cold water, which is warmed as it cools the steam. When it is returned to the river, the warm water may stimulate the growth of weeds. It may also kill fish and their eggs, or interfere with their growth.另一种污染类型,称为热(热)污染,是造成双方的燃料燃烧和核电厂。双方都需要的冷水,这是温暖,因为它大量的蒸汽冷却。当返回到河边,温暖的水会刺激杂草生长。它也可以杀死鱼,它们的卵,或干扰他们的成长。Physicists are studying new ways of generating electricity that may be less damaging to the environment. In the meantime, many power plants are being modernized to give off less polluting material. Also, engineers try to design and locate new power plants to do minimum damage to the environment.物理学家们正在研究发电对环境损害较小的新方法。与此同时,许多发电厂也在实现现代化以减少污染物质。此外,工程师们尝试设计并找到对环境的损害最小的新的发电厂。Thermal energy and power engineeringThis program is to cultivate both master thermal energy and power engineering professional basic theoretical knowledge, computing skills, but also the ability in various forms of generating power plant, refrigeration and air conditioning, new energy related fields in need of economic management knowledge and ability, can be engaged in the electric power industry related to areas of science and technology application, research, development and management of a senior talents. According to the national construction and talents needs, set up the professional direction includes: thermal power engineering, power plant set control operation, refrigeration and air conditioning engineering, gas power engineering, advanced energy engineering courses: theoretical mechanics, mechanics of materials, engineering thermodynamics, engineering fluid mechanics, heat transfer, turbine principle, boiler principle, thermal power plants, the pump and fan, automatic control theory, motor learning, circuit theory, the control system, unit unit operation principle, thermal process detection technology, engineering graphics, mechanical design basis, electrician technical basis, electronic technology base, refrigeration and cryogenic principle, refrigeration compressor, refrigeration automation and testing technology, gas turbine principle, gas gas-steam combined cycle power plant, gas turbine combined-cyde operation and maintenance, nuclear reactor theoretical basis, nuclear system and the maintenance, the PWR nuclear power plant system and equipment, wind power generation principle, professional place to go: large-scale modernized electric power enterprise, power equipment manufacturing enterprises and energy class enterprise engaged in production, operation and management work, Government departments at all levels and institution engaged in energy, power, energy saving, environmental planning, design, construction, operation, consultation and supervision work; etc. Research institutes, universities in energy and power related research and development, teaching, management, etc.
这个需要花钱买的,知道就能解决?那么容易?
动 力 工 程 Power Engineering摘要:动力工程是研究工程领域中的能源转换、传输、利用理论、技术和设备的工程技术领域。其工程硕士学位授权单位培养从事能源转换技术、热工设备、动力机械的研究、设计、开发、制造及技术改造和技术攻关、工程管理的高级工程技术人才。研修的主要课程有:政治理论课、外语课、工程数学、工程热力学、流体力学、传热学、燃烧理论、热工自动控制、传热设备及技术、热工系统与设备、热工测量与控制、热力设备过程数值模拟与控制、能源系统工程、热力学、工业生态学、计算机技术基础及现代管理学基础等。一、概述动力工程是研究工程领域中的能源转换、传输和利用的理论和技术,提高能源利用率,减少一次能源消耗和污染物质排放,推动国民经济可持续发展的应用工程技术领域。它与人类的生产和生活密切相关,既有悠久的历史,又属于21世纪经济发展中的能源、信息、材料三大前沿领域之一。蒸汽机的发明是现代动力工程的开端,也标志着第一次工业革命的开始。随着当今社会生活对动力的需求不断提高,电子技术、计算机技术、材料科学等高新技术对热能传输和控制的迫切要求以及资源、环境与生态问题的日益突出,动力工程理论和技术工作者正面临着新的挑战,必将在能源高效利用、洁净燃烧、远程节能和自动控制以及热能传输控制等诸多方面出现新的突破,并会对今后的人类文明产生重大影响。本领域涉及动力工程及热工装置的设计、制造运行、控制、试验研究的基础理论、工程技术和研究方法。所有的研究内容都离不开动力或能量的传递,现代动力工程也广泛应用电子技术、计算机技术、材料科学和控制技术等各个学科的知识。因此,动力工程相关的学科领域有:工程热物理、热能工程(包括电厂热能动力、冶金热能工程、供热通风与空气调节等学科)、动力机械及工程(包括内燃机、汽轮机、锅炉与换热设备等学科)、流体机械及工程、化工过程机械、制冷与低温技术、以及电子技术、计算机技术、材料科学和控制技术等。二、培养目标培养从事动力工程领域科学研究与开发应用、工程设计与实施、技术攻关与技术改造、新技术推广与应用、工程规划与管理等方面,紧密联系能源转换、传输与利用、工艺工程节能和污染物质排放控制的高级工程技术人才。动力工程领域工程硕士应当在本学科内掌握必要的基础理论和专门知识,了解本学科相关技术的发展状况,能够熟练地阅读外文资料,具有较强的独立担负工程技术工作和从事科学研究的能力,包括掌握热工设备、能源转换和动力装置的工作原理及其设计制造和试验研究的方法和技能,掌握对生产工艺、过程热工和设备进行检测与控制的原理及方法,能够对热工和环境问题进行理论分析、试验研究和经济评价。三、领域范围适用的行业领域包括:热力发电、冶金、发动机制造、锅炉及换热设备制造、工业炉窑制造、材料工程、石油化工、机械制造等。覆盖的学科研究领域包括:工程热物理、热能工程、动力机械及工程、制冷与低温技术、流体机械及工程、化工过程机械等。四、课程设置基础课:科学社会主义理论、自然辩证法、外语、工程数学基础、计算机技术及应用等。技术基础课:工程热力学、流体力学、传热学、燃烧理论、热工自动控制等。专业课程:传热设备与技术、热力系统和设备、热工量测与控制、热力设备过程数值模拟与控制、能源系统工程、工业生态学、热理学以及针对行业、选题或其它要求的选修课程。上述课程可定位为学位课或非学位课。此外,还可以根据实际情况进行不同的组合和设置。课程学习总学分不少于28学分。五、学位论文论文应来源于生产实际或具有明确的工程背景与应用价值,并具有一定的技术难度和工作量。如新产品开发、设计,设备技术改造与革新,产品质量检测分析或生产管理信息系统的研究等。结合企业的实际课题进行研究工作,根据研究结果撰写论文。对于新产品设计与开发技术的成果,论文应该具有设计方案的比较、评估,设计计算书,完整的图纸;对于重大技术改造和革新的成果,应该具有对原设备与技术的评价,改造和革新方案的评述及结果的技术和经济效果分析;对于产品质量控制和试验成果,必须有试验方案、完整的实验数据、数据处理分析方法、结果分析;对于生产设备管理成果,必须给出新的管理理论体系,对企业产量和质量作效果分析,并给出创新管理信息系统等。
在校攻读第二学士学位,修业期满,可获得由学校颁发的毕业证书和学位证书,但须在证书上注明第二学士学位学科门类和专业名称。
获得第二学位者,原则上根据国家需要,按第二专业分配工作。在职人员修业期满不论是否获得第二学士学位,均回原单位安排工作。获得第二学士学位者,毕业后工作起点工资与研究生毕业工资待遇相同。
双学位和第二学位证书,分别在第十一位用一个汉语拼音字母“S”和“E”加以区别。总位数为16位。
第一学位和第二学位是指在同一所学校取得的学位证书,并且是在第一学位学习成绩很好、很顺利的情况下,在所学院系里面再挑一个专业学习,并且取得证书,这个是第二学位。
不可能··大学都是固定的···
现在来说好像不是很大,有了总比没有好
我也是这样的,
1图书,优点:图书的内容比较系统、全面、成熟、可靠缺点:传统印刷业图书的出版周期较长,传递信息速度慢。但电子图书的出版发行可弥补这一缺陷。2期刊,内容新颖、信息量大、出版周期短、传递信息快、传播面广、时效性强,能及时反映国内外各学科领域的发展动态。据统计,科技人员所获取信息的65%以上来源于期刊,它是十分重要和主要的信息源和检索对象。3科学报告,内容新颖、详细、专业性强、出版及时、传递信息快,每份报告自成一册,有专门的编号(即报告号,通常由报告单位缩写代码+流水号+年代号构成),发行范围控制严格,不易获取原文。因科技报告反映新的研究成果,故它是一种重要的信息源.4会议文献,其特点是内容新颖、专业性和针对性强,传递信息迅速,能及时反映科学技术中的新发现、新成果、新成就以及学科发展趋向,是了解有关学科发展动向的重要信息源。5专利文献,是实行专利制度的国家,在接受申请和审批发明过程中形成的有关出版物的总称。6标准文献,对标准化对象描述详细、完整、内容可靠、实用,有法律约束力,其时效性强,适用范围明确,是从事生产、设计、管理、产品检验、商品流通、科学研究的共同依据,也是执行技术政策所必需的工具。7学位论文,其研究水平差异较大,博士论文论述详细、系统、专深,研究水平较高,参考价值大。8政府出版物,政府出版物对了解各国的方针政策、经济状况及科技水平,有较高的参考价值,一般不公开出售。9产品资料,其内容主要是对产品的规格、性能、特点、构造、用途、使用方法等的介绍和说明,所介绍的产品多是已投产和正在行销的产品,反映的技术比较成熟,数据也较为可靠,内容具体、通俗易懂,常附较多的外观照片和结构简图,形象、直观。10科技档案。其内容真实、详尽、具体、准确可靠,保密性强,保存期长久,是科研和生产建设工作的重要依据,具有很大参考价值,它通常保存在各类档案部门。
我国社会主义法律体系已经建立。作为体系的一部分,随着最高人民法院《二五纲要》正式提出建立的案例指导制度相关构建也在学术界的研究中兴起。案例指导制度与英美法系国家的判例制度的相同和区别是研究中的关键点。本文通过案例指导制度和判例法概念的比较,简析两大制度之间的本质区别。一、案例指导制度的提出2011年十一届全国人大四次会议已经顺利落幕,全国人大常委会委员长吴邦国在全国人大常委会工作报告中指出,到2010年中国特色社会主义法律体系已经形成。我国社会主义法律体系的建设已经由立法领域为重点转向了司法领域。但是我国是一个具有成文法传统的国家,制定法是我国主要的法律渊源,制定法在运行中具有其一定的局限性。近年来,我国司法实践中出现了大量的“同案不同判”现象,一方面有悖于法治形式正义的要求,另一方面客观上损害了司法权威。比较普遍的“同案不同判”现象出现无疑也说明社会主义法律体系还有待完善。报告中指出,“外国法律体系中有的法律,但不符合我国国情和实际的,我们不搞;外国法律体系中没有的法律,但我国现实生活需要的,我们及时制定。中国作为传统的成文法国家,虽然案例一直在审判实践中发挥着特定的作用,但案例指导制度这一概念却是最近几年才正式被提出并逐步受到立法和司法机关的重视。最高人民法院在2005年发布的《人民法院第二个五年改革纲要》中第一次提出:“建立和完善案例指导制度,重视指导性案例在统一法律适用标准、指导下级法院审判工作、丰富和发展法学理论等方面的作用。最高人民法院制定关于案例指导制度的规范性文件,规定指导性案例的编选标准、编选程序、发布方式、指导规则等。”这是最高人民法院首次以官方文件的形式提出要建立和完善案例指导制度。二、 案例指导制度的概念所谓案例指导制度,指的是在地方各级法院审判完毕的案件中以一定的标准进行筛选然后按照一定的程序上报到最高人民法院,最高人民法院审核通过后,由其公布为指导性案例,将对各级人民法院以后的审判工作进行指导的一种制度。通过选择典型案例判决并以此作为案例,使法官在审理案件时能有所借鉴,在以后遇到类似案件的审理时,可作为将其作为参照进行判决,以尽可能的使相同的案情有着相同或者相似的处理结果,确保审判的公正性和效率。三、 判例法的概念判例法(Case Laws)的定义:“司法判例中所规定的法律原则和规则的一般用语,是根据以往法院和法庭对具体案件的判决所作的概括。在英美法中,判例法在法律的发展中是一个基本的因素,而且仍然是一个重要的因素,它是法律原则的主要渊源。判例法的根本之处不在于对以前判例的汇编,不在于法官和其他裁判人在此后的案件审理中能够从先前的判例中得到帮助或指导,而是在于把先前的判例看作一种规范,并且期望从中得到根据惯例在某些情况下必须遵循和适用的原则和规则,而且作出判决和发表法律意见的高级法院在这样做时存有下列认识,即他们正在确定规则的判决将会并且有时必须为此后的法院在今后遵守 。”四、我国社会主义特色案例指导制度和英美判例法的区别从以上概念可以看出,我国要建立的具有社会主义特色的案例指导制度和英美法系的判例法有着很大的不同。在普通法系判例法的运用过程中,法官是判例法的主人。法官不仅能司法,而且能在判例法的运用中通过一系列的技术方法运用创制法律。基于判例约束力原理,判例法本身总是和无数个具体的个案相连,从个案中发展来的判例法的运作,明显显示出从具体案例到一般法律原则的归纳,然后又将一般法律原则再运用到相似具体案件的过程。在英美法系国家,先前案例对后案有着法律效力和约束力。判例就是判决的案例或案件,判例法指的并不是作为判例的整个判决,而是判例中所包含的法律原则和规则。判例法的核心是遵循先例原则。我国的案例指导制度并不具有这种法律渊源的地位,我国的案例指导制度的案例和判例法的案例有根本的区别,其不具有示范意义而是起指导作用,对正在审理的案件选出最合适的适用法律。具有事实上的拘束力而非法律上的。其作用在于正确的解释和适用法律而不是创造法律。所以,“不具有法律上的约束力而是事实上的约束力。”成为了我国案例指导制度的一种特色。正因为案例指导制度根本上具有判例的属性,那么以此作为成文法的有益的补充,能够在司法实践中能够起到统一司法尺度、维护法律权威、节省司法资源等作用,也进一步完善了我国社会主义法律体系。
文献的出版类型一般分为十大类。它们的定义、作用及在参考文献和检索刊物中的著录特征分别为: 1)图书:论述或介绍某一领域知识的出版物。图书又可分为三类:一类是教科书、科普读物和一般生产技术图书,属阅读性的图书;一类是词典、手册和百科全书等,属工具性的图书;另一类是含有独创性内容的专著,它属原始文献。 2)期刊:期刊一般是指名称固定、开本一致的定期或不定期连续出版物。期刊论文内容新颖,报道速度快,信息含量大,是传递科技情报、交流学术思想最基本的文献形式。据估计,期刊情报约占整个情报源的60-70%,因此,受到科技工作者的高度重视。3)会议文献:这是指在国际或国内重要的学术或专业性会议上发表的论文。会议文献学术性强,往往代表着某一领域内的最新成就,反映了国内外科技发展水平和趋势,是获得最新情报的一个重要来源。会议文献可分为会前文献,如会议日程预报和会议论文预印本,以及会后文献,如各种会议录。会后文献是主要的会议文献。4)科技报告:科技报告是指国家政府部门或科研生产单位关于某项研究成果的总结报告, 或是研究过程中的阶段进展报告。报告的出版特点是各篇单独成册,统一编号,由主管机构连续出版。在内容方面,报告比期刊论文等专深、详尽、可靠,是一种不可多得的情报源。科技报告可分成技术报告(Technical reports)、技术备忘录(Technical memorandums)、札记(Notes)、通报(Bulletins)和其他(如译文、专利等)几种类型。有些报告因涉及尖端技术或国防问题等,所以又分绝密、秘密、内部限制发行和公开发行几个等级。目前国际上较著名的科技报告是美国政府的四大报告,即PB(Publishing Board)报告、AD(ASTIA Documents)报告、 NASA(National Aeronatics and Space Administration)报告和DOE(Department of Energy)报告。 5)专利文献:专利文献主要由专利说明书构成。所谓专利说明书是指专利申请人向专利局递交的有关发明目的、构成和效果的技术文件。它经专利局审核后,向全世界出版发行。专利说明书的内容比较具体,有的还有附图,通过它可以了解该项专利的主要技术内容。由于只有符合新颖性、创造性和实用性的发明创造才能获得专利权,所以专利说明书对于工程技术人员,特别是产品工艺设计人员来说,是一种切合实际、启迪思维的重要情报源。 6)标准文献:指标准化工作的文件。其中主要为工业产品和工程建设的质量、规格和检验方法等的技术规定文件。作为一种规章性文献,它具有一定的法律约束力。一个国家的标准文献反映着该国的生产工艺水平和技术经济政策,而国际现行标准则代表了当前世界水平。国际标准和工业先进国家的标准常是科研生产活动的重要依据和情报来源。国际上最重要的两个标准化组织是国际标准化组织(ISO)和国际电工委员会(IEC)。7)学位论文:学位论文是指为申请硕士、博士等学位而提交的学术论文。学位论文的质量参差不齐,但都是就某一专题进行研究而作的总结,多数有一定的独创性。学位论文是非卖品,除极少数以科技报告、期刊论文的形式发表外,一般不出版,属难得文献。8)产品技术资料:指产品目录、产品样本和产品说明书一类的厂商产品宣传和使用资料。产品样本通常对定型产品的性能、构造、用途、用法和操作规程等作具体说明,内容成熟,数据可靠,有的有外观照片和结构图,可直接用于产品的设计制造中参考。9)技术档案:指科研生产活动中形成的,有具体事物的技术文件、图纸、图表、照片和原始记录等。详细内容包括任务书、协议书、技术指标、审批文件、研究计划、方案大纲、技术措施、调查材料、设计资料、试验和工艺记录等。这些材料是科研射干难产工作中用以积累经验、吸取教训的重要文献。技术档案一般为内部使用,不公开出版发行,有些有密级限制,因此在参考文献和检索工具中极少引用。10)政府出版物:指各国政府部门及其设立的专门机构发表的文献。政府出版物的内容十分广泛,既有科学技术方面的,也有社会经济方面的。就文献的性质而言,政府出版物可分为行政性文件(如国会记录、政府法令、方针政策、规章制度以及调查统计资料等)和科学技术文献两部分。我国政府发表的“科学技术白皮书”就是一种科技类政府出版物。
1、先解释法律效力的内涵与外延关于什么是法律效力,还存在诸多不同的看法。通常有广义和狭义两种理解。从广义上说,是泛指法律约束力和法律强制性。不论是规范性法律文件,还是非规范性法律文件,对人们的行为都发生法律上的约束和强制作用。它们之间的区别在于:规范性文件对人们的行为产生普遍的约束作用,非规范性法律文件,如判决书、调解书、逮捕书、公证书等都不具有这种普遍约束力,只具有具体的或特定的法律效力。狭义的法律效力是指法律的生效范围,即法律对什么人、在什么地方和在什么时间适用的效力。”尽管这种解说在一定程度上也能说明法律效力问题,但明显地是一种关于法律效力的发散式说明,缺乏逻辑上的严整性。并且该狭义的法律效力概念事实上所讲的是法律效力的范围,而不是法律效力这个概念本身。2、法律效力是内含于法律规范中的对法律调整对象产生作用的能力。其一,法律效力内含于法律规范之中。其二、法律效力乃是法律规范对法律调整对象产生作用的能力。法律规范由内部向外部(法律调整对象)的辐射力(包括规范力、调整力和强制力等等)。法律制定的目的,不在于法律本身,在于实现社会交往主体之间有序、自由与和谐的生活。这一目的的实现,只有法律发生效力时才可取得。因此,法律效力是法律从静态的规则走向动态的实践,从明晰的文本走向复杂的社会之力量源泉所在。第一,法律的内部效力。它是指在国家体系内部不同板块和不同层级之间法律的效力关系问题。一国的法律体系,既有横向的板块构造,其中公法、私法和社会法,以及内国法和国际法等之间事实上只能是板块的构造。那么,它们之间是否有效力关系?一国的法律,不论有多少板块构成,其效力在总体上应是互补的。不同板块之间的法律之间,发挥着构织法律秩序的整合效力。这就决定了在不同板块的法律之间,具有明显的制约、交涉和整合效力。显然,它们之间的效力是通过横向的、相互作用的机理而形成的。可见,在不同板块之间的法律间所要解决的效力问题,乃是其间的效力合作问题。至于在不同层级的法律之间,照样存在着效力关系问题。这就是所谓法律的效力层级问题。在上、下不同的层级之间,低层级的法律要服从高层级的法律。但在同一级别的法律中,为了维护一个国家的整体秩序、安定和完整,必须在同一级别的法律之间保持效力合作。否则法律就不再是国家统一秩序的建构者,反倒是破坏者。这更需要高层级法律对低层级法律的有效制约。我国尽管是单一制国家,在大陆完全按照单一制国家的法律层级效力准则在立法。但随着一国两制原则的施行,对于特别行政区我们实行了类似联邦制国家之不同层级间法律效力的模式。这使得我国不同层级之间的法律效力关系体现出明显的立体型和多样性的特征。第二,法律的外部效力。它是指法律对其调整对象的作用能力。外部效力强调的是其实践意义的效力。法律被公认为是有别于纯粹理性的实践理性,因此,法律制定的意义不在于仅仅追求逻辑形式上的圆满(当然,这很重要),而在于法律制定后能否以规则来对社会实践或者主体交往行为发挥实际效力。首先,法律的空间效力。它所指的是法律在什么空间范围内有效的问题。可以将空间效力分为域内效力和域外效力两个方面。其次,法律的时间效力。它是指法律能够对其调整对象产生效力的期间范围。所涉及的具体问题有:法律的生效问题、法律的失效问题和法律的溯及力问题。关于前者,一般存在两种情形,其一是法律颁布即生效;其二是在该法律或其他法律中专门规定某一法律的生效日期。究竟选择何种模式?乃由立法者所决定。关于中者,大致存在三种情况:其一是法律明定的时间效力期限届满;其二是因相关的新法律制定而使与新法律冲突的原先的旧法律自然失效;其三是法律调整的对象不复存在。关于后者,即新生效的法律对既往所发生的社会事件和主体行为有无追溯力的问题。如有,则为有溯及力;如无,则为无溯及力。大体说来,各国法例中不外乎如下几种规定。即从旧原则,按此,则新法律无追溯力;从新原则,按此,则新法律完全有追溯力;从轻原则、从新兼从轻原则以及从旧兼从轻原则,按此,则新法律在符合法定条件时有部分溯及力。3、、法律的合法性效力--实质合理性追求法律效力的逻辑前提是什么?或者说法律为什么对人们有效力?有人说,那是因为法律有国家强制力作后盾。无疑,某种强制力量的存在是法律能够发挥效力的不可或缺的因素。完全归诸于某种权力强制力量,显然,只能使法律被动地发生效力。虽然我们知道,不间断的强制也会形成某种自觉和“文化”,然而,这种以牺牲主体自治和自由为前提的“文化”,不去生产它也不值得遗憾。详细论述自己来……4、法律的逻辑技术效力--形式合理性追求法律既然是一种规范表达方式,就在客观上存在着如何表达这样一个技术问题。法律规范要合乎形式逻辑之规定。法律规范要符合语法之规定。法律规范要符合修辞之规定。当然,要使得法律具备更大的效力,就需要程序自身必须正当。当然,法律效力的逻辑技术因素还包括了其外在的保障机制-即法律的强制性。5、法律效力与司法尽管法律效力是预先存在于法律规范中的,一般说来,司法活动只是根据具有法律效力的法律所进行的一种法律适用活动。法律效力与司法之间究竟是何种关系?第一,司法是法律效力的实现机制。也是人们纠纷的最后救济机制。第二,司法是法律效力的创生机制。英美判例法模式中第三,司法是法律效力的补救机制。法律的解释机制