首页 > 职称论文知识库 > 固体弹道导弹期刊投稿

固体弹道导弹期刊投稿

发布时间:

固体弹道导弹期刊投稿

弹道导弹的火箭发动机推进剂分为固体和液体两种,你的问题所指应为以液体推进剂为燃料的弹道导弹。

中北大学考研资料

链接: 

若资源有问题欢迎追问

俄罗斯的液体弹道导弹是比中国强很多的,但反过来说他们的固体弹道导弹就比较一般了。1、核弹头方面,按照上世纪九十年代末中美两国围绕一场外交争端爆出的大量重要材料来说,中美俄法的核弹技术都已经达到了理论极限,水平其实是差不多的。有些性能指标上的差异,实际上是在综合考虑了成本、可靠性、安全性之后的技术取舍问题,并不是能力问题。2、液体弹道导弹。常温燃料液体弹道导弹,实际上核大国中只有中俄还在发展,特别是俄罗斯在这方面投入极大,成果明确的说世界第一。俄罗斯的常温液体导弹技术已经扩散到了朝鲜,目前朝鲜的水平也很高。中国的常温液体燃料火箭发动机和俄罗斯的差距相当大,但是我们大概几年之内就可以追上他们了。需要指出的是,对于中美俄法等主要强国来说,液体火箭发动机技术基本已经接近理论极限了。大家都在抠最后的那一点点潜力。但是液体导弹投掷能力很大,这是一个无法忽视的优点,俄罗斯的各种液体导弹都以巨大的投掷能力而闻名于世,各种吹嘘俄罗斯导弹天下无敌的文章也是拿这一点来吹。然而液体导弹储备不便,机动能力困难(加注燃料后的液体导弹重量极大),维护成本极其高昂。导致中国也只是搞了一些放在发射井,只有俄罗斯头铁搞机动发射。3、固体弹道导弹。目前中美法俄的固体弹道导弹技术也基本走到极限了,大家都是NEPE燃料,都是复合材料弹体,性能上差距不大。但是俄罗斯有两个严重的问题:首先是他们在苏联时期点歪了科技树走上了芳纶纤维路线,但芳纶的性能不如碳纤维,成本又高,寿命又短。俄罗斯后来想点开碳纤维的科技树不成功,到现在他们的芳纶也落后了。提示一下,芳纶别名凯夫拉,做防弹衣是好东西,但做结构材料还是洗洗睡吧。目前俄罗斯的碳纤维实际上依赖中国。第二个问题就是成本实在太高了,到现在俄罗斯都没有商用的固体运载火箭,不是没有技术,而是经济上太划不来。目前公开的信息看,伊斯坎德尔的价格差不多要达到快舟1号的三分之一,比东风17还要贵,而快舟1其实就是洲际导弹级别的运载火箭。可见中俄两国的固体火箭成本差距惊人。以上两点决定了俄罗斯无法以固体导弹为装备主力。4、打击精度。实际上洲际导弹的弹头在返回大气层的过程中是要受到大气干扰的,所以在不考虑大气层内的末端修正(基本相当于目前热门的高超)的话精度达到一百米以内基本也就是理论极限了。目前来说俄罗斯的水平距离这个极限还有一段距离,但是对于核弹头来说也就够用了。实际上俄罗斯的常规精确制导武器的性能就比中美欧的同类产品差一大截。对于普通人来说,比较容易直观感受的就是格洛纳斯的定位精度非常糟糕。目前四大卫星定位系统,北斗、GPS、伽利略的精度是差不多的(伽利略不稳定),格洛纳斯大体上要差一个档次。相关的数据可以从国际GNSS监测评估系统里面查到。5、多弹头和变轨弹头。中美俄法大家都会,没啥好说的,只是俄国人喜欢吹。但是目前高超音速技术对导弹来说是划时代的变革,这方面俄罗斯是走在美国前面了。但是和中国比还是有较大差距的,或者说中国领先全世界的优势太大了。更重要的是俄罗斯到目前仍未解决高超音速条件下的制导这个黑科技,它的战术高超武器还可以靠末段减速来确保末制导。而洲际导弹这种速度还要末段机动,必然导致精度的严重下降。

所谓液体弹道导弹,就是采用液体推进剂作为火箭发动机燃料的导弹。而采用固体推进剂作为火箭发动机燃料的导弹称为固体弹道导弹。目前,美国的战略、战术弹道导弹,已全部实现固体化。俄罗斯至今还是固液并重:固体的战略弹道系统有SS-24、SS-25,液体的战略弹道导弹有SS-18、SS-19等。俄计划在新世纪全部实现固体化。中国是世界上继美、俄之后第3个拥有固体远程战略弹道导弹的国家。 液体弹道导弹的长处是技术难度低一些,研制起来比较容易些。但它存在一些致命的缺点,比如造价高、反应慢等。固体导弹则造价较低,设备较少,反应较快。比如,液体导弹“大力神”Ⅱ射程1.17万千米,每枚成本高达2220万美元,是射程相当(1.014万千米)的固体弹道导弹“民兵”Ⅰ每枚成本560万美元的 4倍。从设备上讲,射程只有300千米的液体弹道导弹“飞毛腿”使用车辆达8台之多,而射程达5000千米的固体弹道导弹SS-20只使用3台车辆。反应时间,美国液体弹道导弹“大力神”为15分钟,而美国固体弹道导弹“民兵”Ⅰ反应时间只有一分钟。 当然,固体弹道导弹也有缺点,就是安全性不好,在制造过程中容易起火爆炸或在固体推进剂的浇铸质量不佳而引起爆炸,造成弹毁人亡。例如,美国“北极星”A-2固体弹道导弹,曾多次因药柱缺陷而在发射台上爆炸;“潘兴”Ⅱ弹道导弹也有一次因隔热层处理不当,致使推进剂药柱的壳体配当不好而引爆了一级自毁装置而爆炸;还有“三叉戟”Ⅰ固体弹道导弹也曾因第一级发动机绝热层故障而发射失败

固体弹道导弹期刊投稿邮箱

美国主要的导弹种类:

一)地地导弹

1、SM-62  蛇鲨

2、SM-64 纳瓦霍

3、TM-76 马斯

4、MGM-1 斗牛士

5、HGM-25A  大力神-1

6、SM-65/ CGM-16  阿特拉斯

7、民兵洲际导弹

(有多种型号,有“民兵Ⅰ”A型和B型;其后又推出了“民兵Ⅱ”型和III型。)

8、MGM-134  侏儒

9、LGM-118A 和平卫士

10、BGM-109G 战斧地地型

二)反坦克导弹:

1、BGM-71 陶式

2、FGM-148 标枪

3、MGM-157  埃弗格姆

4、Predator 掠夺者

三)反弹道导弹:

THAAD(Terminal High-Altitude Area Defense,末段高空区域防御)

四)舰地(潜地)导弹:

1、标准Ⅳ/SM-4

2、UGM-27A(北极星A-1)

3、VGM-27B(北极星A-2)

4、VGM-27C(北极星A-3)

5、海神C3

6、UGM-96A(三叉戟I型C-4)

7、BGM-109C(战斧)

8、RGM-6/天狮星

9、UGM-133(三叉戟II)

五)地空导弹:

1、MIM-104/爱国者

2、FIM-43红眼睛

3、FIM-92/毒刺

4、MIM-23/霍克

5、M-48/小槲树

六)舰空导弹:

1、标准-3/SM-3/RIM-161

2、小猎犬(RIM-2)

3、RIM-7M/海麻雀

4、RIM-116/拉姆/RAM

5、RIM-66D(标准-Ⅱ)

6、RIM-8/黄铜骑士

7、RIM-24/鞑靼人

8、RIM-162/增强型海麻雀

七)空空导弹:

1、AIR-2“妖怪”

2、AIM-4 /猎鹰

3、AIM-7/麻雀

4、AIM-9/响尾蛇

5、AIM-9X/响尾蛇

6、AIM-120/AMRAAM

7、AIM-54/不死鸟

八)空地导弹:

1、AGM-28A/大猎犬

2、AGM-64A/大黄蜂

3、AGM-69A/B  斯腊姆

4、AGM-86B/C

5、BGM-109A/战斧

6、AGM-129/阿克姆

7、AGM-158(JASSM)

8、AGM-158B/增程型JASSM

9、AGM-109 姆腊斯姆

10、ADM-20 鹌鹑

11、AGM-114/海尔法/地狱火

12、AGM-78 哈姆

13、AGM-45A/B 百舌鸟

14、AGM-53A 秃鹰

15、2 AGM-123A 叩头虫

16、AGM-65/小牛

17、AGM-28A/B  猎犬

18、 AGM-12 小斗犬

19、AGM-154 杰索伍(JSOW)

九)舰舰(潜)导弹:

1、UUN-125“海长矛”

2、AGM-84 捕鱼叉

3、RUR-5A"阿斯洛克"

4、BGM-109B(战斧)

主要由战斗部、弹体结构、动力装置和制导系统和弹头四部分组成。

1、战斗部是毁伤目标的专用装置。弹道导弹的战斗部一般配置在导弹的头部。战斗部又叫弹头。战斗部主要由壳体、战斗装药、引爆装置和保险装置组成。

2、弹体结构是把导弹各部分连接起来的支承结构。巡航导弹的弹体结构在外形上和飞机相似。对弹体结构的主要要求是重量轻,空气动力外形好。

3、动力装置是导弹飞行的动力源。导弹的动力装置常用固体或液体火箭发动机,有的用涡轮风扇或涡轮喷气发动机、混合推进剂火箭发动机、冲压喷气发动机。

4、制导系统用于控制导弹的飞行方向、姿态、高度和速度,引导导弹或弹头准确地飞向目标。不同类型的导弹可用不同的制导方式。有的导弹只用其中的一种,有的用几种进行复合制导。

扩展资料:

弹道导弹的主要特点是:

1、导弹沿着一条预定的弹道飞行,攻击地面固定目标。

2、通常采用垂直发射方式,使导弹平稳起飞上升,能缩短在大气层中飞行的距离,以最少的能量损失克服作用于导弹上的空气阻力和地心引力。

3、导弹大部分弹道处于稀薄大气层或外大气层内。因此,它采用火箭发动机,自身携带氧化剂和燃烧剂,不依赖大气层中的氧气助燃。

4、火箭发动机推力大,能串联、并联使用,可将较重的弹头投向较远的距离。

5、导弹飞行姿态的修正,用改变推力方向的方法实现。

参考资料:百度百科-弹道导弹

参考资料:中国航天科技集团有限公司官网-弹道导弹的定义与发射

美国MGM-118A “和平卫士”(MX)战略弹道导弹 美国“侏儒”战略弹道导弹 美国“三叉戟”II D5型潜射战略弹道导弹 美国“民兵3”地对地战略导弹 美国“爱国者”防空导弹 1、2、3型美国“霍克”防空导弹 美国“标准”舰空导弹 2、3型

弹道导弹是指在火箭发动机的推力下,按照预定的程序飞行,关机后再按照自由抛掷物体的轨迹飞行的导弹。其飞行轨迹一般分为主动段和被动段:主动段(也称动力飞行段或助推段)是导弹在火箭发动机推力和制导系统的作用下,从发射点到火箭发动机关机时的飞行轨迹;被动段包括自由飞行段和再入段,是导弹按照主动段末获得的给定速度和弹道角度惯性飞行,然后到弹头起爆的路径。[1]2022年4月9日发表声明称,巴基斯坦当天成功试射一枚“沙欣-3”地对地弹道导弹。声明没有透露试射导弹的弹着点和具体发射地点。“沙欣-3”弹道导弹具备携带核弹头和常规弹头的能力,射程2750公里。[9]

固体弹道导弹期刊投稿经验

俄罗斯的液体弹道导弹是比中国强很多的,但反过来说他们的固体弹道导弹就比较一般了。1、核弹头方面,按照上世纪九十年代末中美两国围绕一场外交争端爆出的大量重要材料来说,中美俄法的核弹技术都已经达到了理论极限,水平其实是差不多的。有些性能指标上的差异,实际上是在综合考虑了成本、可靠性、安全性之后的技术取舍问题,并不是能力问题。2、液体弹道导弹。常温燃料液体弹道导弹,实际上核大国中只有中俄还在发展,特别是俄罗斯在这方面投入极大,成果明确的说世界第一。俄罗斯的常温液体导弹技术已经扩散到了朝鲜,目前朝鲜的水平也很高。中国的常温液体燃料火箭发动机和俄罗斯的差距相当大,但是我们大概几年之内就可以追上他们了。需要指出的是,对于中美俄法等主要强国来说,液体火箭发动机技术基本已经接近理论极限了。大家都在抠最后的那一点点潜力。但是液体导弹投掷能力很大,这是一个无法忽视的优点,俄罗斯的各种液体导弹都以巨大的投掷能力而闻名于世,各种吹嘘俄罗斯导弹天下无敌的文章也是拿这一点来吹。然而液体导弹储备不便,机动能力困难(加注燃料后的液体导弹重量极大),维护成本极其高昂。导致中国也只是搞了一些放在发射井,只有俄罗斯头铁搞机动发射。3、固体弹道导弹。目前中美法俄的固体弹道导弹技术也基本走到极限了,大家都是NEPE燃料,都是复合材料弹体,性能上差距不大。但是俄罗斯有两个严重的问题:首先是他们在苏联时期点歪了科技树走上了芳纶纤维路线,但芳纶的性能不如碳纤维,成本又高,寿命又短。俄罗斯后来想点开碳纤维的科技树不成功,到现在他们的芳纶也落后了。提示一下,芳纶别名凯夫拉,做防弹衣是好东西,但做结构材料还是洗洗睡吧。目前俄罗斯的碳纤维实际上依赖中国。第二个问题就是成本实在太高了,到现在俄罗斯都没有商用的固体运载火箭,不是没有技术,而是经济上太划不来。目前公开的信息看,伊斯坎德尔的价格差不多要达到快舟1号的三分之一,比东风17还要贵,而快舟1其实就是洲际导弹级别的运载火箭。可见中俄两国的固体火箭成本差距惊人。以上两点决定了俄罗斯无法以固体导弹为装备主力。4、打击精度。实际上洲际导弹的弹头在返回大气层的过程中是要受到大气干扰的,所以在不考虑大气层内的末端修正(基本相当于目前热门的高超)的话精度达到一百米以内基本也就是理论极限了。目前来说俄罗斯的水平距离这个极限还有一段距离,但是对于核弹头来说也就够用了。实际上俄罗斯的常规精确制导武器的性能就比中美欧的同类产品差一大截。对于普通人来说,比较容易直观感受的就是格洛纳斯的定位精度非常糟糕。目前四大卫星定位系统,北斗、GPS、伽利略的精度是差不多的(伽利略不稳定),格洛纳斯大体上要差一个档次。相关的数据可以从国际GNSS监测评估系统里面查到。5、多弹头和变轨弹头。中美俄法大家都会,没啥好说的,只是俄国人喜欢吹。但是目前高超音速技术对导弹来说是划时代的变革,这方面俄罗斯是走在美国前面了。但是和中国比还是有较大差距的,或者说中国领先全世界的优势太大了。更重要的是俄罗斯到目前仍未解决高超音速条件下的制导这个黑科技,它的战术高超武器还可以靠末段减速来确保末制导。而洲际导弹这种速度还要末段机动,必然导致精度的严重下降。

为什么固体弹道导弹受青睐?牛宝成首先,我们要了解什么是液体弹道导弹和固体弹道导弹。所谓液体弹道导弹,就是采用液体推进剂作为火箭发动机燃料的导弹。而采用固体推进剂作为火箭发动机燃料的导弹称为固体弹道导弹。从二战后至20世纪50年代末,美、苏两国研制出了第一代战略弹道导弹,如美国的“雷神”、“大力神”,苏联的SS-5、SS-6等,当时都是采用液体推进剂,从地面发射,在发射前要临时加注推进剂,因此发射准备时间长、生存能力低。从上世纪50年代末到60年代,一些国家研制出的第二代弹道导弹仍然采用液体推进剂,但有了一定的改进,如使用可储存推进剂,以缩短发射准备时间,进而提高生存能力。与此同时,美国在研制成功核弹头和大型固体火箭发动机后,迅速将重点转向研制固体弹道导弹,同时还解决了潜艇水下发射导弹的难题。而此时的苏联固体火箭发动机的研究工作进度较慢。因此,这阶段仍然主要采用可储存液体推进剂(SS-24之前的地地导弹、SS-N-20之前的潜地导弹)。进入70年代后,美国的战略、战术弹道导弹已全部实现固体化,苏联大部分是固体化,但仍然有液体导弹。为什么固体弹道导弹受欢迎呢?主要原因还在于固体导弹造价较低,设备较少,反应较快。比如,液体导弹“大力神”Ⅱ射程11700千米,每枚成本高达2220万美元,是射程相当的固体弹道导弹“民兵”Ⅰ(每枚成本560万美元)的4倍。再从配套设备上讲,射程只有300千米的液体弹道导弹“飞毛腿”使用车辆达8台之多,而射程达5000千米的固体弹道导弹SS-20只使用3台车辆。再说反应时间,美国液体弹道导弹“大力神”发射准备为15分钟,而美国固体弹道导弹“民兵”Ⅰ反应时间只有1分钟。那么,是不是固体导弹就没有缺点了呢?固体弹道导弹也有缺点,这就是安全性不好,在制造过程中容易起火爆炸或固体推进剂的浇铸质量不佳而引起爆炸,造成弹毁人亡。例如,美国“北极星”A-2固体弹道导弹,曾多次因药柱缺陷而在发射台上爆炸;“潘兴”Ⅱ弹道导弹也有一次因隔热层处理不当导致爆炸;还有“三叉戟”Ⅰ固体弹道导弹也曾因第一级发动机绝热层故障而发射失败。

弹道导弹是指在火箭发动机的推力下,按照预定的程序飞行,关机后再按照自由抛掷物体的轨迹飞行的导弹。其飞行轨迹一般分为主动段和被动段:主动段(也称动力飞行段或助推段)是导弹在火箭发动机推力和制导系统的作用下,从发射点到火箭发动机关机时的飞行轨迹;被动段包括自由飞行段和再入段,是导弹按照主动段末获得的给定速度和弹道角度惯性飞行,然后到弹头起爆的路径。[1]2022年4月9日发表声明称,巴基斯坦当天成功试射一枚“沙欣-3”地对地弹道导弹。声明没有透露试射导弹的弹着点和具体发射地点。“沙欣-3”弹道导弹具备携带核弹头和常规弹头的能力,射程2750公里。[9]

固体弹道导弹期刊投稿要求

关于弹道导弹的说法正确的是:近程弹道导弹是指射程在1000公里以内的、中程弹道导弹是指射程在1000——3000公里范围内的、远程弹道导弹是指射程在3000——8000公里范围内的、洲际弹道导弹是指射程在8000公里以上的。

扩展资料:弹道导弹是指在火箭发动机推力作用下按预定程序飞行,关机后按自由抛物体轨迹飞行的导弹。其飞行弹道一般分为主动段和被动段:主动段(又称动力飞行段或助推段)是导弹在火箭发动机推力和制导系统作用下,从发射点起飞到火箭发动机关机时的飞行路径;被动段包括自由飞行段和再入段,是导弹按照在主动段终点获得的给定速度和弹道仪角作惯性飞行,到弹头起爆的路径。

弹道导弹有多种分类方式:按作战使用分为战略弹道导弹和战术弹道导弹。按发射点与目标位置分为地地弹道导弹和潜地弹道导弹。按射程分为洲际、远程、中程和近程弹道导弹。

导弹通常由战斗部、弹体结构、动力装置和制导系统组成:战斗部是毁伤目标的专用装置。弹道导弹的战斗部一般配置在导弹的头部。战斗部又叫弹头。战斗部主要由壳体、战斗装药、引爆装置和保险装置组成。

战略导弹的弹头大多用核装药。可以是单弹头,也可以是多弹头。多弹头有集束式、分导式和机动式3种。战术导弹的战斗部多采用非核装药,如高能炸药、化学毒剂、生物战剂等,有的也用核装药。

弹体结构是把导弹各部分连接起来的支承结构。巡航导弹的弹体结构在外形上和飞机相似。对弹体结构的主要要求是重量轻,空气动力外形好。

动力装置是导弹飞行的动力源。导弹的动力装置常用固体或液体火箭发动机,有的用涡轮风扇或涡轮喷气发动机、混合推进剂火箭发动机、冲压喷气发动机。巡航导弹通常用固体火箭发动机助推,涡轮风扇或涡轮喷气发动机巡航。弹道导弹一般用固体或液体火箭发动机。

制导系统用于控制导弹的飞行方向、姿态、高度和速度,引导导弹或弹头准确地飞向目标。不同类型的导弹可用不同的制导方式。有的导弹只用其中的一种,有的用几种进行复合制导。

弹道导弹早期曾用过无线电指令制导,后来大多用惯性制导,也有用星光-惯性和惯性-地形匹配复合制导的。巡航导弹多用惯性-地形匹配复合制导,地空或舰空导弹多用遥控、寻的或复合制导。反坦克导弹常用有线制导。

弹道导弹是指在火箭发动机的推力下,按照预定的程序飞行,关机后再按照自由抛掷物体的轨迹飞行的导弹。其飞行轨迹一般分为主动段和被动段:主动段(也称动力飞行段或助推段)是导弹在火箭发动机推力和制导系统的作用下,从发射点到火箭发动机关机时的飞行轨迹;被动段包括自由飞行段和再入段,是导弹按照主动段末获得的给定速度和弹道角度惯性飞行,然后到弹头起爆的路径。[1]2022年4月9日发表声明称,巴基斯坦当天成功试射一枚“沙欣-3”地对地弹道导弹。声明没有透露试射导弹的弹着点和具体发射地点。“沙欣-3”弹道导弹具备携带核弹头和常规弹头的能力,射程2750公里。[9]

俄罗斯的液体弹道导弹是比中国强很多的,但反过来说他们的固体弹道导弹就比较一般了。1、核弹头方面,按照上世纪九十年代末中美两国围绕一场外交争端爆出的大量重要材料来说,中美俄法的核弹技术都已经达到了理论极限,水平其实是差不多的。有些性能指标上的差异,实际上是在综合考虑了成本、可靠性、安全性之后的技术取舍问题,并不是能力问题。2、液体弹道导弹。常温燃料液体弹道导弹,实际上核大国中只有中俄还在发展,特别是俄罗斯在这方面投入极大,成果明确的说世界第一。俄罗斯的常温液体导弹技术已经扩散到了朝鲜,目前朝鲜的水平也很高。中国的常温液体燃料火箭发动机和俄罗斯的差距相当大,但是我们大概几年之内就可以追上他们了。需要指出的是,对于中美俄法等主要强国来说,液体火箭发动机技术基本已经接近理论极限了。大家都在抠最后的那一点点潜力。但是液体导弹投掷能力很大,这是一个无法忽视的优点,俄罗斯的各种液体导弹都以巨大的投掷能力而闻名于世,各种吹嘘俄罗斯导弹天下无敌的文章也是拿这一点来吹。然而液体导弹储备不便,机动能力困难(加注燃料后的液体导弹重量极大),维护成本极其高昂。导致中国也只是搞了一些放在发射井,只有俄罗斯头铁搞机动发射。3、固体弹道导弹。目前中美法俄的固体弹道导弹技术也基本走到极限了,大家都是NEPE燃料,都是复合材料弹体,性能上差距不大。但是俄罗斯有两个严重的问题:首先是他们在苏联时期点歪了科技树走上了芳纶纤维路线,但芳纶的性能不如碳纤维,成本又高,寿命又短。俄罗斯后来想点开碳纤维的科技树不成功,到现在他们的芳纶也落后了。提示一下,芳纶别名凯夫拉,做防弹衣是好东西,但做结构材料还是洗洗睡吧。目前俄罗斯的碳纤维实际上依赖中国。第二个问题就是成本实在太高了,到现在俄罗斯都没有商用的固体运载火箭,不是没有技术,而是经济上太划不来。目前公开的信息看,伊斯坎德尔的价格差不多要达到快舟1号的三分之一,比东风17还要贵,而快舟1其实就是洲际导弹级别的运载火箭。可见中俄两国的固体火箭成本差距惊人。以上两点决定了俄罗斯无法以固体导弹为装备主力。4、打击精度。实际上洲际导弹的弹头在返回大气层的过程中是要受到大气干扰的,所以在不考虑大气层内的末端修正(基本相当于目前热门的高超)的话精度达到一百米以内基本也就是理论极限了。目前来说俄罗斯的水平距离这个极限还有一段距离,但是对于核弹头来说也就够用了。实际上俄罗斯的常规精确制导武器的性能就比中美欧的同类产品差一大截。对于普通人来说,比较容易直观感受的就是格洛纳斯的定位精度非常糟糕。目前四大卫星定位系统,北斗、GPS、伽利略的精度是差不多的(伽利略不稳定),格洛纳斯大体上要差一个档次。相关的数据可以从国际GNSS监测评估系统里面查到。5、多弹头和变轨弹头。中美俄法大家都会,没啥好说的,只是俄国人喜欢吹。但是目前高超音速技术对导弹来说是划时代的变革,这方面俄罗斯是走在美国前面了。但是和中国比还是有较大差距的,或者说中国领先全世界的优势太大了。更重要的是俄罗斯到目前仍未解决高超音速条件下的制导这个黑科技,它的战术高超武器还可以靠末段减速来确保末制导。而洲际导弹这种速度还要末段机动,必然导致精度的严重下降。

弹性体期刊投稿

找一本杂志,看一下就明白,或直接打编辑部电话

08版是核心,12版是否需等到5月见分晓。现在推测可能性较大。弹性体复合影响因子:0.532 综合影响因子:0.305

国内的话力学杂志有《力学进展》、《力学与实践》等。给lz一些国际的期刊。国际知名的力学期刊 刊名 原文名 创刊年 附注《应用数学和力学》(中国) (AppliedMa hematics and Mechanics) 1980《应用数学和力学》编辑委员会 《热应力杂志》(美) Journal of Thermal Stresses 1978 美国 Hemispheres Publishing Co. 《国际非线性力学杂志》(英) International Journal of Non-Linear Mechanics 1966 英国 Pergamon Press Ltd.《国际固体与结构杂志》 International Journal of Solids and Structures 1965 英国Pergamon Press Ltd.《国际多相流杂志》(英) International Journal of Multiphase Flow 1973 英国Pergamon Press Ltd.《地震工程与结构动力学》 (英) Earthquake Engineering Structural Dynamics 1972 英国John Wiley Sons Ltd.《国际热与热流杂志》(英) International Journal of Heat and FluidFlow 1979 英国 Mechanical Engineering Publi-CationsLtd.《国际地震工程与土壤动力学杂志》(英) International Journal of Earthquake Engineering Soil Dynamics1981 英国 CML Publications《工程断裂力学》(英) Engineering Fracture Mechanics 1968 英国 Pergamon Press Ltd.《国际压力容器与管道杂 志》(英) The International Journal Of PressureVessels Piping 1973 英国Applied Science Publishers Ltd. 《国际工程数值方法杂志》 (英) International Journal for Numerical Methodsin Engineering 1969 英国John Wiley Sons Ltd.《工程材料与结构的疲劳》 (英) Fatigue of Engineering Materials and Structures 1978 英国Pergamon Press Ltd《国际疲劳杂志》(英) International Journal of Fatigue 1979 英国 IPC Science and Technology Press.《国际岩石力学与采矿学及地 质力学文摘》(英) International Journal of Rock Mechanics MiningScienc Geomechanics ABSTRACTS 1964 英国Pergamon Press Ltd.《水利》(法) La Houille Blanche 1902 法国《理论与应用力学杂志》(法) Journal de Mecanique Theorique et Appliquee(Le) 1962 法国Centrale des revues DunodGauthier-Villars《工程师文献》(联邦德国) Ingenieur-Archiv 1929 联邦德国 Springer-Verlag《岩石力学与岩石工程》 (奥地利) Rock Mechanics Rock Engineering1929 奥地利 Springer-Verlag 《固体力学文献》(荷兰) Solid Mechanics Archives 1976 荷兰 Martinus Nijhoff Publishers. 《应用力学和工程技术中的计算机方法》(荷兰) Computer Methods in Applied Mechanics and Engineering 1972 荷兰Elsevier Science Publishers. 《风工程和工业空气动力学杂志》(荷兰) Journal of Wind Engineering and Industrial Aerodynamics 1975 荷兰Elsevier Scientific Publishing Company(原名为Journal of Industrial Aerodynamics,1980年改为 现名)《国际断裂杂志》(荷兰) International Journal of Fracture 1965 荷兰Martinus Nijhoff Publishers 《水利学研究杂志》(荷兰) Journal of Hydraulic Research 1963 荷兰International Assiciation for Hydraulic Research《非牛顿流体力学杂志》 (荷兰) Journal of Non-Newtonian Flluid Mechanics 1975 荷兰Elsevier Scientific Publishing Company 《波动》(荷兰) Wave Motion 1979 荷兰North-Holland Publishing Co. 《土木工程学报》(中国) China Civil Engineering 1954 中国土木工程学会 China Civil Engineering Society《力学学报》(中国) Acta Me-chanica Subuca 1957 中国力学学会《力学学报》编辑委员会(The Editorial Board of ACTAMECHANIC A SINICA,the Chinese Society of Theoretical and Applied Mechanics)《力学译丛》(中国) 1964 中国科学技术情报研究所分所《力学进展》(中国) 1982 中国科学院力学研究所《应用力学》(中国) 1982 中国科学技术情报研究所分所《固体力学学报》(中国) Acta Mechanica Solida Sinica 1980 《固体力学》学报编辑委员会员《应用数学和力学》(中国) Applied Mathematics and Mechanics 1980 《应用数学和力学》编辑委员会《建筑结构学报》(中国) Jour-nal of Building Structures 1980 中国建筑学会《上海力学》(中国) 1980 《上海力学》编辑部 《爆炸与冲击》(中国) 1981 《爆炸与冲击》编辑部 《振动与冲击》(中国) 1982 《振动与冲击》编辑委员会《空气动力学学报》(中国) Acta Aerodynamica Sinica 1983 《空气动力学学报》编辑委员会《数学物理学报》(中国) 1981 《数学物理学报》编辑委员会《实验应力分析学会会报》 (美) Proceedings of the Society for Experimental StressAnalysis 1943 美国实验应力分析学会 (Society for Experimental Stress Analysis) 《实验力学》(美) Experimental Mechanics 1961 美国实验应力分析学会 (Society for Experimental Stress Analysis) 《结构力学杂志》(美) Journal of Structural Mechanics 1972 美国Marcel Dekker Ine.《流变学杂志》(美) Journal of Rheology 1957 美国John Wiley Sons Inc. Publishers. 《液压与气体力学》 (美) Hydraulics Pneumatics; Magazine of Fluid Powerand Control Systems 1948 美国Penton/IPC 《流体物理学》(美) Physics of Fluids 1958 美国物理学会(American Institute of Physics) 《流体力学年评》(美) Annual Review of Fluid Mechanics 1969 美国Annual Review Inc.《应用力学杂志》(美) Journal of AppliedMechanics 1935 美国机械工程师学会 (American Society ofMechanical Engineers)《实验应力分析学会年度春 季会议录》(美) Proceedingsof the SESA Annual Spring Meeting 美国实验应力分析学会(Society for Experimental Stress Analysis)《聚合物科学杂志》(美) Journal of Polymer Science 1946 美国John Wiley Sons Inc Publishers《生物工程学杂志》(美) Journal of BiomechanicalEngineering 1977 美国机械工程师学会 (American Society ofMechanical Engineers)《复合材料杂志》(美) Journal of Composite Materials 1967 美国 Technomic Publishing Company Inc.《流体工程学杂志》(美) Journal of FluidsEngineering 1973 美国机械工程师学会 (American Society ofMechanical Engineers)《美国土木工程师学会会报--工程力学组杂志》(美) Proceedings of the American Society of CivilEngineers- Journal of the Engineer Mechanics Division 1873 美国机械工程师学会(American Society of Civil Engineers)《自动车工程师学会汇刊》 (美) SAE Transactions 1906 自动车工程师学会 (Society of Automotive Engineers)《船舶研究杂志》(美) Journal of ShipResearch 1893 造船与轮机工程师协会 (Society of NavalArchitects Marine Engineers)《美国航空与航天学会志》 (美) AIAA Journal 1930 美国航空与航天学会 (American Institute of Aeronautics Astronautics)《苏联流体力学研究》(美) Fluid Mechanics-Soviet Research 1972 美国 Scripta Publishing Co. 《流体动力学》(美) Fluid Dynamics 1966 美国 Plenum Publishing Co.《伦敦皇家学会会报,A辑: 数学及物理科学》(英) Proceedings of the Royal Society of London,A:Mathematical Physical Sciences 1854 英国皇家学会(The Royal Society of London)《伦敦皇家学会哲学汇刊,A 辑数学与物理科学》(英) Philosophical Transactions of the RoyalSociety of London,SeriesA:Mathematical PhysicalSciences 1854 英国皇家学会(The Royal Society of London)1887年(第178卷)起分A,B两辑出版《力学研究通讯》(英) Mechanics Research Communications 1974 英国Pergamon Press Ltd《生物流变学》(英) Biorheology 1963 英国 Pergamon Press Ltd.《生物力学杂志》(英) Journal of Biomechanics 1968 英国 Pergamon Press Ltd.《材料科学杂志》(英) Journal of Materials Science 1966 英国 Chapman and Hall Ltd.《应变》(英) Strain 1964 英国应变测量学会 (British Society for Strain Measurement)《工程设计应变分析杂志》 (英) Journal of Strain Analysis for EngineeringDesign 1965 英国 Mechanical EngineeringPublications Ltd.《力学研究》(英) Research Mechanica 1980 英国Applied Science Publishers《计算机与结构》(英) Computers Structures 1971 英国 《计算机与流体》(英) Computers Fluid 1971 英国 Pergamon Press Ltd. 《水力气体机械动力》(英) Hydraulic Pneumatic Mechanical Power 1955 英国Trade Technical Press Ltd. Ltd. 《飞机工程》(英) Aircraft Engineering 1929 英国 Bunhill Publications Ltd.《航空季刊》(英) Aeronautical Quarterly 1949 英国皇家学会(Royal Aeronautical Society)《航空杂志》(英) Aeronautical Journal 1897 英国皇家学会(Royal Aeronautical Society)《星际航行学报》(英) ActaAstronautica 1955 英国1974年改为现名,1955~1973年刊名为Astronautica Acta,Pergamon Press Ltc.《应用数学与力学杂志》(英) Journal of Applied Mathematics Mechanics1958 英国1974年改为现名,1955~ 1973年刊名为Astronautica Acta,Pergamon Press Ltd《理性力学与分析文 献》(联邦德国) Archive for Rational Mechanics and Analysis 1957 联邦德国 springer-Verlag 《流变学学报》(联邦德国) Rheologica Acta 1958 联邦德国 Dr. Dietrich Steinkopff Verlag 《流体力学实验》(联邦德国) Experiments in Fluid 1983 联邦德国springer-Verlag 《油压力学与气体力学》 (联邦德国) Olhydraulik und Pneumatik 1957 联邦德国 Krausskopf Verlagsgruppe 《数学生物学杂志》(联邦德国) Journal of Mathematical Biology 1974 联邦德国 springer-Verlag《热力学与流体力学》 (联邦德国) Warme-und Stoffubertragung 1968 联邦德国 springer-Verlag 《法国流变学小组手册》 《通报》(法) Cahiers et Bulletin du Groupe Franais de rheologie 1965 法国《法国科学院会议周报,A-B辑:数理科学》(法) Comptes Rendus Hebdomadaires des Seances deL’Academie des Sciences, Series A et B:”Sciences Mathematiques,SciencesPhysiques” 1835 法国 Centrale des Revues Dunod Gauthier-Villars《应用力学纪事》(法) Journal de Mecanique Appliquee 1977 法国Centrale des Revues Dunod Gauthier-Villars 《力学》(意) Mechanica 1966 意大利 Pitagora Editrice《力学学报》(奥地利) Acta Mechanica 1965 奥地利 Springer-Verlag 《弹性体杂志》(荷) Journal of Elasticity 1971 荷兰artinus Nijhoff Publishers 《天体力学》(荷) Celestial Mechanics 1969 荷兰 D.Reidel Publishing Co.《工程数学杂志》(荷) Journal of Engineering Mathematics 1966 荷兰Martinus Nijhoff Publishers 《材料力学》(荷) Mechanics of Materials 1981 荷兰 North-Holland Publishing Co. 《澳大利亚地质力学杂志》 (澳) The Australian Geomechanics Journal 1971 澳大利亚《加拿大航空与空间杂志》 (加) Canadian Aeronautics SpaceJournal 1955 加拿大,1962年改为现名,1955~1961年刊名为:Canadian Aeronautics Journal.《核工程与设计》(瑞士) Nuclear Engineering and Design 1965 瑞士Elsevier Sequoia S.A. 《应用数学与力学杂志》 (民主德国) ZAMM-Zeitschrift fur Angewandt Mathematikund Mechanik 1921 民主德国 Akademic-Verlag 《理论与应用力学》(波兰) Mechanika Teoretyczna i Stosowana 1964 波兰 PWN 《工程汇刊》(波兰) Rozprawy Inzynierskie 1953 波兰 PWN 《力学文献集》(波兰) Archives of Mechanics 1849 波兰 PWN 《罗马尼亚技术科学杂志, 应用力学辑》(罗) Revue Roumaine des sciencesTechniques,Serie Mecanique Appliquee1956 罗马尼亚科学出版社《应用力学研究》(罗) Studii si Cerctari de Mecanica Applicata 1942 罗马尼亚科学出版社《日本应用力学全国会议 录》(日) Proceedings of the Japan National Congress of Applied Mechanics 1953 日本中央科学社 《材料》(日) Journal of the Society of Materials Science 1952 日本材料学会《日本机械学会论文集》(日) Transactions of the Japan Society of Mechanical Engineer 1935 日本机械学会 《土木协会论文报告集》(日) Proceedings of the Japan Society of Civil Engineers 1944 日本土木工学会《日本造船协会志》(日) Bulletin of the society of Naval Archiects of Japan 1915 日本造船协会《流体工程学》(日) 流体工学 1965 日本产业开发社(原名:学, 1965~1973.7)《日本材料强度学会志》 日本材料强度学会志 1967 日本材料强度学会《力学研究所报告》(日) 力学研究所报告 1967 日本力学研究所《日本流变学会志》(日) 日本一学会志 1973 日本流变学会《应用数学与力学》(苏联) 1936 苏联《苏联科学院通报:固体力 学》(苏) 1966 苏联,美国出版有英译本《磁流体力学》(苏) 1965 苏联,美国出版有英译本《燃烧与爆炸物理学》(苏) 1965 苏联《应用力学与物理学杂志》 (苏) 1960 苏联,美国出版有英译本《应用力学》(苏) 1955 苏联《复合材料力学》(苏) 1965 苏联《建筑力学与建筑物计算》 (苏) 1959 苏联《莫斯科大学力学通报》(美) Moscow University Mechanics Bulletin 1969 美国 Allerton Press Inc (译自俄文) 《得克萨斯大学巴尔科研究 中心年报》(美) Annual Repoet-Balcones Research Center,Univ.of Texas at Austin 美国《剑桥哲学会数学汇刊》(英) Re Mathematical Proceedings of the CambridgePhilosophical Society 1977 英国Cambridge Univ.Press,1977年改为现名,1843~1976 年名为Proceedings of Cambridge Philosophical Society;Mathematical Physical Sciences 《力学与应用数学季刊》(英) Quarterly Journal of Mechanics and Applied Mathematics 1948 英国 《流体力学杂志》(英) Journal of Fluid Mechanics 1956 英国 Cambridge Univ.Press《应用力学研究所报告》(日) Reports of Research Institute for Applied Mathematics 1952 日本九州大学应用力学研究所 《东京大学航天研究所报告》 ISAS (Institute of Space Aeronautical Science,Univ. Tokyo) 日本东京大学航天研究所 《布加勒斯特乔治乌德治工 学院通报:力学辑》(罗) Buletinul Institutului Politehnic“Gheorghe Gheorghiu-Dij” 1949 罗马尼亚《列宁格勒大学通报:数学, 力学和天文学类》(苏) 1946 苏联《莫斯科大学通报:数学力学类》(苏) 1946 苏联《国外科技资料馆藏目录━ 数学,力学》(中国) 中国科学技术情报研究所《力学文摘━流体力学部分》 (中国) 1958 中国科学技术情报研究所重庆 分所翻译,苏联科学院科学情报 研究所文摘编辑委员会编辑《力学文摘━一般力学部分》 (中国) 1958 中国科学技术情报研究所重庆 分所翻译,苏联科学院科学情 报研究所文摘编辑委员会编辑《力学文摘━弹性力学部分》 (中国) 1958 中国科学技术情报研究所重庆 分所翻译,苏联科学院科学情 报研究所文摘编辑委员会编辑《数学文摘》(美) Mathematical Reviewswith Index toMathematicalReviews 1940 美国数学会American Mathematical Society《冲击与振动研究辑要》(美) Shock and Vibration Digest 1969 美国冲击与振动情报中心《流变学通报》(美) Rheology Bulletin 1937 美国物理学会 American Institute ofPhysics《应用力学文摘》(美) Applied Mechanics Reviews 1948 美国机械工程师协会 American Society of Mechanical Engineers《地震工程文摘杂志》(美) Abstracts Journal in Earthquake Engineering 1968 美国加利福尼亚大学伯克利分 校地震工程研究中心 Univ. of California,Berkeley, Earthquake Engineering Research Center《工程索引》(美) Engineering Index (Annual) 1884 美国 Engineering Index Inc.《美国土木工程师学会汇 刊》(美) Transactions of the American Society of CivilEngineering 1852 美国土木工程师学会 American Society of Civil Engineering《科学引文索引》 (美) Science Citation Index 1961 美国科学情报研究所 Institute of Scientific Information《土木工程水利文摘》(英) Civil Engineering HydraulicsAbstracts 1968 英国流体力学研究协会 British Hydromechanics Research Association《流变学文摘》(英) Rheology Abstracts 1940 英国 Pergamon Press《固体-液体流文摘》(英) Solid-Liquid FlowAbstracts 1973 英国流体力学研究协会 British HydromechanicsResearch Association《工业空气动力学文摘》(英) Industrial Aerodynamics Abstracts 1970 英国流体力学研究协会 British Hydromechanics《流体动力学文摘》(英) Fluid Power Abstracts 1965 英国流体力学研究协会 Hydromechanics Research Association《英国土木工程师协会文 摘》(英) ICE Abstracts 1972 英国流体力学研究协会,1974 年改为现名(The Institution of Civil Engineers) 《法国全国科学研究中心 文摘通报,第130辑:数学, 物理,光学,声学,力学, 热学》(法) Bulletin Signaletique du C.N.R,S.,Section 130 hysique Mathematique, Optique, Acoustique, Mecanique, Chaleur 1961 法国全国科学研究中心 《科学技术文献速报:机 械工学编》(日) Currdnt Bibliography on Science Technology 1975 日本科学技术情报中心 (日本科学技术情报)《文摘杂志:力学(综合本) 》(苏) 1953 苏联全苏科学技术情报研究所《力学与实践》(中国) 1979 《力学与实践》编辑委员会 《美国物理学杂志》(美) American Journal of Physics 1933 美国物理学会 American Institute

  • 索引序列
  • 固体弹道导弹期刊投稿
  • 固体弹道导弹期刊投稿邮箱
  • 固体弹道导弹期刊投稿经验
  • 固体弹道导弹期刊投稿要求
  • 弹性体期刊投稿
  • 返回顶部